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Background: Macrophage foam cells (FCs) play a crucial role in the initiation and

progression of atherosclerosis. Reducing the formation or inducing the removal of FCs

could ameliorate atherosclerosis. The present study examined whether the whole-cell

vaccination using FCs could be used as novel prevention and treatment strategies to

battle atherosclerosis.

Methods: ApoE−/− mice with initial or established atherosclerosis were subcutaneously

immunized three times with FCs in Freund’s adjuvant.

Results: Immunization with FCs resulted in an overt reduction of atherosclerotic lesion

in the whole aorta and the aortic root with enhanced lesion stability. Subsequent

study in mechanism showed that FCs vaccination dramatically increased CD4+ T

cell and CD8+ T cell populations. Immunization with FCs significantly raised the

plasma FCs-specific IgG antibodies. Of note, the FCs immune plasma could selectively

recognize and bind to FC. FCs immune plasma significantly blocked the process of FCs

formation, finally reduced the accumulation of FCs in plaque. Additionally, it was observed

that FCs immunization down-regulated the expression level of atherosclerosis related

pro-inflammatory cytokines, including IFN-γ, MCP-1, and IL-6 and enhanced the lesion

stability with a significant increase in TGF-β1 level and collagen content.

Conclusions: These findings demonstrate that the whole-cell vaccination using FCs

significantly decreased lesion development and positively modulated lesion progression

and stability by targeting FCs. The whole-cell FCs vaccine might represent a potential

novel strategy for development of new antibodies and vaccines to the prevention or

treatment of atherosclerosis.
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INTRODUCTION

Atherosclerosis is the most common pathological cause leading
to cardiovascular disease which accounts for 17.3 million global
deaths per year (1). Despite an increasing urgency to conquer
atherosclerosis, its treatments are currently limited to lipid-
lowering therapy and anti-platelet therapy (2). No more than
30–40% of the major cardiovascular events could be prevented
by these strategies, probably attributing to the atherosclerosis-
associated complications. The complications were mainly caused
by the rupture-prone vulnerable plaques (3). In this sense,
alternative treatments for atherosclerosis such as immune
therapy have come into play (4–6).

Atherosclerosis is a chronic inflammatory disease involving
accumulatedmodified lipids (oxygenized low density lipoprotein,
oxLDL), macrophages, FCs, dendritic cells, inflamed smooth
muscle cells, and endothelial cells (7–9). In the early stages
of atherosclerosis, oxLDL accumulates in the artery intima.
The oxLDL then induces dysfunction of endothelial cells and
smooth muscle cells, which causes the production of pro-
inflammatory cytokines (10). The circulating monocytes
adhere to activated endothelial cells and subsequently
migrate into the subendothelial space in response to locally
produced chemoattractant molecules. These monocytes further
differentiate into macrophages which could take up oxLDL
via scavenger receptors (11, 12). The pathogenic macrophages
transform into FCs and form the fatty streak, and then
produce a diverse repertoire of inflammatory mediators that
exacerbate disease (10). Accumulation of excessive oxLDL-
derived cholesterol induces FCs apoptosis, thereby leading to
the formation of a necrotic, cholesterol-rich core. The necrotic
core becomes walled off by a fibrous cap of extracellular matrix
proteins secreted by smooth muscle cells (11).

Reducing the formation of FCs or inducing the removal of
FCs could ameliorate atherosclerotic. Recently, several groups
reported that targeting to FCs could effectively ameliorate
atherosclerotic (9, 10, 13, 14). Whole-cell vaccines have
undergone decades of investigation and exerted powerful
antitumor effects (15, 16). Here, we investigated whether
the whole-cell vaccination with FCs could be used as novel
prevention and treatment strategies to battle atherosclerosis. Like
other whole-cell vaccines (15, 17), theoretically the whole FCs
could provide some unknown but effective immunodominant
epitopes. Those epitopes could be effectively targeted by the
immune systems to enhance the clearance of FCs and reduce the
accumulation of FCs in plaque.

In the present study, we evaluated a new way to target FCs by
employing the whole FCs immunization in ApoE−/− mice. We
investigated its efficiency and possible mechanism on reduction
of FCs accumulation and attenuation the progression of
atherosclerosis. FCs were prepared with peritoneal macrophages
by uptake of oxLDL-derived cholesterol. FCs in Freund’s adjuvant
were then subjected to subcutaneous injection in ApoE−/−

Abbreviations: FCs, Macrophage foam cells; WTD, Western-type diet; oxLDL,

oxygenized low density lipoprotein; CFA, complete Freund’s adjuvant; IFA,

incomplete Freund’s adjuvant.

mice with developing or established atherosclerosis. To our
knowledge, we show that the whole foam cell vaccination is
highly effective in reducing plaque size and enhancing plaque
stability in atherosclerosis for the first time.

