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It is well-established that the nutritional deficiency or inadequacy can impair immune

functions. Growing evidence suggests that for certain nutrients increased intake above

currently recommended levels may help optimize immune functions including improving

defense function and thus resistance to infection, while maintaining tolerance. This

review will examine the data representing the research on prominent intervention agents

n-3 polyunsaturated fatty acids (PUFA), micronutrients (zinc, vitamins D and E), and

functional foods including probiotics and tea components for their immunological effects,

working mechanisms, and clinical relevance. Many of these nutritive and non-nutritive

food components are related in their functions to maintain or improve immune function

including inhibition of pro-inflammatory mediators, promotion of anti-inflammatory

functions, modulation of cell-mediated immunity, alteration of antigen-presenting cell

functions, and communication between the innate and adaptive immune systems.

Both animal and human studies present promising findings suggesting a clinical

benefit of vitamin D, n-3 PUFA, and green tea catechin EGCG in autoimmune and

inflammatory disorders, and vitamin D, vitamin E, zinc, and probiotics in reduction of

infection. However, many studies report divergent and discrepant results/conclusions

due to various factors. Chief among them, and thus call for attention, includes more

standardized trial designs, better characterized populations, greater consideration for

the intervention doses used, and more meaningful outcome measurements chosen.

Keywords: immune system, vitamin D, vitamin E, n-3 PUFA, probiotics, green EGCG, zinc

INTRODUCTION

The main functions of body’s immune system are to protect the host against infection from
pathological microorganisms, to clear damaged tissues, and to provide constant surveillance of
malignant cells that grow within the body. Additionally, the immune system develops appropriate
tolerance to avoid unwanted response to healthy tissues of self or harmless foreign substances.
There is considerable heterogeneity among individuals in the vigor of their immunological
function, largely owing to factors such as genetics, environment, lifestyle, nutrition, and the
interaction of these factors. Nutrition as amodifiable factor in impacting immune function has been
studied for several decades, and the research in this field has developed into a distinguished study
subject called nutritional immunology. As with other bodily systems, the immune system depends
on adequate nutrients to function properly. It is well-documented that nutritional status is closely
associated with immunity and host resistance to infection. There is little argument that deficiency
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in both macronutrients and micronutrients causes immune
function impairment, which can be reversed by nutrient
repletion. Nutritional deficiencies are still prevalent in less
developed regions and are a main contributor to a high incidence
of morbidity and mortality from infectious diseases. Even in
developed countries where general nutritional deficiencies are
rare, nutrition issues such as specific nutrient deficiencies, less
ideal diet composition, and excess calorie consumption are still
a challenging reality. This situation is particularly significant in
the elderly population due to a variety of factors more common
in this population including disability, disease, disease-associated
and medicine-induced anorexia, poor food selection, and lower
socio-economic status. In addition, the aged may have greater
requirements for certain dietary components to compensate for
the deficit in cellular functions and increased stress associated
with aging. While it is agreed that nutritional deficiency or
insufficiency needs to be corrected to ensure that the immune
system functions properly, mounting evidence suggests that for
certain nutrients, increased intake above currently recommended
levels may help optimize immune function including improving
defense function and thus resistance to infection, while
maintaining tolerance. Aside the known nutrients, there are
a wide variety of non-nutritive phytochemicals and functional
foods. They are not essential for maintaining normal cell
metabolism and function thus do not have recommended levels
of intake in dietary guidelines. Despite this, many phytochemicals
and functional foods have been shown to have beneficial
effects on immune function. This review will examine the data
representing the research on prominent intervention agents
(dietary lipids such as n-3 polyunsaturated fatty acids or PUFA),
micronutrients (zinc, vitamins D and E), and functional foods
(probiotics, tea components) for their immunological effect,
working mechanisms, and clinical relevance. The intention
of this review is to provide an updated overview on several
prominent immuno-modulating food components, including the
reported effects and modes of action, and current and potential
clinical application. While there are many other members
in each of above-mentioned categories that are also known
to affect immune function, we have included only a few as
representatives in the current reviewmainly based on the fact that
they are relatively more intensively studied and their immuno-
modulating properties are widely accepted although it is clearly
acknowledged that discrepancy is far from resolved for the nature
and magnitude of their actions, as well as in the efficacy and
translational value of their potential application.

MODULATION OF IMMUNE FUNCTION BY
NUTRIENTS AND FOOD COMPONENTS

In all the bodily systems and tissues, appropriate supply of
different types of nutrients is essential for maintaining cell
homeostasis and performing respective functions. While the
immune system is no exception, its specific defense functions
determine that immune cells may be particularly sensitive to
the status of certain nutrients and food components. A primary
task in nutritional immunology research is to identify such

dietary factors and to define their optimal intake in terms of
maintaining immunological balance and strengthening defense
against pathogens.

Vitamin D
Vitamin D is unique compared to other vitamins in that human
body can synthesize it in the skin from the precursor 7-
dehydrocholesterol when exposed to sunlight. Both sunlight-
induced and diet-derived vitamin D are first hydroxylated to
25(OH)Dmainly in liver, and further hydroxylated, under action
of 1-α-hydroxylase, to the active form 1,25(OH)2D mainly in
kidney. The classical function of vitamin D has long been
recognized to be the regulation of calcium homeostasis and
bone health. However, more extra-skeletal effects of vitamin
D have been revealed, and the diverse functions of vitamin D
are also supported by the discovery that vitamin D receptor
(VDR) and vitamin D-activating enzymes (hydroxylases) are
present in the tissues and cells not involved in mineral and bone
metabolism.

Immunologic Effect and Mechanism
The extra-skeletal effects of vitamin D are well exemplified in the
immune system. Most immune cells express VDR and some of
them can produce 1-α-hydroxylase; in this way, both systemic
and locally generated vitamin D in its active form can act on
VDR expressed by immune cells in endocrine, paracrine, and
autocrine manners. Indeed, vitamin D has been shown to broadly
impact functions of immune cells in both the innate and adaptive
immune system, as well as the antigen-presenting cells (APC)
that links the two arms of immunity.

While vitamin D has been shown to influence different innate
immune cells as well as the different functions of a given type
of cells in varied manners, the overall effect of vitamin D on
the innate immunity is stimulatory. Effects of vitamin D on
monocytes and macrophages are recognized the earliest and also
most intensively studied [reviewed in (1, 2)]. Human monocytes
can be stimulated to proliferate when incubated in the presence
of 1,25(OH) 2D3 at physiological concentrations (3). In addition,
1,25(OH) 2D3 promotes the chemotactic and phagocytic capacity
of macrophages (4). Furthermore, 1, 25(OH) 2D3 can induce
production of several endogenous antimicrobial peptides in
monocytes, neutrophils, and epithelial cells, such as cathelicidin
and defensins (5–7). Together, vitamin D by stimulating all these
innate antimicrobial immune responses can enhance elimination
of invading bacteria, viruses, and fungi.

