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Dendritic cell (DC) activation is characterized by an acute increase in glucose metabolic

flux that is required to fuel the high anabolic rates associated with DC activation.

Inhibition of glycolysis significantly attenuates most aspects of DC immune effector

function including antigen presentation, inflammatory cytokine production, and T cell

stimulatory capacity. The cellular nutrient sensor mammalian/mechanistic Target of

Rapamycin (mTOR) is an important upstream regulator of glycolytic metabolism and

plays a central role in coordinating DC metabolic changes and immune responses.

Because mTOR signaling can be activated by a variety of immunological stimuli, including

signaling through the Toll-like Receptor (TLR) family of receptors, mTOR is involved in

orchestrating many aspects of the DC metabolic response to microbial stimuli. It has

become increasingly clear that mTOR’s role in promoting or attenuating inflammatory

processes in DCs is highly context-dependent and varies according to specific cellular

subsets and the immunological conditions being studied. This review will address key

aspects of the complex role of mTOR in regulating DC metabolism and effector function.
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INTRODUCTION

As the quintessential professional antigen presenting cells of the immune system, dendritic cells
(DCs) play a central role in coordinating both innate and adaptive immune responses through
efficient recognition and uptake of extracellular material and the potent ability to provide both
presented antigen and costimulatory signals required for proper T lymphocyte activation (1).
DC activation is typically initiated by Pattern Recognition Receptor (PRR) interactions with
microbe-associated ligands, as has been exhaustively characterized for the Toll-like receptor
(TLR) family of innate immune receptors (2–4). Signaling downstream of these receptors induces
important transcription and translation programs in DCs that are essential for the induction
of their immune effector function. While DCs share many of the innate immune features of
other myeloid cells of the mononuclear phagocyte lineage such as the expression of PRRs,
efficient endocytic, and phagocytic clearance of extracellular matter, and robust induction of
cytokine-driven inflammatory response upon activation, DCs undergo a distinct cellular program
of maturation that is affiliated with their important contributions to T cell activation. These latter
functions include the processing and presentation of antigens onMHCmolecules, the upregulation
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of co-stimulatory molecule expression, and the induction of
chemokine receptor expression that drives DC migration to
secondary lymphoid organs where DCs encounter and activate
T lymphocytes through cognate antigen interactions (1, 5, 6).

While historically the field of immunology has focused on
immune cell regulation at the transcriptional and translational
levels, the recent emergence of the field of “immunometabolism”
has provided the scientific community with a new framework for
thinking about immune cell activation; specifically, how nutrient
availability and usage controls the cellular effector functions
important for immunological protection. One of the cornerstone
findings of recent advances in the field is the observation that
immune cell activation, in both the lymphoid and myeloid
lineages, is broadly characterized by an increased flux of
glucose metabolism, often termed in the literature as “aerobic
glycolysis” as both a historical nod to the analogous “Warburg
metabolism” described in cancer cells [reviewed in Potter et al.
(7)] and to emphasize that the increase in glucose metabolism
is not systemically induced by hypoxic conditions (8–18).
Analogous to lymphocyte dependence on glucose metabolism
for activation [reviewed in (17, 19)], TLR stimulation of DCs
induces significant upregulation of aerobic glycolysis that is
required for the survival and immune effector function of both
human and mouse DCs (10–12, 15, 20, 21). As a cellular
nutrient sensor and important upstream regulator of glycolytic
metabolism, Mammalian Target of Rapamycin (mTOR) plays
a central role in coordinating DC metabolic changes and
immune responses. mTOR’s role in cell biology is far-reaching
and highly complex, regulating a diverse network of cellular
responses including cell metabolism, energy homeostasis, protein
translation, cellular differentiation, and proliferation, autophagy,
and cell survival. Despite this complexity, the existence of highly
selective, non-toxic, and FDA-approved mTOR inhibitors such
as rapamycin has allowed the research community to broadly
interrogate the role of mTOR function in DC biology at both
the cellular and organism/patient level. As the role of mTOR
in immune cell development and autophagy regulation have
been covered comprehensively by previous reviews [reviewed in
(22–24)], these aspects of mTOR biology will not be covered
in depth. Instead, the focus of this review will be to highlight
and discuss the current understanding of mTOR-dependent
metabolic regulation of DC function.