MATERIALS AND METHODS

Animals
Six-week-old male ApoE−/− mice on C57BL/6 background
were purchased from Vital River Laboratory Animal Technology
Co., Ltd (Beijing, China) and fed with normal chow diet until
the dietary intervention. Established atherosclerotic model was
induced using 8-week-old male ApoE−/− mice by feeding a
Western-type diet (WTD) (18, 19) for therapeutic study. To
obtain peritoneal macrophages, 7–8 weeks old male C57BL/6
mice were used. For the preventative study, male ApoE−/− mice
were treated with three subcutaneous injections of phosphate
buffer saline (PBS, n = 8), 0.5 million peritoneal macrophages
(Macrophages, n = 8) or 0.5 million FCs (FCs, n = 8) with
combination of Freund’s adjuvant every other week from 8 weeks
old. These mice were fed a WTD at 11 weeks for the subsequent
16 weeks (20). For the therapeutic study, the male mice were fed a
WTD for 12 weeks from 8 weeks old to establish atherosclerosis.
The mice with established atherosclerosis were then received
three subcutaneous injections of PBS, 0.5 million peritoneal
macrophages, or 0.5 million FCs (n = 6 per group) emulsified
with Freund’s adjuvant every other week, and were fed a normal
chow diet for an additional 12 weeks. In the two studies, the initial
immunization was performed with complete Freund’s adjuvant
(CFA), followed by two booster injections containing incomplete
Freund’s adjuvant (IFA). All animal experiments were approved
and supervised by the State Key Laboratory of Biotherapy
Animal Care and Use Committee (Sichuan University, Chengdu,
Sichuan, China).

Preparation of the Whole-Cell Vaccine
The peritoneum-derived macrophages were isolated from
C57BL/6 mice and purified as described previously (21) with
some modification. In brief, peritoneal macrophages of C57BL/6
mice were harvested by sterile lavage with cold cell culture
medium. Cells were immediately pooled and cultured in
RPMI1640 supplemented with 10% fatal bovine serum (GBICO,
Australia). After 2–3 h of incubation, non-adherent cells were
removed by gentle washing with cell culture medium. The
adherent cells were incubated for 24 h and subsequently used
in further experiments. To achieve the maximal oxLDL uptake,
the macrophages were stimulated with LPS for 12 h and then
treated in duplicate by different concentrations of oxLDL from
20 to 100µg/mL. After 24 h of incubation, the cells were fixed
with 3% formalin and stained using Oil Red O and hematoxylin.
Six random fields per condition were captured with OLYMPUS
BX53 microscope and quantification was performed with Image
Pro Plus software.

To confirm the purity of macrophages or FCs, macrophages
treated with or without 50µg/mL oxLDL were stained with
APC anti-mouse F4/80 (Biolegend). The analysis was carried out
using a BD FACS. In brief, cells were captured via high forward
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scatter (FSC) and high side scatter (SSC). Favorite cells were
gated as shown in Region 1 (R1), of which APC positive cells
were selected. Results were expressed in percentage of positive
cells. The experiments were performed in triplicate. To prepare
the whole-cell vaccine, peritoneal macrophages were incubated
with or without 50µg/mL oxLDL (Guangzhou Yiyuan Biotech.
Co, Ltd) for 24 h. After washed three times with sterile PBS,
the oxLDL-treated or untreated macrophages were inactivated
by formalin. The inactivated cells were finally washed three
times and emulsified with equal volume of Freund’s adjuvant by
grinding water phase and Freund’s adjuvant to obtain a water-
in-oil emulsion as the whole-cell vaccine (0.5 million cells in 100
µL PBS suspended in an equal volume of Freund’s adjuvant per
mouse).

Histological Analysis
At the end of the experiment, mice were sacrificed by cervical
dislocation. The mice were immediately bled by cardiac puncture
and perfused with cold PBS. Aortas were collected free of
connective tissue and fat from the base of ascending aorta to
the iliac bifurcation. The hearts were sectioned in the middle,
and the upper part was immediately frozen in optimum cut
temperature medium in a plastic tube at −80◦C. Beginning at
the first appearance of the tri-leaflet aortic valve, successive 5µm
transverse sections were made for a distance of 100µm.