Vitamin D can also significantly influence the adaptive
immune response. VDR and vitamin D-activating enzymes
are found in both T and B cells (8). Activation of T or B
cells, and their subsequent proliferation, can greatly elevate
expression of VDR from low basal levels at rest. In contrast
to its effect on the innate immunity, vitamin D is in general
inhibitory on both T and B cells (9). In T cells, vitamin D
inhibits T cell proliferation (10), and effector functions of both
CD4+ and CD8+ T cells (11, 12). In particular, vitamin D
inhibits production of IL-2 and IFN-γ, two key T cell cytokines
(13). This is believed to be mediated through 1,25(OH) 2D3-
VDR dimerization with the partner nuclear receptor retinoid X
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receptor to form a functional VDR DNA-binding domain, which
induces repression of several transcription factors regulating gene
activation of IL-2 (14) and IFN-γ (15). Vitamin D can also impact
T cell function by modulating CD4+ T cell differentiation into
subpopulations. Naïve CD4+ T cells (Th0) can differentiate into
different effector subsets, such as Th1, Th2, Th17, and regulatory
T (Treg) cells after TCR engagement and co-stimulation in the
presence of specific cytokines produced by the innate immune
system upon encountering particular pathogens. Th1 and Th17
cells are involved mainly in immunity against intracellular
pathogens, while Th2 cells are responsible for humoral immunity
and targeting extracellular pathogens. Treg cells assist in the
maintenance of self-tolerance and regulate immune responses to
prevent excessive and mis-directed actions. Th1 and Th17 are
thought to promote inflammation and autoimmunity, whereas
Th2 and Treg are believed to have the opposite role. Although
controversy exists, overall it appears that vitamin D restricts
CD4+ T cell polarization toward the pro-inflammatory Th1
and Th17 cells while favoring the regulatory Th2 and Treg cell
development (1, 12, 16).

Vitamin D has also been shown to affect APC function,
primarily dendritic cells (DC). DC play an important role
in controlling the development of adaptive immunity by
appropriately conveying Ag signals to T cells. It is believed that
some effects of vitamin D on adaptive immune response are
mediated through DC (17). Vitamin D inhibits not only DC
differentiation from their bone marrow andmonocytic precursor
cells, but also their maturation (18). A general consensus is
that vitamin D helps program DC for tolerance and this
feature affords vitamin D a therapeutic potential application
in the clinic to alleviate autoimmune and inflammatory
diseases.

Clinical Relevance
Given the effects of vitamin D on different aspects of
immune functions mentioned above, adequate intake of
vitamin D is anticipated to help maintain/strengthen the
body’s defense against infection by promoting the innate
immunity. Conversely, its regulatory effect on T cells and
DC suggest that vitamin D may help mitigate T cell-
mediated autoimmune inflammatory diseases. Although the
clinical studies have demonstrated some promising effects of
vitamin D supplementation on several infection outcomes
including tuberculosis, upper respiratory tract infection, hepatitis
C virus, and HIV, the presence of great discrepancy among
studies disallows for a definitive conclusion (19–21). Similarly,
the evidence for the protective effect of vitamin D on
autoimmune diseases does not seem to be consistent either.
Some animal studies have shown that vitaminD supplementation
is effective in preventing or alleviating inflammatory bowel
disease (IBD), multiple sclerosis (MA), rheumatoid arthritis
(RA), systemic lupus erythematosus, and Type 1 diabetes (T1D)
in animal models (22, 23). Yet in humans, while epidemiologic
studies have shown association between low vitamin D levels
and incidence/severity of certain autoimmune diseases, the
interventional trials have thus far generated inconsistent results
(24, 25).

Vitamin E
Vitamin E is a generic term for all tocopherols and tocotrienols
that exhibit the biological activity of α-tocopherol. Although α-
and γ-tocopherols, the main forms of vitamin E, are similarly
abundant in the diet, α-tocopherol is about 5 to 10-fold higher
than γ-tocopherol in blood due to the different preference in
bioavailability and metabolism. All the other forms of vitamin E
are very low or undetectable in the body tissues. Both synthetic
and natural forms of α-tocopherols are widely used in published
studies. Vitamin E is a chain-breaking, lipid-soluble antioxidant
present in the membrane of all cells, and immune cells contain
particularly high levels of vitamin E, which protects them from
oxidative damage related to high metabolic activity, as well as
high PUFA content in these cells (26, 27).

Immunologic Effect and Mechanism
Early studies using animal models have established a clear
link between vitamin E deficiency and impairment in immune
functions, e.g., depressed lymphocyte proliferation in rats (28),
dogs (29), lambs (30), pigs (31), and chickens (32), which can be
reversed by repletion of vitamin E.

There is growing evidence to suggest that vitamin E intake
meeting the current recommendation may not be optimal to the
different bodily systems, or individuals at different life stages,
for example, the immune system function in the elderly. Old
mice fed 500 mg/kg diet (supplementation) vs. 30 mg/kg diet
(adequate level as control) vitamin E for 6 wk had enhanced
T cell-mediated function including delayed-type hypersensitivity
(DTH) response, lymphocyte proliferation, and IL-2 production,
and decreased prostaglandin (PG)E2 production (33). Similarly,
rats fed 585mg vs. 50mg vitamin E/kg diet for 12 mo had
higher levels of lymphocyte proliferation and IL-2 production
(34). These animal study results are reproduced in several double
blind, placebo controlled clinical trials. In one study, healthy
individuals (≥60 y) receiving vitamin E (800 mg/d) for 1 mo
showed enhancement in DTH response, T cell proliferation, and
IL-2 production, and decrease in plasma lipid peroxide and PGE2
production (35). To examine the dose-response of vitamin E, the
same group gave the elderly subjects (≥65 y) 0, 60, 200, or 800
mg/d vitamin E for 4.5 mo and found an increased DTH response
from baseline in all three vitamin E groups (36). However, the 200
mg/d vitamin E group had the greatest increase compared to the
placebo group, and it was also this group that had increased Ab
titers to hepatitis B and tetanus vaccines (T cell-dependent Ag)
from the baseline. Increased DTH response was also reported in
the healthy elderly subjects (65–80 y) who had received 100 mg/d
of vitamin E for 6 mo (37).

The underlying mechanisms of the immunomodulatory
effects of vitamin E have been largely elucidated using animal
models combined with the cell-based approaches. It is proposed
that vitamin E can enhance T cell-mediated function by directly
promoting membrane integrity and positively modulating the
signaling events in T cells while also protecting T cell function
indirectly by reducing production of T cell-suppressing factors
such as PGE2 from macrophages as previously reviewed (38,
39). Vitamin E can reverse the age-associated reduction in
activation-induced T cell expansion and IL-2 production in naïve
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T cells (40), and these effects are possibly mediated through its
positive impact on the early events in T cell activation including
formation of effective immune synapses between APC and naïve
CD4+ T cells as well as redistribution of signaling molecules
(Zap70, LAT, Vav, and PLCγ) in these immune synapses (41, 42).
With regard to the indirect effects, vitamin E has been shown
to inhibit PGE2 production. PGE2 suppresses T cell response by
activating adenylyl cyclase, thus increasing cAMP levels (43, 44).
PGE2 has broad effects on different components in both the
innate and adaptive immune system (45–48), such as inhibiting
T cell proliferation, IL-2 production, and IL-2 receptor (IL-
2R) expression (46). The suppressive effect of PGE2 on T cells
concerns inhibition of several early signaling events that occur
after T cell activation (48), and for some events, the PGE2-
induced inhibition can be prevented by vitamin E. Although
how vitamin E inhibits PGE2 production is not completely
understood, it has been shown that vitamin E can inhibit
enzymatic activity of cyclooxygenases (COX) (49), which in turn
might be associated with reduced production of peroxynitrite
(50).