THE ROLE OF mTOR IN CELLULAR
METABOLISM

The hierarchical regulation of cellular metabolism and energy
homeostasis can be functionally partitioned into two opposing
“programs,” anabolism and catabolism, each governed by
a distinct central upstream regulator. Energetic anabolism,
generically characterized by reduced metabolic activity coupled
to energy conservation and production, is controlled by AMP-
activated protein kinase (AMPK) in response to low cellular
ATP levels or nutrient starvation [reviewed in (25)]. Catabolism,
contrastingly comprised by high rates of energy expenditure for
nutrient breakdown and molecular biosynthesis, is controlled

by mTOR complex activity [reviewed in (26)]. Not surprisingly,
these two processes cross-regulate each other, most notably by
AMPK inhibition of mTOR activation. While AMPK has been
implicated in important aspects of DC biology (10, 27, 28), it
is a notably understudied aspect of DC metabolic biology and
this review will focus primarily on mTOR-mediated metabolic
regulation of DCs.

The mTOR protein itself functions as a required component
of two major signaling complexes, mTOR complex 1 (mTORC1)
and mTOR complex 2 (mTORC2). While mTORC1 is primarily
responsible for cellular energy expenditure and protein
translation, mTORC2 serves an important role as a positive
regulator of mTORC1. For the purposes of this review,
“mTOR activity” will refer to mTORC1 functions unless
otherwise noted. It is notable that while mTOR promotes
sustained catabolism of carbohydrates, it concurrently supports
the de novo synthesis of lipids, proteins, and amino acids,
serving as an important checkpoint in converting increased
cellular fuel consumption into processes such as cell division
and protein production that have obvious implications for
broad physiological responses, including those carried out by
immune cells (29). As a downstream target of the PI3K/Akt
signaling axis, mTOR activation in DCs can be initiated by
a number of immunologically relevant factors, including
cytokine signaling, growth factor signaling, and PRR signaling.
In light of this, mTOR is positioned as a critical molecule
integrating immunological stimuli into changes in cellular
metabolism that regulate protein translation events required for
the immunological function of these cells. The role of mTOR
in governing immune cell homeostasis and the use of mTOR
inhibitors as viable immunoregulatory strategies continue to be
of intense interest to the field (23).

DC COMMITMENT TO AEROBIC
GLYCOLYSIS

Activation of DCs via TLRs promotes significant upregulation
of aerobic glycolysis, which regulates the immune function
of both human and mouse DCs (10–12, 18, 20, 21, 30,
31). To date, ligands for both MyD88 -dependent and -
independent TLR members have been shown to result in an
acute upregulation of glycolysis (20), as well as ligands for the
C-type Lectin Receptors Dectin-1/2 (21), suggesting that this
metabolic reprogramming may be a broadly conserved feature of
PRR signaling. A wide variety of approaches, including inhibition
of glycolysis through culture with 2-deoxy-glucose (2DG),
pharmacological inhibition of glycolysis-regulating signaling
pathways, and genetic silencing of rate-limiting glycolysis
enzymes, have demonstrated that loss of glycolytic capability
significantly impairs DC effector functions, including antigen
presentation, co-stimulatory molecule expression, chemotaxis,
cytokine secretion, and T lymphocyte stimulatory capacity (10–
12, 18, 20, 21, 30, 31). The prevailing consensus has emerged that
acute, and in some cases sustained, metabolic commitment to
elevated rates of glucose catabolism are an essential metabolic
requirement for proper DC activation. We have previously
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argued that DC metabolic reprogramming can be functionally
partitioned into two temporal phases governed by distinct
signaling events (32): (1) an acute induction of glycolysis
occurring within minutes of TLR activation that supports the
high biosynthetic demand associated with early DC maturation
for several hours (20); (2) a long-term commitment to glycolysis
in subsets of nitric oxide (NO) -producing DCs that is required
for their metabolic adaptation to NO-mediated mitochondrial
toxicity (12, 15).