Evaluation of en face lesion formation were performed
according to previous reports (10, 22, 23). Briefly, the entire
aortas were further cleaned from residual adventitia on a tissue
culture dish filled with cold PBS using ophthalmic scissors and
tweezers through an optical microscope. The aortas were then
cut longitudinally, washed in distilled water. The aortas were
dipped in 60% isopropanol briefly, and then stained for 2–3 h in
0.3% Oil Red O dissolved in 60% isopropanol. Next, the aortas
were then dipped in 60% isopropanol briefly, washed in distilled
water and pinned out on a slide glass. Finally, the cover slides
were mounted with distilled water. Lipids are stained red. Images
were captured with Nikon SMZ800 microscope. Stained area and
total aortic areas were quantified blinded by microscopy and
computer aided morphometry. The plaque load was expressed as
percentage of the total surface of the aorta according to previous
reports (24, 25).

To determine the plaque load and composition, 3∼4 sections
of the aortic root per mouse were stained with hematoxylin and
eosin (22). Corresponding sections were stained with antibody
against Mac-2 (10) (Biolegend), MCP-1 (Abcam) or stained
for collagen fibers using the Masson’s trichrome method. To
confirm the presence of FCs, serial sections of the aortic root
were stained with hematoxylin and eosin, a macrophages-specific
marker (Mac-2) and Oil Red O and hematoxylin, respectively. All
images were acquired using the OLYMPUS BX53 microscope.
Quantitative analysis of staining was performed blinded by two
observers with Image Pro Plus software. In brief, the average
plaque area in aortic root of each mouse was computed, and
the average group plaque area was quantified for the Control,
Macrophages, and FCs group, respectively. Areas of the collagen
fibers were determined in trichrome–stained sections and the
FCs were identified as the Mac-2 positive part of the plaque. The

percentage of FCs or collagen in the lesions was determined by
dividing the Mac-2-positive or collagen-positive area by the total
lesion surface area. Data are presented as a percentage of total
plaque area as reported previously (6, 26–28).

Antibody Detection
At sacrifice, blood was harvested to obtain plasma to determine
the humoral immune response. To prepare oxLDL-coated ELISA
plate, oxLDL (10µg/mL) from the same batch was added
into ELISA plate and incubated overnight at 4◦C. To prepare
macrophages-coated ELISA plate, the peritoneal macrophages
(2 × 104 per well) were seeded in ELISA plate. To prepare
FCs-coated ELISA plate, the above macrophages-coated ELISA
plate was further treated by 50µg/mL of oxLDL for additional
24 h. All coated plates were washed 3 times with PBS containing
0.05% Tween-20 and thereafter blocked with 2% BSA in PBS for
90min at room temperature. ELISA plates were then incubated
with mouse plasma diluted in 1% BSA for 2 h. After washing,
plates were incubated with HRP-labeled anti-mouse IgG, IgG1
or IgG2a (Southern Biotech) at a 1:5000 dilution for 1 h at
room temperature. The substrate TMB (100 µL) was then added
into the plates for 15min after washing. Fifty microliter stop
solution was finally added and the absorbance was immediately
read at 450 nm. Individual plasma from each mouse was tested
in duplicate at increasing dilutions (from 1: 100 to 1: 6400) to
measure corresponding immunoglobulin IgG. The isotypes of the
immunoglobulin were determined at 1: 800 dilution (20). Values
were calculated after subtraction of background absorbance.
Immunocytochemical analysis (29) was further performed to
examine the plasma antibody specificity using PBS-immune,
Macrophages-immune or FCs-immune plasma. In addition,
whether antibodies stimulated by the whole cell vaccines differed
between those expressing ApoE or not was also investigated using
cells from ApoE−/− mice. The images were captured and the
quantitative analysis of staining was performed with Image Pro
Plus software.

Cellular Immune Response Assay
To explore the cellular immune responses to FCs vaccine, mice
immunized with FCs, Macrophages, or PBS emulsified with
Freund’s adjuvant were killed and spleens were harvested. Spleens
were smashed through a 70mm filter to collect splenocytes.
Red blood cells were removed using red blood cell lysing
buffer. Spleen cells collected from PBS, Macrophages, or FCs
immunized mice were stained for cell surface markers, including
CD4 and CD8. Moreover, splenocytes effector cells stained
with Carboxyfluorescein Succinimidyl Ester (CFSE) at 2 × 105

cells/well were co-cultured with macrophages or FCs at 10:1 ratio
for 72 h and stained for CD3 to visualize cell proliferation (due
to dilution of CFSE dye in each cell division, highly proliferating
cells are toward the left and non-proliferating cells are toward the
right).