Clinical Relevance
Several studies have determined the protective effects of vitamin
E on influenza infection in animal models. Hayek et al. (51)
reported that vitamin E supplementation (500 mg/kg diet)
reduced viral titers in young and old mice infected with influenza
A/Port Chalmers/1/73 (H3N2) butmore significantly in oldmice.
Similarly, Han et al. (52) reported a reduction in viral titers and
symptoms after influenza infection in mice fed vitamin E, and
this protective effect was associated with improved Th1 response
as indicated by IFN-γ and IL-2 production. A recent study using a
bacterial infectionmodel showed that oldmice fed vitamin E (500
mg/kg diet) for 4 wk had reduced pulmonary bacterial burden,
lethal septicemia, and lung inflammation (neutrophil infiltration)
after infection with Streptococcus pneumoniae (53).

Few clinical trials have directly examined the effect of vitamin
E supplementation on infection in humans. In a retrospective
study (54), plasma vitamin E levels in healthy people (≥60
y) were found to be negatively related to the number of past
infections in these individuals; however, no correlation was
present between the vitamin status and the measurements of
immune function including T cell phenotype, mitogen-induced
lymphocyte proliferation, and DTH. Meydani et al. reported that
the healthy elderly receiving vitamin E (60, 200, or 800 mg/d for
235 d) had a non-significant (p < 0.09) 30% lower incidence of
self-reported infections compared to those receiving the placebo
(36). In a subsequent larger, double-blind, placebo-controlled
trial, this group found that the elderly nursing home residents
(>65 y) receiving vitamin E supplementation (200 mg/d) for
1 year had lower incidence of upper respiratory infection (RI)
and common cold compared to those receiving the placebo
(55). However, the controversy exists in this topic of research as
studies thus far have demonstrated mixed results. In contrast to
studies reviewed above, results from the Alpha-Tocopherol Beta-
Carotene Cancer Prevention (ATBC) study showed positive, no
effect, and even negative effect of vitamin E on pneumonia
and the common cold depending on the age, smoking history,

residence, and exercise, among other factors, of the subjects (56–
58). The inconsistent and controversial results for vitamin E’s
effect on infection may be due to the confounding factors such
as the difference in health conditions of participants and the
intervention protocols. For instance, the ATBC study used a small
dose (50mg/d) of vitamin E vs. 200mg/d in the study byMeydani
et al. Even using the same dose, as in a double-blind trial in
the Dutch elderly cohort living in the community, Graat et al.
found no effect of 200 mg/d of vitamin E on the incidence of all
RI, and even reported a worsening in the severity of infections
(59). However, obvious differences were noted between the two
studies, such as the fact that the study by Graat et al. was
conducted in free living participants, and the one by Meydani et
al. was conducted in managed nursing homes. It is hoped that
these discrepancies may be resolved in future studies with more
standardized design and better characterized populations.

Zn
The transition metal zinc is an essential micronutrient and
it is required for controlling key biological processes that
affect normal growth, development, repair, metabolism, and
maintenance of cell integrity and functionality (60). Its
importance to immune system has been intensively studied as
previously reviewed (61–63). Zinc deficiency and inadequacy are
estimated to affect 30% of the world’s population and contribute
to 800,000 death (64). Zinc deficiency is prevalent in developing
countries and it is the fifth leading risk factor for bacterial
diarrhea and pneumonia (65). Inadequate intake of zinc is also
present in the developed countries, in particular more common
in the elderly (66, 67), which may contribute to development of
immunosenescence.

Immunologic Effect and Mechanism
Zinc is a nutrient crucial for maintaining homeostasis of
immune system. Its deficiency negatively impacts immune
cell development and functions in both innate and adaptive
immunity, as manifested with thymus involution and reduced
number of Th1 cells, as well as impaired immune functions
including lymphocyte proliferation, IL-2 production, DTH
response, Ab response, natural killer (NK) cell activity,
macrophage phagocytic activity, and certain functions of
neutrophils [reviewed in (68–73)]. Conversely, correction of
zinc deficiency by supplementation can reverse impairment in
immune system (69), and reduce mortality from infectious
diseases (62, 74). In addition to boosting defense-related immune
functions, the importance of zinc in maintaining immune
tolerance is well-recognized. Zinc has been shown to induce
development of Treg cell population (75, 76), and dampen
pro-inflammatory Th17 and Th9 cell differentiation (77, 78).
In a related and consistent manner, zinc was shown to drive
bone marrow-derived DC to develop into tolerogenic phenotype
by inhibiting MHC-II expression and promoting expression
of the tolerogenic programmed death-ligands (PD-L)1 and 2,
tryptophan degradation, and kynurenine production leading to
skewed Treg-Th17 balance in favor of Treg (79).

Although it is clear that zinc deficiency impairs immune
function, proving the assumption that zinc supplementation
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would enhance immune response has been frustrating and
full of controversy, which is more so in human studies. In
animal models for zinc deficiency, zinc repletion has been
shown to reverse thymic involution as indicated by an increased
thymulin activity, thymus weight, absolute number of T cells in
thymocytes, and thymic output in both middle-aged (12 mo)
(80) and old mice (22 mo) (81, 82), as well as increase T cell
mitogen PHA- or Con A-stimulated lymphocyte proliferation
and NK cell activity in old mice (81). In a recent prospective
clinical trial, Iovino et al. reported that multiple myeloma
patients receiving a high-dose (150 mg/day) of zinc from
day 5 to day 100 had significant increase of CD4+ naïve
lymphocytes and T-cell receptor excision circle (TREC, an
indicator for thymic output) (83). However, the effects of zinc
supplementation on lymphocyte population are inconsistent.
For example, institutionalized healthy elderly who consumed 25
mg/d zinc sulfate for 3-mo had increased numbers of activated
(HLA-DR+) CD4+ and CD8+ T cells (84), whereas free-living
elderly receiving zinc 10 mg/d zinc aspartate for 7 wk showed a
reduction in activated (CD25+) CD4+ T cells (85).

Given that aging is associated with impaired immune function
and increased risk of infection, and the elderly is more likely to
have zinc deficiency, zinc supplementation has been identified as
a part of potential solution for the immunosenescence. Thymulin
is a zinc-containing thymic hormone that needs zinc to exert
its biological activity (86), and serum levels of thymulin decline
with aging in both mice and humans (87, 88). Similar to the
results in the animal studies mentioned above (80, 81), zinc
supplementation increased circulating levels of active thymulin
in the elderly (66, 89, 90). Serum zinc levels were strongly
correlated with the proportion of NK cells in healthy older
individuals (>90 y) (91), and zinc supplementation increased
NK cell cytotoxicity in both healthy elderly (90), and zinc-
deficient elderly (92). Based on an in vitro study showing
that thymulin administration improved the impaired NK cell
activity in old mice, the authors suggested that thymulin may
in part mediate this effect of zinc (93). Regarding the adaptive
immunity, the earlier studies revealed that zinc supplementation
was effective in improving DTH response (66, 94–96). More
recently, zinc supplementation was shown to increase peripheral
blood mononuclear cell (PBMC) mRNA expression of IL-2 and
IL-2R-α (a specific subunit of IL-2R) in the elderly (97). It is
suggested that zinc may influence CD4+ T cell polarization
in favor of Th1, which involves increasing IFN-γ production
through upregulation of IL-12 signaling and transcription factor
T-bet activity (98). Barnett et al. recently reported that zinc
supplementation (30 mg/d for 3 mo) increased serum zinc
concentrations, which was correlated with the number of
peripheral T cells. They also observed an increase in T cell
proliferation; however this may simply reflect the larger number
of T cells present in PBMC before stimulation rather than a
change in capacity of T cell expansion (99).