Acute Glycolytic Reprogramming in DCs Is
mTOR-Independent
Rapid induction of glycolysis in DCs, occurring within minutes
of TLR stimulation, is controlled by a PI3K/TBK1/IKKε/Akt
signaling axis that promotes the rapid translocation of
Hexokinase 2 (HK2) to the mitochondria which supports
the rapid flux of glucose catabolism associated with DC
maturation (20). Glucose is rapidly consumed by activated DCs
and glucose-derived carbons are primarily invested in pentose
phosphate pathway (PPP) metabolism, lactate production, and
citrate synthesis via the mitochondrial citrate shuttle, the latter
presumably supporting fatty acid synthesis associated with
endoplasmic reticulum, and Golgi body -dependent translation
and secretory pathways that control inflammatory cytokine
production (16, 20). The source of glucose that fuels this early
activation comes from both the import of extracellular glucose,
and the catabolism of intracellular glycogen pools that these cells
possess in the resting state (18). The acute induction of glycolysis
mediated by the PI3K/TBK1/IKKε/Akt signaling axis, conserved
in multiple DC subsets in both mouse and human systems
(20, 21, 31), is transient (lasting approximately 6–8 h) after which
glycolysis levels gradually wane close to their pre-activation levels
(20). The inability of mTOR inhibitors to attenuate this early
wave of glycolysis indicates that mTOR activation is positioned
downstream of early glycolysis commitment in DCs (12, 15, 20).

Sustained Glycolytic Reprogramming in
DCs Is mTOR-Dependent
While a number of studies have concluded that that mTOR,
and one of its downstream transcription factors HIF1α, are
required for DC glycolytic reprogramming (9, 30, 33–35), we
and others have shown that this is primarily the case for the
long-term commitment to glycolysis observed in NO-producing
DCs that express inducible nitric oxide synthase (iNOS) and
is independent of the acute glycolytic reprogramming events
described above (12, 15). In iNOS-expressing DCs, largely
restricted to inflammatory monocyte-derived DCs in the mouse
and minor subsets of human DCs [previously reviewed in (32)],
mTOR–dependent HIF1α activity promotes iNOS expression in
TLR-activated DCs (30, 36). iNOS protein expression becomes
detectable just as the acute induction of glycolysis begins to
wane (12, 15), followed by NO-mediated suppression of DC
mitochondrial activity (12, 15) through reversible inhibition of
mitochondrial cytochrome c oxidase function (37, 38). Through
its regulation of iNOS expression, mTOR regulates the long-
term commitment of these cells to glycolytic metabolism in

a NO-dependent manner (12, 15). Notably, mTOR inhibition
decreases NO production and restores mitochondrial function
in iNOS-expressing DCs which leads to increased metabolic
flexibility and enhanced inflammatory activity in these cells (11).
While the multifaceted and highly complex NO-independent
impacts of mTOR on DC function are discussed in more detail
below, it is impossible to ignore the important role of mTOR in
regulating DC iNOS expression and the implications of this on
DC metabolism.

DC Lipid Metabolism
Metabolite tracing studies have shown that the rapid catabolism
of glucose in TLR-stimulated DCs is closely linked with a number
of biosynthetic pathways including the preferential generation
of citrate through the TCA cycle (16, 20). Citrate production
is understood to support fatty acid synthesis required for the
expansion of endoplasmic reticulum and Golgi body cellular
structures associated with DC activation (16, 20, 39, 40). While
mTOR signaling is known to promote lipid biosynthesis (29),
the explicit role of mTOR in regulating the citrate and fatty
acid biosynthesis in stimulated DCs remains poorly defined.
Nevertheless, the regulation of lipid metabolism in DCs has
clear immunological relevance as there are notable instances
where parasite infection of DCs leads to significant changes
in lipid metabolism (41). In addition, LPS stimulation leads
to specific increases in cellular ceramide concentration in DCs
and immunogenic DCs and tolerogenic DCs display unique
intracellular lipid profiles (42). With respect to cholesterol lipid
metabolism, it is clear that this too is a highly important process
in DCs. Liver X receptor, an important regulator of cholesterol
metabolism, is implicated in promoting both DC differentiation
and immune activation (43). Cholesterol hydroxylase activity
is specifically upregulated by Type-I interferon signaling in
macrophages and DCs (44), and both PRR and MHC molecules
are associated with cholesterol-enriched lipid raft microdomains
in the plasma membrane of DCs (45, 46). While it is logical that
mTOR activity is involved in regulating these processes based
on its role in other cell types, further work delineating mTOR’s
role in DC lipid metabolism is an important area for future
investigation.