Effect of Immune Plasma on FCs
Formation
For the FCs formation inhibition study, the peritoneal
macrophages were seeded at 10 × 104/well in 24-well
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plates and incubated for 24 h. Cells were further cultured
for 15 h before experiments in the same conditions but
without fatal bovine serum. The macrophages were then
incubated in duplicate with or without plasma (50 µL/mL)
from FC-immune ApoE−/− mice for 3 h in the presence of
DiI-oxLDL (30µg/mL). To further elaborate the effect of
immune plasma on FCs formation, the macrophages were
incubated in duplicate with or without plasma (50 µL/mL)
from FC-immune ApoE−/− mice for 1 h. After washed
with sterile PBS, the cells were incubated with DiI-oxLDL
(30µg/mL) for 3 h. Finally, the cells were washed, fixed with
3% formaldehyde, and stained with Hochest33258 (1µg/mL).
Six random fields per condition were captured by High
Content Screening. Internalized oxLDL was revealed by DiI
fluorescence and analysis was performed with Image Pro Plus
software (30).

Analysis of Plasma Lipids and Cytokines
Retro-orbital blood was obtained via EDTA-coated micro
capillary tubes during organ harvest at the end of the study.
The whole blood of mice after immunization had been
analyzed by Celltac F automated hematology analyzer to
investigate the blood components, including leukocytes,
erythrocytes, thrombocytes, lymphocytes, monocytes, and
neutrophils. The remaining whole blood was spun at 10,000
rpm for 10min at 4◦C. The supernatant was collected and
frozen at −20◦C until analysis to reduce multiple freeze/thaw
cycles. No-fasting plasma lipids, including total cholesterol,
LDL cholesterol, HDL cholesterol, and triglycerides levels,
were determined using plasma biochemistry automatic
analyzer (Hitachi High-Technologies Corp., Minato-ku,
Tokyo, Japan) as described previously (31, 32). Mouse IFN-
γ ELISA Kit, Mouse IL-6 ELISA Kit, and Mouse MCP-1

FIGURE 1 | The oxLDL uptake by peritoneal macrophages treated with or without oxLDL (20, 50 or 100µg/mL) for 24 h. Internalized oxLDL were stained with Oil Red

O. Six random fields per condition were observed with OLYMPUS BX53 microscope. (A) A representative image is shown for each condition. Scale bars, 20µm. (B)

Quantification of intracellular oxLDL. The mean ± SEM of Oil Red O staining per condition is expressed in arbitrary units (au). Peritoneal macrophages or FCs were

stained with APC anti-mouse F4/80. Flow cytometry histograms for macrophages (D), and FCs (E), respectively. Unlabeled macrophages were used as negative

controls (C). The experiment was performed in triplicate. **p < 0.01; ***p < 0.001.
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ELISA Set were purchased from BD Pharmingen. Mouse
TGF-β1 Precoated ELISA kit were provided by Boster
Biological Technology Co., Ltd. The levels of IFN-γ, IL-
6, MCP-1, and TGF-β1 were determined according to the
manufacturer’s protocol after the plasma samples being diluted
at 1:2.

Statistical Analysis
All values are presented as mean ± SEM unless specified. Data
of multiple groups were analyzed using a non-parametric one-
way ANOVA, followed by the Bonferroni’s post-test. Statistical
analysis was performed using Graphpad Prism 5.0. The p-
values < 0.05 were considered significant.

FIGURE 2 | FCs immunization attenuates initial atherosclerotic lesion. (A) Schematic illustration of the prevention experimental setup. (B) Evaluation of en face lesion

size of the whole aorta was carried out by Oil Red O staining. (C) Plaque size in the three-valve area of the aortic root was assessed by hematoxylin and eosin

staining. (D) Collagen content in the aortic root was determined by Masson’s Trichrome staining as the percentage of the total lesion area. Scale bars, 200µm. All

data are presented as mean ± SEM and are representative of all mice. n = 5–6 in each group; *p < 0.05; **p < 0.01; ***p < 0.001.
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RESULTS

FCs Preparation
To prepare FCs, the isolated peritoneal macrophages were

cultured with increasing concentrations of oxLDL. 50µg/mL
oxLDL was sufficient to lead to the maximal oxLDL uptake

by macrophages. Further increase of oxLDL concentration
to 100µg/mL enhanced no significant uptake of oxLDL by

macrophages (Figures 1A,B). The purity of macrophages
and FCs was confirmed. More than 99% cells were identified
as F4/80-positive cells by flow cytometry (Figures 1C–E).
Additionally, there was no significant difference about
FSChi and SSChi between peritoneal macrophages treated
with or without oxLDL (50µg/mL) for 24 h (Figure S1).
Hence, we chose this condition to generate FCs for further
experiments.