Clinical Relevance
Given the importance of zinc to the immune system, in particular
its boosting effect on defense-related immune responses, its
impact on infection has been studied. Zinc deficiency is prevalent

in children under 5 y of age in developing countries (100), and a
systemic review reported that preventive zinc supplementation
was associated with reduction in diarrhea and pneumonia
morbidity and mortality in children (3 mo to 5 y) of developing
countries (101). Guatemalan children (6–9 mo) treated with
10mg of zinc/d as sulfate for 7 mo had decreased diarrhea
by 22% but had no effect on RI incidence (102). Similarly, a
large controlled trial reported that zinc supplementation (70mg,
weekly) in children (<2 y, n = 706) had lower incidence of
pneumonia compared to the placebo group (n = 768) (103).
After administering 75mg of zinc/d for 3 mo to sickle-cell disease
patients, who are commonly zinc deficient, the investigators
found a reduction in total number of infections and upper RI,
together with an increased production of IL-2 and IFN-γ in these
patients (104).

Several controlled trials have investigated whether zinc
supplementation is protective against infection in the elderly
population. In one study supplementation with 20mg zinc and
100µg selenium for 2 y was associated with a significant decrease
in the event of RI in institutionalized elderly (>65 y, n = 81)
(105). Another study in an older cohort (55–87 y and 35% were
zinc-deficient) supplemented with 45mg zinc/d for 1 y showed
marginally reduced incidence of common colds (p = 0.067) and
fewer infections and fevers during the study (106). A later study
by Meydani et al. showed that 29% of nursing home residents
(>65 y) had low serum zinc levels (<70 µg/dL) even after
receiving multi-vitamins/minerals including 7mg zinc/d for 1
year, and compared to these individuals, those with serum zinc
>70 µg/dL had lower pneumonia incidence, less total antibiotic
use, and shorter duration of pneumonia and antibiotic use (107).

Since Zinc differentially affects CD4+ T cell populations,
i.e., promoting anti-inflammatory Treg and suppressing
pro-inflammatory Th17 and Th9, it is expected to mitigate
autoimmune inflammatory disorders. This speculation is
supported by some but not all studies. The supporting evidence
includes that low serum zinc levels are associated with several
prominent autoimmune diseases such as MS (108), RA (109),
and T1D (110). Viewed in a larger picture, authors of a recent
systematic review and meta-analysis investigated relationship
between zinc status and autoimmunity using data from 62
studies that met their inclusion criteria (111). They summed
up that zinc concentrations in serum (mean effect: −1.19,
confidence interval: −1.26 to −1.11) and plasma (mean effect:
−3.97, confidence interval: −4.08 to −3.87) of autoimmune
disease patients were significantly lower compared to the
controls. However, although in some cases zinc supplementation
was shown to help ameliorate the disease together with relevant
changes in immunological events, the causal relationship
between zinc deficiency and autoimmune disease is still a matter
in debate.

Inflammation is an essential response of a host to infection
which helps destroy invading pathogens. However, under certain
circumstance the inflammation becomes systemic so that it is
harmful and even fatal to the host. A typical example of this
type of systemic inflammatory response is sepsis, a syndrome
characterized by organ failure resulting from over-reactive host
response to infection. In human sepsis patients and in animal
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models, low zinc levels (probably due to internal redistribution of
zinc) are associated with increased sensitivity to sepsis and fatality
to infection (112), thus it is proposed that zinc supplementation
might be a treatment option to improve the outcomes of sepsis. In
some studies to address this issue, increasing blood zinc levels has
been shown to be protective in animal sepsis models (113, 114),
which is to certain degree echoed by a limited number of clinical
trials, mainly in neonates (115, 116). However, no consensus is
reached at present because the benefit of zinc supplementation in
sepsis cannot be confirmed in other studies (62, 117). A key factor
involved in this discrepancy is the fact that while immune cells on
the host defense side are sensitive to the zinc status, the invading
pathogens also require zinc for survival and propagation. As
such, while sequestering zinc is considered a protective response
to restrict pathogens, the resulting decline in serum zinc levels
may compromise the immune cell functions resulting in adverse
effect. The multiple physiological purposes of zinc level control
in the context of infection and sepsis are a topic to be further
characterized.

From the studies thus far, it is clear that children and elderly
are at high risk for zinc deficiency, which is associated with
the impaired immune function contributing to the increased
morbidity and mortality from infections in these populations.
Improving zinc status by supplementation may be helpful in
addressing this problem, particularly for those with low serum
zinc levels. However, given the fact that both zinc deficiency
and zinc overload impair immune functions leaving a relatively
narrow range for delivering benefit, plus the well-recognized
heterogeneous manner in response to zinc, further studies are
needed to determine the optimal zinc intake for individuals, and
these studies should take into account the variations in individual
genetic background as well as nutritional and health status.

Fish Oil and n-3 PUFA
In addition to being energy-providing macronutrients, many
dietary lipids, in particular PUFA, as well as their metabolic
products, are capable of regulating cell functions. Of these PUFA,
the marine animal-derived n-3 PUFA, composed of mainly
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA),
have been intensively studied and they are known to greatly
impact immune cell functions. N-6 PUFA, however, are less
significant in this regard and in fact they are often used as the
control for n-3 PUFA in the studies. Several recent reviews have
provided comprehensive coverage for the role of n-3 PUFA in
modulating both innate and adaptive immunity (118–123), thus
only emerging novel research is emphasized in this review, with
a focus on immunomodulatory mechanisms.

Immunologic Effect and Mechanism
As summarized in the above-mentioned reviews, the potent anti-
inflammatory properties of n-3 PUFA is supported by their
ability to inhibit production of inflammatorymediators including
eicosanoids (PGE2, 4-series leukotrienes), pro-inflammatory
cytokines (IL-1β, TNF-α, IL-6), chemokines (IL-8, MCP-1),
adhesion molecules (ICAM-1, VCAM-1, selectins), platelet
activating factor, and reactive oxygen and nitrogen species.
In addition to inhibiting pro-inflammatory mediators, n-3

PUFA reciprocally increase the production of anti-inflammatory
cytokine such as IL-10. One of the underlying mechanisms for
the anti-inflammatory actions of n-3 PUFA is thought to concern
modulation of gene activation. Activation of genes for most of
the pro-inflammatory mediators is controlled by nuclear factor-
kappa B (NF-κB), a transcription factor ubiquitous in almost all
cell types. It has been demonstrated that n-3 PUFA inhibits NF-
κB signaling (124, 125), possibly through interfering with the toll-
like receptor 4 (TLR4) pathway and its receptor protein MyD88,
activating n-3 PUFA membrane receptor GPR120, and serving
as ligands to bind to and activate PPAR-γ, an anti-inflammatory
transcription factor that can trans-repress NF-κB activation.

The most significant breakthrough in n-3 PUFA research is
perhaps the discovery that n-3 PUFA are pro-resolution agents
by serving as the precursors for several families of pre-resolving
mediators, which at least include EPA-derived E-series resolvins,
DHA-derived D-series resolvins, and DHA-derived protectins
and maresins (126, 127). Several cell culture and animal studies
have demonstrated that resolvins and protectins act to reduce
neutrophil infiltration and the inflammatory response, regulate
the cytokine-chemokine axis and lower the production of reactive
oxygen species (127–129). Both resolvin E1 (130, 131) and
maresin 1 (132) have been shown to be protective in animal
models of experimental colitis, increasing survival, decreasing
disease score and levels of pro-inflammatory mediators. While
this suggests a potential clinical significance, there is very limited
data available in humans regarding the immunomodulatory and
anti-inflammatory actions of resolvins and maresins.