mTOR REGULATION OF DC EFFECTOR
FUNCTION

Because pharmacological inhibitors of mTOR function attenuate
lymphocyte proliferation, mTOR signaling has classically been
considered to play a broadly pro-inflammatory role in the
immune system and has been used extensively for its systemic
tolerogenic properties in the clinic. Recent studies at the cellular
level have revealed that mTOR can exert both inflammatory and
anti-inflammatory effects depending on the physiological context
and cellular subsets in question. A summary of these findings for
mTOR’s documented impact on various aspects of DC effector
function are delineated below.
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DC Maturation and Co-stimulatory
Molecule Expression
While some studies have concluded that mTOR inhibition has
minimal or contrasting effects on aspects of DC activation (47–
49), other studies have argued that mTOR inhibition dramatically
influences DC maturation in either a positive or negative
direction. Many studies in both the mouse and human system
have shown a negative impact on DC maturation (47, 50–52),
while others have shown that mTOR inhibition can actually
augment DC activation (10, 11, 15, 50). In one study, treatment
with 1,25-dihydroxyvitamin D3 was shown to induce an mTOR-
dependent tolerogenic phenotype in monocyte-derived human
DCs (moDCs) that was characterized by decreased surface
expression of CD80, HLA-DR, and CD86, and increased
production of IL-10 (53). In mouse bone marrow -derived
DCs (BMDCs), shRNA knocking down AMPK, a negative
regulator of mTOR activity, increased costimulatory molecule
expression while AMPK agonists decreased DC maturation
(10). These studies show a rapid de-phosphorylation of AMPK
upon LPS stimulation and that IL-10 attenuates LPS-mediated
AMPK de-phosphorylation (10). Taken together, these findings
are consistent with a model whereby reduced AMPK activity
and concomitant mTOR induction serve as a “master switch”
to promote DC maturation and immune function. Consistent
with this, we and others have shown that CD40 and CD86
expression on mouse BMDCs and subsets of human DCs
can be enhanced by mTOR inhibition during TLR stimulation
of these cells (11, 15, 50). One of the most informative
studies for resolving the published discrepancies on the role
of mTOR in DC maturation, published by Haidinger et al.
showed that mTOR inhibitors negatively regulate IL-4/GM-CSF
-differentiated moDC activation, but augment maturation of
freshly isolated myeloid DCs from human peripheral blood
(50). In accordance with this, multiple studies have reported
that the requirement for mTOR signaling in DC development
and function varies with respect to the DC subsets in question
(50, 54, 55). This intriguing idea, that mTOR exhibits disparate
roles in unique DC subsets is further supported by the finding
that different DC subsets engage distinct metabolic signatures
to support their specialized function (56, 57). To this point,
tolerogenic DCs are reported to exhibit an increased dependence
on mitochondrial metabolism, in contrast to the glycolysis-
centric phenotype observed for many inflammatory DC subsets
(56, 57). The fact that mTOR activator is typically considered
an upstream promoter of protein translation, it is interesting
that mTOR inhibitors can actually augment proinflammatory
molecule production in certain DC subsets (11, 15, 50). This
phenomenon is not restricted to the role of mTOR in regulating
iNOS expression as it has also been reported for circulating
human DCs that do not produce NO upon activation (11, 50).