FIGURE 3 | FCs vaccination attenuates advanced lesion. (A) Experimental design of the therapeutic study. (B) En face lesion size of the whole aorta. (C) Plaque size

in the three-valve area of the aortic root. (D) Collagen content in the aortic root. Scale bars, 200µm. All data are presented as mean ± SEM and are representative of

all mice. n = 5–6 in each group; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4 | FCs vaccine decreases accumulation of FCs in plaque. (A) Serial cryosections of the aortic root were stained with hematoxylin and eosin, Mac-2, and Oil

Red O, and hematoxylin, respectively. Representative photographs of corresponding staining were shown with co-location of Mac-2 and Oil Red O positive area

outlined and FCs depicted by arrows. Scale bars, 100µm. The FCs content in the aortic root of initial (B) and advanced (C) plaque were evaluated as the Mac-2

positive area per plaque area. Scale bars, 200µm. *p < 0.05; **p < 0.01; ***p < 0.001.

FCs Treatment Diminish Initial
Atherosclerotic Lesion
For the preventative study, the ApoE−/− mice were immunized
with the prepared FCs vaccine through subcutaneous injections
according to the schematic illustration (Figure 2A). At the
end of the experiment, we found significant reduction of 40%
in FC-treated mice and 26% in macrophages-treated mice in
en face lesion size by Oil Red O staining of whole aortas
when compared with PBS immunized mice (Figure 2B). The
lesion sizes in the three-valve area of the aortic root were
further analyzed by hematoxylin and eosin staining. A dramatic
31% decrease was noted in FCs-immune mice, whereas only
14% decrease was observed in macrophages-immune mice
(Figure 2C). Furthermore, we observed a more stable lesion
phenotype in FC-treated mice. The aortic root lesions of FC-
treated were composed of 72% collagen, whereas those in control
mice were only 57% collagen (Figure 2D).

FCs Vaccine Is Beneficial for Plaque
Stabilization in Established Atherosclerosis
For the therapeutic study, the ApoE−/− mice were treated with
FCs vaccine according to the experimental design (Figure 3A).
Eight weeks after the last immunization of FCs vaccine, the size
of atherosclerotic lesions in the whole aorta greatly decreased
by 33% through the en face staining analysis of Oil Red O
(Figure 3B). In contrast, macrophages-immune mice had no
significant change in the lesion size by comparison with control.
The plaque load in aortic root was significantly decreased about
20% in macrophages-immune mice and 31% in FCs-immune
mice, respectively, (Figure 3C). Additionally, collagen content
in aortic root lesion of FCs treated mice significantly increased
by about 42% and those macrophages-treated mice increased
by about 23% compared with PBS treated group. Of note, FCs
immunization induced a more stable plaque when compared
with macrophages vaccination (Figure 3D).
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FIGURE 5 | FCs immunization results in a specific antibody response in initial atherosclerosis. (A) ELISA was performed to measure the specific antibodies to FCs and

macrophages as well as immunoglobulin isotypes including IgG1 and IgG2a titers. Data are shown at plasma dilutions of 1: 800 for each group (n = 8). OD, optical

density. (B) Peritoneal macrophages and FCs were fixed and stained with PBS-immune, Macrophages-immune or FCs-immune plasma (dilution 1:50). Scale bars,

50µm.

FC Immunization Reduces the
Accumulation of FCs in Plaque
To confirm the presence of FCs in plaque, serial cryosections
of the aortic root were stained with H&E, a macrophages-
specific marker (Mac-2) and Oil Red O and hematoxylin.
Co-localization of Mac-2 and Oil Red O positive area
was obvious and marked by dotted lines. A representative
Mac-2 and Oil Red O dual-positive cell was shown with
arrowheads (Figure 4A). These data argued that Mac-2 positive
area could represent FCs distribution in atherosclerotic
plaque. Next, we investigated whether immunization
could reduce the accumulation of FCs in atherosclerotic
plaque. As shown in Figures 4B,C, FCs-immunization
significantly reduced FCs accumulation in the initial and
advanced plaque (40.7 and 49.9%, respectively), whereas
macrophages-immunization demonstrated only a modest
decrease (9.6 and 24.8%, respectively) when compared with PBS
control.

FCs Vaccination Induces Humoral and
Cellular Responses
To explore the humoral response to the vaccination,
antibodies in mice plasma generated by immunization were
determined. ELISA studies demonstrated that the subcutaneous
immunization of FCs in Freund’s adjuvant induced a significant
elevated titer of IgG against FCs compared with other groups
(Figure 5A). Of note, there was no significant difference about
anti-oxLDL titers among three groups at different dilutions
(Figure S2). These data confirmed the specificity of the
antibodies stimulated by FCs vaccine. In addition, the antibodies
induced by FCs or normal macrophages were almost exclusively
of the IgG1 isotype indicative of strong T helper type 2 immune
responses (Figure 5A).