There is ample evidence indicating that n-3 PUFA can
modulate cellular and molecular events involved in immune cell
activation, particularly those related to cell-mediated immunity.
Fish oil or n-3 PUFA intake has been shown to inhibit
mitogen- or TCR activation-induced lymphocyte and CD4+

T cell proliferation, IL-2 production, and IL-2R expression,
and also specific antigen-driven CD4+ T cell expansion under
both ex vivo and in vivo conditions in animals (133–135), as
well as the DTH skin response in humans (136). These T
cell-inhibitory actions may be partly attributed to increased
lipid peroxidation, modulation of membrane phospholipid
composition, and cytoskeletal structure and disruption of lipid
rafts (137–139). Changes in membrane lipid order are associated
with alterations in T cell function (133, 140–142). Most recently,
n-3 PUFA have been demonstrated to modulate T cell plasma
membranes and oxidative phosphorylation and proliferation
(139). The effect of n-3 PUFA on T cell function was also
tested in fat-1 mice (137, 138), a transgenic mouse model
that can endogenously synthesize n-3 PUFA, and the authors
demonstrate that alteration in lipid raft formation was one
potential mechanism by which n-3 PUFA suppresses T cell
function. This conclusion largely concurs with the findings made
in studies using dietary fish oil supplementation (133, 143).

Interestingly, the T cell-suppressive effects of n-3 PUFA are
not universal to all T cells. It has been shown that n-3 PUFA
inhibit Th1 and Th17 differentiation, but have little effect on Th2
and Treg development (134, 140, 144–146), or even increase Th2
and Treg populations as seen in T1D model mice (NOD mice)
(147).
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In addition to the direct actions on T cells, studies have
suggested that n-3 PUFA may modulate the functions of
APC to indirectly affect T cell functions. N-3 PUFA have
been shown to inhibit APC function of spleen cells (148),
monocytes/macrophages (149, 150) and dendritic cells (151–
153), such as suppressing expression of MHC-II and co-
stimulation molecules, activation of cognate T cells, and
production of related cytokines. N-3 PUFA can also modulate B
cell functions including activation, antigen presentation, cytokine
production, and antibody generation (123). N-3 PUFAmay target
B cells to inhibit MHC-II accumulation at the immune synapse,
resulting in impaired activation of cognate T cells (154, 155). N-3
PUFA appears to promote B cell activation and their production
of cytokines and antibodies (156–158), which may involve Th2
cytokines, however the exact mechanism is largely elusive.

Clinical Relevance
Given the differential effects within the T cell population and
the potent anti-inflammatory functions of n-3 PUFA, protective
effects of n-3 PUFA have been reported in conditions of chronic
inflammation such as asthma, IBD, including Crohn’s disease
and ulcerative colitis, and autoimmune disorders such as RA
[reviewed in (118, 120, 159–162)].

For conditions of chronic inflammation, animal models
and human studies support a beneficial role of n-3 PUFA in
disease modulation. N-3 PUFA have been demonstrated to be
protective in animal studies of IBD, both transgenic models
(fat-1 mice) (163) and experimental models of colitis (130,
164), a chronic inflammatory condition in the gut. Yet, not
all pre-clinical models support a beneficial role of n-3 PUFA
on disease progression, with some animal studies indicating
that large n-3 PUFA doses may exacerbate the disease (165,
166). The inconstancies in findings from animal studies, likely
due to different doses of n-3 and experimental methods, need
to be considered when translating conclusions to humans. In
clinical trials in humans, dietary supplementation with n-3
PUFA appears to beneficially affect histological and clinical
parameters of IBD (167, 168). However, a Cochrane systematic
review (169) and meta-analysis (170) concluded that data
was insufficient to suggest n-3 PUFA as a primary treatment
for IBD suggesting that further research needs to be done
regarding the efficacy of n-3 PUFA on disease progression and
remission of IBD. Several randomized controlled clinical trials
have demonstrated an improvement in clinical outcomes of
asthma, a chronic inflammatory condition of the airways, with
n-3 PUFA supplementation (171–173). Yet not all findings are
consistent regarding the improvement of symptoms (174, 175),
which can be related to variance in n-3 PUFA dose, population
studied and study design (176). A meta-analysis and systematic
review concluded that fish oil supplementation was unlikely to
be beneficial in primary prevention of allergic diseases, including
asthma (177), which is consistent with the conclusion of an
United Sates government technical report (178).

It has also been suggested that n-3 PUFA may be clinically
relevant regarding autoimmune disorders. Results from a
systematic review (162) and two meta-analyses (179, 180) on
marine n-3 PUFA and RA suggest that clinical outcomes

related to immune function including joint swelling and pain,
disease activity, and use of non-steroid anti-inflammatory
drugs are consistently and modestly improved with n-3 PUFA
administration. The authors of the meta-analysis suggested that
EPA and DHA supplementation at a dose of >2.7 g/d for a
minimum of 3 months may maximize the clinical benefits, and
thus should be considered in future rials examining n-3 PUFA
and RA. T1D is another organ-specific autoimmune disease
involving pancreatic β cells attacked by autoreactive T cells. A
retrospective study reported that long-term dietary intake of n-
3 PUFA starting at 1 year of age was associated with reduced
risk of developing islet autoimmunity in children with familial
T1D (181). Similarly, Norwegian infants receiving cod liver oil
in the first year of life was associated with a significantly lower
risk of T1D, which was likely due to n-3 PUFA rather than
vitamin D because no difference was observed in those receiving
other vitamin D supplements (182). These results are supported
by animal studies using the appropriate disease models. For
example, long-term dietary intervention with n-3 PUFA in NOD
(T1D model) mice reduced T1D incidence and severity, together
with decreased pro-inflammatory T cell subsets (Th1, Th17) and
cytokines, and increased anti-inflammatory T cell subsets (Th2,
Treg) (147).

Probiotics
Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit
on the host” (183, 184). The primary genera of probiotic
microorganisms include Lactobacillus (L.), Bifidobacterium (B.),
and Streptococcus (S.). Lactobacillus and Bifidobacterium have a
long history of being safely used in the form of dairy products,
and they are also found to be a part of the gut microbiota.