Cytokine Production
The production of cytokines has been the most widely studied
DC effector function with respect to the role of mTOR in
these cells. Freshly isolated mouse splenic pDCs exhibit an
mTOR -activated phenotype, and rapamycin-treated mouse and

human pDCs show impaired secretion of multiple cytokines
including Type I interferons, TNF-alpha, and IL-6 (58). In
L. monocytogenes infected mice, rapamycin treatment protected
animals from lethal challenge, and led to increased serum
concentrations of IL-12p70, IFN-γ, and IL-6 (59). Treatment of
human moDCs with the phytochemical cytopiloyne, which is
reported to preferentially target mTORC2 signaling, lowers LPS-
driven costimulatory molecules expression and inflammatory
cytokine production (60). Another study identified a beta-
Catenin/mTOR signaling axis as a primary driver of DC IL-
10 production responsible for CD8+ T lymphocyte activation
(61). Multiple studies have shown that inhibition of mTOR
leads to decreased IL-10 production, often concomitant with
increased production of inflammatory cytokines such as IL-
12 and IL-6 (50, 62). Consistent with this, mTORC1 signaling
by intestinal DCs has been shown to be required for IL-10
production and tolerance homeostasis in the gut (62). The
connection between mTOR signaling and DC IL-10 production
is particularly noteworthy because IL-10 has been shown to
antagonize long-term glycolysis commitment in BMDCs (10).
Upon LPS stimulation of whole blood from kidney transplant
patients treated with rapamycin, IL-12p40, IL-6, TNF-α, and
IL-1β levels were increased while IL-10 levels were decreased,
compared to patient controls (63). Furthermore, rapamycin
treatment of human CD14+ monocytes was shown to enhance
IL-12p40, IL-12p70, and TNF-α production, and decrease IL-
10 production, upon LPS stimulation (63). Interestingly, in a
murine sepsis model, while dexamethasone treatment led to
100% survival, rapamycin treatment led to ∼40% survival, and
combined treatment led to ∼50% survival, providing in vivo
evidence that the pro-inflammatory impact of mTOR inhibition
by rapamycin supersedes the anti-inflammatory impact of
dexamethasone stimulation of the glucocorticoid receptor (63).
With respect to cytokine production, there is a fair amount of
consistency regarding the role of mTOR-dependent promotion
of IL-10 production as an important brake on the inflammatory
cytokine output by DCs.

Antigen Presentation and T Cell
Stimulation
An important prerequisite for a DC’s ability to stimulate T cells
in vivo is its capacity to traffic to secondary lymphoid organs
upon activation. While one study has shown that rapamycin
limits DC lymph node trafficking in a mouse psoriasis model
(64), other studies have shown no impact of rapamycin treatment
on CCR7 expression or in vivo migratory capacity (47). In
general, further studies are needed to better define the role of
mTOR in regulating DC chemotaxis and migration, particularly
given the high metabolic demand that these processes likely
require. With regard to mTOR’s impact on DC T cell stimulatory
capacity, the published literature indicates that this phenotype
is highly dependent on the DC subset in question. One study
reported that rapamycin treatment enhanced the ability of TLR7-
stimulated human pDCs to promote both the proliferation of
CD4+ T cells and the induction of T regulatory cells (48),
while other studies support the idea that rapamycin treatment
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globally suppresses DC capacity to stimulate T lymphocytes
(49, 53, 58, 65). A more nuanced look at mTOR’s role in T
lymphocyte activation has shown an important role for mTOR-
mediated Th1/Th2 skewing of CD4+ cells, with the majority
of studies demonstrating that mTOR preferentially supports
Th2 lymphocyte activation, presumably through its function in
promoting IL-10 production by DCs (62, 66, 67). Additionally,
mTOR inhibition by rapamycin has been shown to promote
T regulatory cell induction both in vitro and in vivo through
DC-dependent action (68).