To further investigate the specificity of the antibodies
stimulated by FCs vaccine, FCs and peritoneal macrophages
were stained with PBS-immune, Macrophages-immune, or
FCs-immune mouse plasma, respectively. The immunostaining
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FIGURE 6 | FCs immunization induces cellar response. (A) Macrophages and FCs vaccines significantly increased CD4+ T cell and CD8+ T cell populations in spleen

compared with those PBS immunized mice. (B) Total splenocytes were cultured in vitro in the presence of FCs or Macrophages. Proliferation of CD3 positive T cell

was measured by CFSE with peaks reflecting cell divisions.

images showed that the immune plasma from FC-vaccinated
mice could recognize and bind to FCs but had lower reactivity
to normal macrophages (Figure 5B), which validated the
ELISA results. Additionally, FCs-immune mouse plasma could
recognize and bind to FCs from ApoE−/− mice (Figure S3),
suggesting that there is no significant difference in the antibody
response to FCs between ApoE expressing or not.

Cellular responses on FCs immunization were also
investigated. Both macrophages and FCs immunization
significantly increased the CD4+ and CD8+ T lymphocytes
levels in spleen (Figure 6A). Moreover, incubation splenocytes
from FCs immunized mice with FCs could induce an overt T
cell proliferation, suggesting that an obvious cellular immune
response was raised by immunization (Figure 6B).

Immune Plasma Blocks the Process of FCs
Formation
To test whether the FCs-immune plasma could block the
process of FCs formation, FCs-immune plasma was incubated
with macrophages in the presence or absence of oxLDL. The
presence of FC-immune mouse plasma during macrophages
incubation with oxLDL resulted in a significant decrease by
about 20% of the intracellular oxLDL (Figure 7A). However,
when the peritoneal macrophages were pre-exposed to immune
plasma, none significant decrease of oxLDL uptake by FCs-
immune plasma treatment was observed. In contrast, the oxLDL
uptake was markedly reduced by macrophages-immune plasma

treatment in comparison with PBS-immune plasma treatment
(Figure 7B).

FCs Vaccine Significantly Modulates
Cytokine Production in vivo
Plasma levels of proinflammatory cytokine IFN-γ and IL-6 were
significantly reduced by immunization with FCs compared to
the control (Figures 8A,B). A similar trend was observed in
plasma levels of proatherogenic chemokine MCP-1 (Figure 8C).
Consistent with the change of plasma MCP-1 level, FCs
immunization also reduced MCP-1 expression (brown stain)
in the initial atherosclerotic lesions (Figures 8E–H). Moreover,
FCs treatment dramatically increased the plasma levels of
atheroprotective cytokine TGF-β1 (Figure 8D). In addition, no
significant effects of macrophages or FCs immunization on body
weight, plasma lipid profile and blood cells were observed among
immune groups (Table 1).

DISCUSSION

Atherosclerosis is an immune-mediated inflammatory disease of
the arterial wall. Both the innate and adaptive immune systems
responding tomany endogenous and exogenous antigens. Hence,
it is conceivable that an immunomodulatory strategy via active
immunization against many of these antigens could potentially
alter the natural history of atherosclerosis (33). Recently,
modulation of the immune response against atherosclerotic
plaque antigen(s) has attracted attention, including oxLDL (34),
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FIGURE 7 | FCs immune plasma blocks the process of FCs formation. (A) For the FCs formation inhibition study, the macrophages were incubated in duplicate with

or without plasma (50 µL/mL) from FC-immune ApoE−/− mice for 3 h in the presence of DiI-oxLDL. (B) Further investigation of the effect of immune plasma on FCs

formation. Macrophages were treated with or without plasma (50 µL/mL) from PBS-immune, macrophages-immune, or FC-immune ApoE−/− mice for 1 h. After

washed, cells were cultured with 30µg/mL DiI-oxLDL for 3 h (B). Internalized oxLDL was revealed by DiI fluorescence, and six random fields per condition were

captured by High Content Screening. A representative image is shown for each condition. Scale bars, 50µm. *p < 0.05; **p < 0.01; ***p < 0.001.

apolipoprotein B peptides (23, 24, 35) and heat shock protein
(36). LDL is a large, heterogeneous molecule containing a diverse
cargo of apolipoproteins, cholesteryl esters, triglycerides, and
phospholipids. It would be impractical to use whole homologous
LDL as an antigen in a clinically-usable vaccine formulation.
Actually, immunotherapy based on apoB-100 or oxLDL loaded
dendritic cells may be alternative approaches to attenuates
atherosclerosis (6, 25, 37). Macrophages took up excessive oxLDL
and then transform into FCs and form the fatty streak (38).
FCs accumulation in lesion plays a crucial role in the initiation
and progression of atherosclerosis (26). Different with those
pervious vaccines design, we designed a whole-cell vaccine based
on FCs to targeting FCs. We then investigated its efficiency and
possible mechanism on preventative and therapeutic effects on
atherosclerosis. Whole-cell vaccines have undergone a relative
long term of investigation and exerted powerful therapeutic
effects by providing multiple and unknown antigens (17, 39,
40). Our results demonstrated that the whole FCs vaccine
induced strong immune responses and positively improved
atherosclerosis by declining the en face lesion size in whole

aorta, reducing plaque load, and FCs accumulation in aortic root,
and enhancing the stability of atherosclerotic lesion by raising
FCs-specific IgG and modulating cytokine production.