Immunologic Effect and Mechanism
Dietary intake of probiotics allows their intimate interaction
with the gut mucosa and mucosal immune system which host
the largest part of body’s immune cells. Probiotics modulate
immune and inflammatory response in gut through their
interaction with intestinal epithelial cells (185, 186), M-cells
in Peyer’s patches (187, 188), and DC (189, 190). Effects of
probiotics on the mucosal system are not limited to gut,
with modulatory effects observed in the other locations of the
mucosal system such as upper respiratory tract (191). Increasing
evidence suggests that probiotics may also positively impact the
systemic immune system (189, 190, 192–194). Several studies
have indicated that probiotics could induce pro-inflammatory
cytokines to facilitate immune response against infection, and
they may also induce anti-inflammatory cytokines to mitigate
the excessive inflammatory reaction leading to a balanced
homeostasis [reviewed in (186, 195, 196)]. It is worth noting that
the effect of probiotics on cytokine production may be strain-
dependent given the mixed results showing that consuming
probiotics induces IFN-α [B. lactis HN019, (197)], reduces TNF-
α [L. rhamnosus GG, (198)] and IL-2 [B. animalis ssp. Lactis
Bb12, (198)], and has no effect on IFN-γ, IL-1β, and IL-2 [L. casei,
(199)].
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Probiotics can benefit innate immunity by impacting
intestinal epithelial cells, phagocytic APC (DC and
macrophages). Epithelial cells not only serve as physical
barrier but also emerge as active interphase between foreign
microorganisms or food components and the body, and in
doing so they participate in controlling the body’s immune
response (200). Some strains of probiotics can modulate mucosal
immunity by colonizing on epithelium and stimulating the
epithelial secretion of signaling molecules or directly acting
on immune cells in the mucosal immune system, in particular
DC, which protrude through epithelial junction. It is believed
that probiotics play a role in maintaining homeostasis in the
gut that is exposed to many foreign substances, including both
harmful and harmless, by balancing the pro-inflammatory
and anti-inflammatory/regulatory immune response (201). In
terms of defense function, probiotic lactobasilli are shown to
increase intestinal IgA secretion and improve the resistance to
infection (202, 203). Lactobasilli are also shown to modulate
innate immunity and DC function. Administration to mice with
two B. strains of lactobasilli isolated from healthy centenarians
enhancedNK cell activity and phagocytic activity of macrophages
(204), and coupled with probiotics L. fermentum strain PL9005
and L. plantarum strain PL9011 enhanced the phagocytic
capacity of peritoneal leukocytes (205). Mice receiving L.
paracasei NTU 101 (108 CFU/d) for 6 or 9 wk showed higher
expression of DC maturation markers (MHC-IIhi, CD80+, and
CD86+) and NK group-2D (NKG2D), as well as enhanced
lymphocyte proliferation in response to L. paracasei Ag (206),
which together suggest that probiotics may enhance specific
immunity by promoting APC function. Providing further
support, Vidal et al. showed that following vaccination with
keyhole limpet hemocyanin (KLH), old mice fed L. paracasei
NCC2461 (1 × 109 CFUs/d) for 44 d had an improved KLH-
specific CD4+ T cell response including anti-KLH IgG2a
production and DTH response (194).

Consistent with the results from animal studies, human
studies have reported that certain strains of probiotics could
impact the innate immunity. Healthy, older individuals receiving
B. lactis (3 × 1011 CFU/d) for 6 wk had increased phagocytic
and bactericidal activities of polymorphonuclear cells (PMN)
in response to Staphylococcus aureus challenge (197), and those
receiving L. rhamnosus HN001 (5 × 1010 CFU/d) or B. lactis
HN019 (5× 109 and 5× 1010 CFU/d) for 3 wk showed increased
peripheral blood proportion of NK cells and their tumoricidal
activity, as well as increased phagocytic activity of PBMC
and PMN cells (207). The immuno-enhancing effect has been
demonstrated with use of different strains of probiotics including
L. rhamnosus, 5 × 1010 CFU/d (208), L. casei DN114001 (209),
L. lactis, 3.4 × 1010 CFU/d (210), and L. GG, 2.6 × 108 CFU/d
(211).

Evidence for the beneficial effect of probiotics on adaptive
immune responses largely relates to their modulatory role in
promoting vigorous effector functions of both T and B cells
while maintaining the regulatory functions of immune system
(preventing autoimmune inflammatory response). While it is
difficult to characterize how probiotics affect T cell polarization
and their effector functions, including particular spectrum of

cytokine production, because their effects in this regard are
widely varied depending on the strains used, it appears that
they promote production of Th1 cytokines (IFN-γ, IL-2, IL-12,
TNF-α), Th17 cytokines (IL-17, IL-22), Treg cytokines (IL-10,
TGF-β), but inhibit Th2 cytokines (IL-4) (212, 213). In animal
studies, age-related decline in producing T cell cytokine IFN-
α and IFN-γ by mitogen-stimulated splenocytes was reversed
after administration of viable L. bulgaricus and S. thermophilus
(8 × 108 colony forming units (CFU)/d) for 7 d in mice (188).
Similarly, administration of B. bifidum (5 × 108 CFU/d) for 8
wk not only increased mitogen Con A-induced production of IL-
2 and IFN-γ in splenocytes but also decreased systemic (serum)
levels of IL-6 and TNF-α in old mice (214).

Clinical Relevance
Favorable effects of probiotics on both APC and cell-mediated
functions suggest a potential benefit for increasing vaccination
efficacy, which is particularly important in the older individuals
who have lower response to vaccines than the younger
individuals (215). Indeed, It has been reported that healthy
nursing home residents (>70 y) have improved Ab titer against
influenza vaccine and seroconversion after daily consumption
of a product containing L. casei DN114001 (2 × 1010 CFU/d)
and S. thermophilus and L. bulgaricus (2 × 1010 CFU/d) for
13 wk; however, no protective effect was found after a shorter
supplementation (7 wk) in this study (216). Similarly, a short
period (7 d) of L. GG or L. lactis supplementation had no effect
on humoral response induced by Salmonella typhi oral vaccine
in healthy adults (210). These results emphasize the importance
of identifying optimal periods and doses of supplementation for
probiotic intervention.

More relevant to clinical application, probiotics have been
shown to enhance the host’s resistance against infection.
For example, studies have reported that fermented milk
containing Lactobacillus reduced the duration of respiratory and
gastrointestinal infections (217–219), and reduced the risk of the
common cold (220). In a randomized, controlled trial in a free-
living elderly cohort (n = 360), the participants receiving milk
fermented with yogurt cultures and L. casei DN-114001 for 3 wk
had shorter duration of winter infections (gastrointestinal and
respiratory) compared to those in the control group (7 vs. 8.7 d, n
= 180 in each group) but no difference was found in the number
of illnesses (219). This beneficial effect was later confirmed in
a larger trial in which healthy free-living elderly (n = 1,072)
received milk fermented with yogurt cultures (L. bulgaricus &
S. thermophilus) and L. casei DN114001 (2 × 1010 CFU/d) for
3 mo (218). Since the probiotics used in these studies contained
both the strain (L. casei DN114001) and the yogurt cultures
which include L. bulgaricus and S. thermophiles, as well as their
fermented metabolites, it is difficult to distinguish the relative
contributions of these components as well as the likely synergistic
effects among them. There is increasing interest in investigating
the effect of probiotics apart from the general effects of yogurt.
Mane et al. reported that the institutionalized healthy older
persons who consumed a mixture of L. plantarum CECT7315
and 7316 (5 × 108-5 × 109 CFU/d) in skim milk for 12 wk
had significantly fewer incidences of infection and mortality
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due to pneumonia compared to those received skim milk only
(221). Interestingly, this study also found that participants in the
probiotic group had increased percentage of B cells, NK cells,
APC, CD4+CD25+, and CD8+CD25+ phenotypes in peripheral
blood cells, andmost of these changes lasted 12 wk after probiotic
discontinuation (221).