In contrast to the studies above, we and other have shown
that mTOR inhibition can enhance T cell stimulatory capacity
in certain contexts (11, 15, 50, 69). mTORC2 deficiency has
been documented to augment CD8+ lymphocyte -mediated
graft rejection in mice (70), while mice given autologous DCs
simulated with LPS in the presences of rapamycin led to a
negative impact on T lymphocyte activation and improved graft
vs. host survival (71). In GM-CSF -differentiated BMDCs, both
mTOR inhibitors enhance LPS-driven DC activation and T cell
stimulatory capacity, at least in part through attenuation of
mTOR-dependent nitric oxide generation (11, 15). In multiple
mouse models of autologous DC vaccination, rapamycin
conditioning of DCs enhanced vaccine efficacy to bothmelanoma
tumor challenge (11) and tuberculosis infection (69). This
phenotype is not restricted to mouse cells as freshly isolated
CD1c+ human myeloid DCs have also been shown to exhibit
enhanced T cell proliferation with rapamycin conditioning (50).
Nevertheless, whether or not rapamycin treatment can enhance
DC autologous vaccination regimens in humans remains to be
determined.

mTOR Control of Mouse iNOS Expression
and NO Production
We have previously reviewed the profound impact that DC
iNOS expression and NO production has on the metabolism,
survival, and immune function of these cells (32). TLR activation
induces iNOS expression in mouse BMDCs, and the long-term
metabolic commitment to glycolysis in these cells is driven by
reversible NO-mediated inhibition of mitochondrial respiration
in these cells (12, 15). Furthermore, iNOS inhibition or deletion
leads to prolonged post-activation survival and enhanced
immunostimulatory capacity in mouse BMDCs (11, 12, 15).
Interestingly, several recent studies have shown that mTOR
promotion or Leishmania infection can downregulate iNOS
expression in macrophages in vivo, suggesting that regulation
of iNOS expression may depend critically on complex factors
in situ (72, 73). A recent study, investigating the role of innate
immune receptor signal strength in modulating DC metabolism
and function, showed that stronger stimuli induce higher iNOS
expression, NO production, and more dramatic inhibition of
mitochondrial respiration (21). In these studies, even though
early activation is associated with mTORC1 activity, only strong
inflammatory stimuli induce sustained mTORC1 and mTORC2
activation (21). Other studies have suggested that mTOR-driven
glycolysis regulates iNOS expression itself (30). These studies
showed that both glucose depletion and rapamycin inhibition

FIGURE 1 | Model highlighting major pathways reported to be regulated either

directly or indirectly by mTOR in DC biology.

led to decreased HIF1α and iNOS expression, and promotion
of HIF1α activity induced Nos2 (iNOS) mRNA expression
(30). Interestingly, a reciprocal relationship between iNOS and
HIF1α was observed as iNOS inhibition or deletion also led to
diminished HIF1α expression (30). These studies showed that the
relationship between mTOR -mediated metabolic changes and
iNOS activity is complicated, but defined an anti-inflammatory
effect of glucose metabolism on DC immune function that is
dependent on an mTOR/HIF1α/iNOS signaling circuit (30).
Furthermore, there is evidence to suggest that T cell depletion
of local glucose levels in the tissue microenvironment can
impact mTOR/HIF1α/iNOS activity (30). While the contribution
of mTOR-mediated iNOS expression and function to DC
metabolism is striking, it is noteworthy that even in DC subsets
that do not produce NO, mTOR inhibition can augment DC
immune function (11, 15, 50).

It noteworthy to consider that only specific subsets of DC
populations express iNOS in both mice and humans. GM-CSF -
differentiated mouse BMDCs classically induce iNOS expression
when stimulated by LPS and IFN-γ (74). From an in vivo
perspective, monocyte-derived inflammatory DCs (originally
termed TNF-a/iNOS-producing-DCs, or “TipDCs”) are potent
NO producers and are required to control a number of different
types of both bacterial and viral infections (75–77). However,
conventional tissue-resident DC subsets in secondary lymphoid
organs rarely express iNOS in mice (12, 78, 79), and GM-
CSF/IL-4—cultured monocyte-derived human DCs (moDCs)
also do not express iNOS (12, 80). Despite these differences, it
is clear that human DC populations can express iNOS in vivo
including blood circulating CD1a+ DCs (81) and DCs found
in psoriatic skin lesions (82–84). Given the heterogeneity of
iNOS expression in DC subsets discussed above, it is clearly
important to consider the subsets of DCs under investigation
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when interpreting the literature and this heterogeneity alone may
explain key discrepancies among various studies. Nevertheless,
even as a relatively rare subset, iNOS-expressing DCs have
important immunological and metabolic consequences in the
inflammatory tissue microenvironment that is important to
consider (32).