In the present study, FCs used for immunization were
prepared with peritoneal macrophages from C57BL/6 mice
(donor mice) as reported previously (6, 37). The whole FCs
vaccination induced the strong humoral immune responses
with the production of FCs-specific polyclonal antibodies. FCs-
immune mouse plasma could selectively recognize and bind
to FCs. As expected, FCs-immune mouse plasma showed
minimal reactivity to normal macrophages or oxLDL, suggesting
that the immune polyclonal plasma is independent of normal
macrophages or oxLDL. Moreover, our results showed that the
most of anti-FCs polyclonal antibodies is IgG1 but not IgG2a.
The FCs-specific IgG may exert its beneficial effects possibly
through different ways. Like other whole-cell vaccines, FCs
immunization raised effective polyclonal antibodies because of
multiple and unknown antigens provided by FCs. The FCs-
induced polyclonal antibodies might selectively bind to the FCs,
and then induce the antibody-mediated immune response and
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FIGURE 8 | FCs vaccination modulates cytokines in initial atherosclerosis. The levels of IFN-γ (A), IL-6 (B), MCP-1 (C), and TGF-β1 (D) in immune ApoE−/− mouse

plasma were determined at 1:2 dilution by ELISA according to the manufacturer’s protocol. n = 8 in each group. Aortic roots were sectioned and stained with MCP-1.

Representative photographs of MCP-1 immunostaining of PBS (E), macrophages (F), and FCs (G) immunized mice, respectively. Scale bars, 100µm. (H)

Quantification of MCP-1 expression in atherosclerotic lesion area of aortic root. n = 6 in each group; *p < 0.05; **p < 0.01; ***p < 0.001.

enhance the clearance of FCs in lesion, finally reduce the plaque
formation. Incubation splenocytes from FCs immunized mice
with FCs induced overt T cell proliferation. Our results combined
with those from the previous studies strongly suggest that the
reactive T cells might be beneficial to the athero-protection
elicited by immunization (20, 37, 41). However, further studies
are still required to elucidate the cooperative anti-atherosclerotic
effect of the cellular immune response and the humoral immune
response.

Interestingly, pretreated macrophages with the FCs immune
plasma could not effectively block the phagocytosis of oxLDL.
However, incubated with immune plasma in the presence of
oxLDL could attenuate the formation of FCs. And also, it has
been observed that the FCs immune plasma did not bind to the
oxLDL nor normal macrophages. Taken together, it suggested
that the FCs-immune plasma significantly inhibit the formation
of FCs mainly by targeting to the process of FCs formation but
not directly to the normalmacrophages nor oxLDL. Nevertheless,
more detailed future studies will be needed to identify what the
immune plasma targets and uncover how it works. Although, it is
difficult to determine the epitopes specific to FCs or even identify
their molecule markers different from normal macrophages,
further identification of immunodominant epitopes and uniquer
molecule markers of FCs is of great interest.

Atherosclerosis is a chronic inflammatory disease involving
pro-inflammatory and anti-inflammatory pathologic process (22,
42, 43). Inflammation is not effectively resolved in atherosclerosis
(44). Cell cytokines are important factors involved in the