Beneficial effect of probiotics on the immunity and
defense function has been observed in some studies but the
reproducibility of this effect is still a widely recognized problem
in the field. In addition, for those positive effects observed,
the exact working mechanisms have not been well-elucidated.
A generally accepted notion is that these effects of probiotics
are related to their capability of reinforcing the intestinal
barrier and helping maintain normal permeability, competing
with pathogenic microorganisms in the gut for nutrients and
attachment to the gut epithelium, and regulating immune
cell functions to clear infection while preventing excessive
response and inflammation. Probiotics exert their protective
effects against infection through multiple mechanisms. A
unique character separating them from other nutrients and
non-nutrient phytochemicals is the fact that they are bacteria
themselves, and a prominent mechanism for their anti-infection
property is their direct impact on pathogens independent
of immune system. They compete with pathogens for
colonizing epithelium and also release antimicrobial substances
together leading to an unfavorable microenvironment for
pathogens.

From the experimental aspect, the in vitro studies can be used
to assess the direct effect of probiotics on different immune cells,
usually by co-culturing them and then measuring the change
in phenotype and functionality of the targeted cells. In the in
vivo setting, however, it is difficult to distinguish the direct effect
from indirect effect. A main reason is that administration of
particular probiotics not only changes their presence/abundance
in the gut, but it is also expected to impact the gut microbiota
community. Thus, study on probiotics should take into account
the gut microbiota large picture. It is increasingly recognized that
gut microbiota are in fact the constituents of our body and they
significantly impact a variety of physiological functions including
immunity.

Probiotics have also been tested in improving allergies. In a
small pilot study conducted in individuals with seasonal allergic
rhinitis (n = 10/group), Ivory et al. found that participants
receiving Lactobacillus casei Shirota drink for 5 mo had lower
antigen-induced production of IL-5, IL-6, and IFN-γ in PBMC, as
well as increased IgG and decreased IgE levels in serum compared
to the placebo group; however, no difference in clinical symptoms
was observed (222). In a later trial with similar design but larger
sample size and more comprehensive outcome measures, the
same group found difference between probiotics and control
groups in several immunologic parameters suggesting favorable
effect of probiotics on allergy, however, they once again failed
to detect difference in primary effect on clinical endpoints (223).
By viewing many other trials which demonstrated mixed results,
it is reasonable to conclude that evidence is lacking to support
the beneficial effect of probiotics on allergy at present. As with
their immuno-modulating and anti-infection effects, this may be

related to several factors that should be addressed in the future as
discussed in the followings.

Although promising, many claimed health benefits of
probiotics have not been substantiated by intervention studies.
Probiotics include a wide variety of species and they in turn
are composed of many strains, either naturally occurring or
intentionally modified, which have been used in different studies.
It is likely that the probiotics’ immune-modulating effect is
strain-specific. Thus, the positive or negative findings in certain
strains should not be generalized for drawing conclusions, and
likewise, beneficial effects observed on certain strains cannot
be extrapolated to other strains without direct experimental
evidence. Additionally, the interaction among probiotics adds
further challenge, which may be predicted by simply summing
up their respective effects when administered individually. On
the side of subjects being tested, their health status is a factor
known to significantly influence the magnitude or even direction
of response to a given probiotic intervention. For example,
several strains of Lactobacilli and Bifidobacteria have been shown
to differentially affect the Th1 and Th2 responses in PBMC
from healthy and allergy patients (224), and Lactobacillus GG
administration stimulated expression of phagocytosis receptors
in normal healthy individuals but suppressed induction of these
receptors in milk-hypersensitive individuals (211). It is also
worth pointing out that results from animal studies cannot
be directly extrapolated to humans before being validated by
clinical trials. The other thing should in mind given the well-
known fact that negative results tend to be not submitted
or get rejected after submission, it is conceivable that there
must be more studies than reported that have failed to prove
efficacy of probiotics in favorably impacting immune function
and related diseases. Nevertheless, the mechanisms underlying
the reported effects of probiotics have not been well-elucidated,
and obtaining such information would help identify effective
probiotics for developing preventive and therapeutic strategies
as well as nutritional support in targeted diseases. It is no doubt
that fulfilling this task requires tremendous effort which not
only involves screening individual probiotics, the combination of
various strains and doses, and the timing and supplementation
period needed, but also includes consideration of individual’s
health status and disease type.

Green Tea and Epigallocatechin-3-Gallate
(EGCG)
Green tea contains high content of catechins, accounting
for 10–15% of its dry weight, which include epicatechin
(EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), and
epigallocatechin-3-gallate (EGCG). EGCG is the most abundant
and also most biologically active, which is believed to be a
primary factor responsible for green tea’s health benefit. Green
tea and EGCG have been shown to be effective in modulating
multiple aspects of innate and adaptive immunity (225).

Immunologic Effect and Mechanism
In the innate immune system, in vitro EGCG supplementation
dose-dependently reduces neutrophil migration induced by
chemokine IL-8 (226), and neutrophil chemotaxis toward
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cytokine-induced neutrophil chemoattractant-1 (227). The oral
administration of green tea extract or EGCG is shown to
inhibit neutrophil recruitment to the inflammation sites in
several animal studies such as mouse model of inflammatory
angiogenesis (226), and rat model of ovalbumin-induced allergy
(227), and to inhibit neutrophil proteolytic enzymes in a
rat smoking model (228). Similarly, EGCG is also shown
to inhibit monocyte migration by reducing secretion of the
chemokine monocyte chemotactic protein-1 (MCP-1) and its
receptor (CCR2) expression (229). Monocytes/macrophages
are the primary source for most of the prominent pro-
inflammatory mediators. EGCG’s anti-inflammatory property is
mainly drawn from its inhibitory effect on production of pro-
inflammatory molecules in a variety of monocytes/macrophages
cell types as previously reviewed (225). However, this is not
without controversy as some investigators have reported varying
results. For example, studies have shown that in vitro EGCG
supplementation may increase production of the inflammatory
mediator PGE2 and mRNA expression of COX-2 in RAW264.7
cells (230, 231), as well as production of IL-12p40/p70, TNF-
α, and IFN-γ in murine alveolar macrophage cell line MH-S
cells infected by Legionella pneumophila infection (232). Yet,
in vivo supplementation showed that mice fed 1% EGCG
diet produced more TNF-α, IL-6, IL-1β, and PGE2 in their
splenocytes and macrophages as well as an elevated proportion
of macrophages in spleen (233). The discrepancy in reported
EGCG effect may be related to the varied experimental settings
and procedural differences. Among other things, it is possible
that basal levels of inflammatory status may cause a host to
respond in different manner to EGCG administration and as
such, the nature and magnitude of EGCG effect may vary
depending on inflammation state under normal or disease
condition.

DC as APC are also affected by EGCG. It has been reported
that EGCG retards bone marrow-derived DC maturation and
inhibits their functions as indicated by reduced ability to capture
Ag (dextran), secrete IL-12, and express CD80, CD86, and
MHC class I and II, culminating in impaired APC function in
inducing Ag-specific T cell-mediated response (allogeneic T cell
proliferation and IL-2 production) (234). Similar effects were
reported in a study using human peripheral blood monocytes-
derived DC (235). A very limited number of studies have
examined how EGCG impacts other innate immune cells such
as NK cells, mast cells, and basophils; however, they are largely
cell-based studies and the results are insufficient for a meaningful
speculation.