mTOR REGULATION OF DC LIFESPAN
AND SURVIVAL

While mTOR -dependent NO production has been strongly
implicated in promoting DC cell death in iNOS-expressing
DC subsets (11, 15), there is significant evidence to suggest
that mTOR also plays a role in promoting DC survival
in other contexts. Treatment of C57BL/6 splenic CD11c+
mature dendritic cells with AMPK activators, which directly
antagonize mTOR activity, leads to increased pro-apoptotic
molecule expression (85). In addition, rapamycin treatment
of splenic CD11c+ mature dendritic cells increased apoptosis,
indicating that mTOR promotes cell survival in this system
(85). Interestingly, CCR7 expression induced by DC activation
leads to inhibitory phosphorylation of AMPK and subsequent
activation of mTOR signaling, which supports the post-
activation survival of these cells (85). In further support of
mTOR serving as a survival promoter in DCs, rapamycin-treated
CD34+ hematopoietic progenitor cells resulted in impaired
interstitial DC development, indicating that PI3K/mTOR
regulates proliferation and survival (86). In addition, human
moDCs treated with rapamycin induces decreased expression of
anti-apoptotic protein mcl-1 and drives moDC apoptosis (87).

mTOR CONTROLS AUTOPHAGY IN DCs

The process of autophagy, whereby cytoplasmic components are
ingested, degraded, and their molecular components recycled,
plays important roles in DC antigen presentation [recently
reviewed in (24)]. It has been elegantly shown that autophagy is a
constitutive process in DCs that actively contributes endogenous
peptide antigens to MHC-II complexes in the resting state (88).
Upon TLR stimulation, the increase in mTOR activity inhibits
the formation of the autophagy initiation complex, thereby
restricting autophagy rates from the basal state (89). Experts
in the field have argued that mTOR-dependent autophagy
inhibition leads to a decreased emphasis on endogenous antigen
presentation and increased presentation of exogenous antigen
(22, 89). In support of this model, IL-4 -mediated induction
of autophagy has been shown to augment endogenous antigen
presentation on MHC-II molecules (90). Interestingly, while
mTOR attenuates autophagy-dependent contributions to antigen

presentation, it concomitantly promotes the presentation
of exogenously acquired antigens by supporting lysosome
acidification and endolysosomal trafficking of MHC-II/peptide
complexes to the cell surface (91–93). These findings have
clear clinical significance as kidney transplant patients on
mTOR-inhibitor therapy exhibit higher levels of alloreactive
T cells, possibly due to enhanced autophagy-dependent
presentation of donor-endogenous antigen (94). While it
seems clear that activated DCs downregulate autophagy
in an mTOR -dependent manner, the contribution of
autophagy to the nutrient compartment of resting DCs and
its counter-regulation by AMPK remains an underexplored
topic.

CONCLUDING REMARKS

Given the importance of metabolic changes in supporting the
immune activation of DCs, it is not surprising that the central
metabolic regulator mTOR plays a critical role in coordinating
activation-associated changes in DC metabolism and function
(Figure 1). While mTOR has well-documented impacts on
DC development, immune effector function, and survival, the
challenge in the field rests in understanding the complex and
nuanced role that mTOR plays in distinct DC subsets and specific
immunological contexts. To this point, it is evident that mTOR
can influence DC biology in either a pro-inflammatory or anti-
inflammatory direction, which can complicate the interpretation
of data where global inhibition of mTOR is employed. Significant
aspects of mTOR-mediated regulation of DC biology that would
benefit from further investigation include the role of mTOR in
nutrient flux in both basal and activated conditions, the cross-
regulation of these processes by AMPK, the contribution of
mTOR signaling to lipid metabolism, and a further delineation
of differential mTOR signaling in distinct DC subsets in both
mouse and human cells. We look forward with interest to
the ongoing work in the field that will help resolve some of
these discrepancies and better clarify the distinct contribution
of mTOR signaling to the heterogeneous family of DCs in the
mammalian immune system.
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