progression of atherosclerosis (22, 44, 45). IFN-γ, the pro-
inflammatory mediator, promotes foam cell formation (46).
IL-6 regulates monocytes to macrophages differentiation and
activation in the aorta along with MCP-1 (47). FCs vaccination
significantly decreased the circulating levels of IFN-γ, IL-6, and
MCP-1 and the expression of MCP-1 in aortic root. Thus, it could
be inferred that the anti-atherosclerotic effect of FCs vaccination
was partially ascribed to the decrease of pro-inflammatory
cytokines and chemotactic factor, which reduced the recruitment
of monocytes/macrophages and inflammation in atherosclerosis.
TGF-β1 is a potent stimulator of collagen secretion and cause
collagen deposition (48). In parallel with increase of circulating
TGF-β1, dramatic collagen deposition in aortic root was observed
in not only early lesions but also advanced lesions by FCs
vaccination.We’re surprised to find this interesting phenomenon
although some other researchers also observed the similar
consistence of collagen deposition in the lesions by different
immunization (6, 27). The consistency of collagen deposition in
the lesions observed in the field of atherosclerosis immunization
partially resulted from adjuvant and the other similarity of
different vaccines. FCs immunization stabilized the plaque by
increasing collagen content in the aorta root owing to elevated
TGF-β1. FCs immunization down-regulated the expression level
of atherosclerosis related pro-inflammatory cytokines, including
IFN-γ, MCP-1, and IL-6 and enhanced the lesion stability with a
significant increase in TGF-β1 level. Dampen inflammation and
enhance inflammation resolution were beneficial to the treatment
of atherosclerosis (44, 49, 50).
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TABLE 1 | The effects of immunization on body weight, plasma lipid profile and

blood cells of ApoE−/− mice.

PBS Macrophages FCs

Weight (g) 23.8 ± 4.1 26.9 ± 3.2 24 ± 1.0

TC (mmol/L) 18.83 ± 3.14 22.48 ± 1.53 19.8 ± 2.68

TG (mmol/L) 1.96 ± 0.59 1.99 ± 0.92 1.56 ± 0.39

HDL-C (mmol/L) 0.22 ± 0.04 0.18 ± 0.07 0.2 ± 0.05

LDL-C (mmol/L) 1.54 ± 0.74 3.77 ± 1.52 2.43 ± 0.90

Leukocyte 109/L 6.5 ± 1.7 4.6 ± 1.3 5.4 ± 1.9

Erythrocyte 1012/L 7.8 ± 1.1 8.6 ± 1.2 8.2 ± 1.6

Thrombocyte 109/L 294 ± 85 210 ± 83 206 ± 46

Lymphocyte 109/L 1.91 ± 0.48 1.86 ± 0.30 1.72 ± 0.53

Monocyte 109/L 0.75 ± 0.26 0.67 ± 0.15 0.69 ± 0.25

Neutrophils 109/L 3.2 ± 1.0 2.3 ± 0.8 2.9 ± 1.4

TC indicates total cholesterol; TG, Triglycerides; HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density lipoprotein cholesterol; Values are presented as mean

± SD, n = 6/group.

Additionally, macrophages-immune mice also displayed
attenuation of atherosclerosis by macrophages-specific
antibodies and cytokines modulation, in despite of lower
protective efficacy than FCs vaccine. Although macrophages-
specific plasma could not selectively recognize the FCs, it
can indirectly inhibit the development of atherosclerosis via
regulating the expression level of cytokines of the vaccinated
mice. However, unlike FCs immunization, the macrophages
immunization could not significantly decrease the whole en face
lesion area of established atherosclerotic lesion. This difference
could be explained by the difference of humoral and cellular
immune response raised by vaccination. The antibodies raised
by macrophages vaccination might mainly recognize and bind to
normal macrophages. Actually, it could not well-recognize and
bind to FCs or induce the antibody-mediated immune clearance
in the established lesion. In addition, such macrophages
vaccine might have serious side effects and cannot be used as
anti-atherosclerotic approach because macrophages specific
antibodies might affect the normal function of macrophages
(51). In the present study, FC-immune mice plasma presented
a slight cross binding activity to normal macrophages. No
difference about the titers of plasma antibodies specific to oxLDL
among these three groups was detected, indicating that the
protective effect of FCs immunization was attributed to FCs
itself but not macrophages or oxLDL. The low cross-reactivity
of FCs-immune plasma with normal macrophages might be

caused by the same immunodominant epitopes between FCs
and macrophages, because FCs were derived from macrophages
(52). These results indicate that during the formation of FCs
from macrophages, FCs might generate some unknown and
unique immunodominant epitopes. Despite the presence of
FCs was confirmed by Mac-2 and Oil Red O dual-positive cell,
their molecule markers different from normal macrophages
are hardly to identify. Currently, it is difficult to determine
the immune epitopes specific to FCs. Of note, because of the
significant function difference against atherosclerosis by the FCs
and macrophages, it is of great interest to further identify the
effective immunodominant epitopes and new antibody targeting
FCs using B cell technology. Moreover, this exploration will
increase our understanding of the immune atheroprotective
mechanism of FCs vaccination.

In conclusion, our results demonstrated that the whole FCs
vaccine positively improved atherosclerosis by declining the
lesion area, reducing plaque size, and enhancing the stability
of atherosclerotic lesion by inducing strong humoral and cellar
immune responses. Taken together, these results might provide
new insight to find new vaccine and antibodies specifically
targeting FCs to conquer atherosclerosis at different stages.
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