The effect of green tea/EGCG on adaptive immune functions
has been relatively more intensively studied with research
focusing primarily on T cell-mediated functions, especially
those involving CD4+ T cells. Little is known regarding the
humoral immunity except that in vitro EGCG was shown
to inhibit B cell proliferation (236, 237). Wu et al. reported
that in vitro supplementation with physiologically relevant
levels of EGCG (2.5–10µM) dose-dependently inhibits Con
A-induced splenocyte proliferation, T cell division, and cell
cycle progression (238). In a later study using purified T
cells, the same group further showed that EGCG inhibited

anti-CD3/CD28-stimulated cell division in both CD4+ T cells
and CD8+ T cells but more so in the former. EGCG also
inhibited antigen-specific T cell proliferation by affecting both
T cells and APC while the direct effect on T cells appeared to
be predominant (239). The T cell-suppressive effect of EGCG
was confirmed in the in vivo study in which mice were fed
a diet containing 0.3% EGCG for 6 wk (239). In vitro EGCG
supplementation has been shown to decrease IL-2 production
in response to allogeneic stimulator cells (240), production
of IL-2, TNF-α, and IFN-γ in Staphylococcus enterotoxin B-
stimulated human PBMC (241), and IFN-γ production in
Con A-stimulated mouse splenocytes (238), or anti-CD3/CD28-
stimulated mouse CD4+ T cells (242). However, some other
studies reported different results which include EGCG-induced
upregulation in mRNA levels of Th1 cytokines (IL-2 and
IFN-γ) and Th2 cytokines (IL-5 and IL-13) in Jurkat cells
(243), and increased IL-2 production in response to PMA
and PHA in human PBMC (244). These discrepant findings
may be related to the different experimental conditions such
as cell type, EGCG concentration, and stimulation condition
used. In addition, sometimes altered cytokine levels may
not necessarily tell the situation in their synthesis. For
example, EGCG did not affect IL-2 levels in the culture of
T cells stimulated for 24 h or shorter, but caused a dose-
dependent elevation of IL-2 in 48 h cultures (239). Further tests
showed that EGCG did not affect IL-2 synthesis as confirmed
by intracellular staining and mRNA levels, but instead, it
reduced IL-2R expression, which together suggest that higher
levels of IL-2 might result from increased IL-2 accumulation
due to a reduction in IL-2R-mediated IL-2 internalization
and utilization (239). This hypothesis was supported by a
later study showing that EGCG-mediated inhibition of IL-
2R involves all three IL-2R subunits: IL-2Rα, IL-2Rβ (CD122,
shared with IL-15R), and γc (CD132, shared with IL-7R
and IL-15R), as well as their downstream signaling events
(245).

The mechanisms for EGCG-induced inhibition of cytokine
production and T cell proliferation are yet to be clearly
elucidated; however, some evidence from in vitro studies
suggests an involvement of EGCG-induced interference with
early signaling events in T cell activation. It has been reported
that in Jurkat T cells, EGCG inhibits the early stages of the
T cell signaling pathways including activation of Zap70, LAT,
phospholipase Cγ1, ERK, MAPK, and transcription factor AP-
1 (246); the cyclin dependent kinase inhibitor p27Kip1, a negative
regulator of cell cycle progression, was identified as a molecular
target of EGCG (247).

As mentioned above, EGCG has a strong potency in
inhibiting CD4+ T cell proliferation and appears to alter
T cell differentiation. Recent studies have revealed that
EGCG differentially impacts development of CD4+ T cell
subpopulations. By incubating naïve CD4+ T cells under
different Th differentiation conditions in the presence of 10µM
EGCG, Wang et al. found that EGCG suppressed CD4+ T
cells polarization toward Th1 and Th17 subsets, and also partly
prevented IL-6-induced suppression of Treg development, but
had no effect on Th2 differentiation (242).
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FIGURE 1 | Immune cell functions affected by vitamins D and E, zinc, n-3 PUFA, probiotics, and EGCG. D, vitamin D; E, vitamin E; Z, zinc; n-3, n-3 PUFA; PB,

probiotics; EG, EGCG; , increase; , decrease. Effects of probiotics cited here are for some strains; given the strain-specific nature for the effects of probiotics,

these results should not be generalized.

Clinical Relevance
From the reported effects of EGCG on immune cell functions,
particularly its anti-inflammatory, T cell-suppressing, and
differentiation-modulating effects on T cell subset development,
EGCG appears to have a potential benefit in clinical application
for preventing and mitigating T cell-mediated autoimmune
diseases. Indeed, administration of EGCG has been shown
to improve several autoimmune diseases in respective rodent
models including experimental autoimmune encephalomyelitis
(EAE, for human multiple sclerosis, or MS), collagen- or Ag-
induced arthritis (for RA), the chemically-induced colitis (for
IBD), and the non-obese diabetic mouse strains (for Sjogren’s
syndrome) [reviewed in (225, 248)]. In the earlier studies, the
beneficial effect of EGCG in these autoimmune diseases is largely
attributed to EGCG’s anti-inflammatory properties. Promoted by
the development of research on CD4+ T cell subpopulations as

well as the evolving theory for their involvement in autoimmune
pathogenesis, the more recent studies have generated new
evidence to suggest that desirable effect of EGCG on autoantigen-
induced T cell activation, differentiation, and effector functions
during the initiation and development of autoimmunity may
represent an important mechanism underlying the EGCG’s
beneficial effect in autoimmune disease. However, thus far almost
all the evidence is from animal studies, and the efficacy and safety
for EGCG’s clinical application in human diseases remain to be
established.

CONCLUSIONS

It is well-established that nutritional inadequacy greatly impairs
the functioning of the immune system. In addition, it
is increasingly recognized that nutrient intake, above what
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is currently recommended, may beneficially affect immune
function, modulate chronic inflammatory and autoimmune
conditions, and decrease infection risk. This includes both
macronutrients (lipids such as n-3 PUFA) and micronutrients
(zinc, vitamin D and vitamin E), in addition to phytochemicals
and functional foods (probiotics and green tea). Many of these
nutritive and non-nutritive food components are related in their
functions to maintain or improve immune function including
inhibition of pro-inflammatory mediators, promotion of anti-
inflammatory functions, modulation of cell-mediated immunity,
alteration of APC function, and communication between the
innate and adaptive immune systems. Figure 1 provides a
schematic summary of the immuno-modulating features for the
six types of food components discussed in this review. It should
be in mind that this simplified picture cannot cover complete
outcomes in the respective research, nor can it accurately
reflect the controversial issues present. It is particularly worth
mentioning that effects of probiotics cited in the figure are based
on the results for some strains. Considering the well-recognized
strain-specific feature of the biological effects of probiotics,
caution should be taken in data interpretation and extrapolation.

The properties of the nutrients, phytochemicals, and
functional foods inmodulating immune function have significant
implications for inflammation-mediated conditions. Both animal
and human studies have presented promising findings suggesting
a clinical benefit of vitamin D, n-3 PUFA and EGCG in chronic
inflammatory conditions, n-3 PUFA and EGCG in autoimmune
disorders, and vitamin D, vitamin E, zinc and probiotics in
protection against infection. However, the discrepancy in
results from many studies adds the challenge and complexity
of nutritional immunology research; as the result, there is no
clear consensus at this time regarding the clinical relevance
of these dietary components. In some cases, results in human

studies are not always consistent with pre-clinical animal
models, or the immunomodulatory effects have not yet been
examined in humans. Moreover, there is great variation among
human study designs, the doses used, and the populations of
study, demonstrating a need for more standardized clinical trial
designs, better characterized populations, more information for
determining the intervention dose used, and more meaningful
outcome measurements chosen. Particularly for zinc, vitamin
E, n-3 PUFA and probiotics, clearly there is need to establish
the optimal doses for maximum clinical benefits, which may
likely differ depending on the age, genetic background,
and nutritional and health status of the population of
study.
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