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Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naïve

T cell activation and effector differentiation. They are, likewise, involved in the induction

and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and

functional heterogeneity points to their great plasticity and ability to modulate, according

to their microenvironment, the acquired immune response and, at the same time, makes

their precise classification complex and frequently subject to reviews and improvement.

This review will present general aspects of the DC physiology and classification and will

address their potential and actual uses in the management of human disease, more

specifically cancer, as therapeutic and monitoring tools. New combination treatments

with the participation of DC will be also discussed.

Keywords: human dendritic cells, DC, monocyte-derived dendritic cells, mo-DC, cancer vaccines, cancer

combination therapies

INTRODUCTION

Identified in mouse spleen for their peculiar shape and capacity to activate naïve lymphocytes (1–
3), dendritic cells (DC) are considered the most efficient antigen presenting cells (APC) (3, 4),
uniquely able to initiate, coordinate, and regulate adaptive immune responses. Though their ability
to capture, process and present antigens is considered their main characteristic, their phenotypic
heterogeneity is striking and very different consequences can come from their action. This review
will present an overview of the main subpopulations of human DC described and will focus on
their potential translational use.

OVERVIEW OF DENDRITIC CELLS IN THE IMMUNE SYSTEM
PHYSIOLOGY

Human DC are identified by their high expression of major histocompatibility complex (MHC)
class II molecules (MHC-II) and of CD11c, both of which are found on other cells, like
lymphocytes, monocytes and macrophages (5–12). DC express many other molecules which allow
their classification into various subtypes (Table 1). Although some of the DC subtypes were
originally described as macrophages, DC and macrophages have distinct characteristics (13–15)
and ontogeny, so that, currently, little doubt remains that they belong to distinct lineages (16–24).
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DC can be found in practically all tissues, where they detect
homeostatic imbalances and process antigens for presentation to
T cells, establishing a link between innate and adaptive immune
responses. Furthermore, DC can secrete cytokines and growth
factors (25) that modify ongoing immune responses, and are
influenced by their interactions with other immune cells, like
natural killer (26–28) and innate lymphoid cells (ILCs) (29).

DC are found in two different functional states, “mature”
and “immature”. These are distinguished by many features,
but the ability to activate antigen-specific naïve T cells in
secondary lymphoid organs is the hallmark of mature DC
(30–32). DC maturation is triggered by tissue homeostasis
disturbances, detected by the recognition of pathogen-associated
molecular patterns (PAMP) or damage-associated molecular
patterns (DAMP) (33, 34) (Figure 1). Maturation turns on
metabolic, cellular, and gene transcription programs allowing
DC to migrate from peripheral tissues to T-dependent areas
in secondary lymphoid organs, where T lymphocyte-activating
antigen presentation may occur (35–40).

During maturation, DC lose adhesive structures, reorganize
the cytoskeleton and increase their motility (41). DC maturation
also leads to a decrease in their endocytic activity but increased
expression of MHC-II and co-stimulatory molecules (42–44).
Mature DC express higher levels of the chemokine receptor,

TABLE 1 | Main surface markers of human and mouse DC subtypes.

DC subtype Human Mouse

cDC1 CD141/CLEC9A/XCR1 CD8a/CD103/XCR1

cDC2 CD1c/CD172a CD11b/CD172a

pDC CD123/CD303/CD304 B220/SiglecH

LC Langerin/CD1a Langerin/CD24

FIGURE 1 | Dendritic cells activation. Extracellular signals, such as PAMPs or

DAMPs, trigger alterations on immature DCs culminating on significant

changes on surface proteins, intracellular pathways and metabolic activity.

CCR7 (45–48) and secrete cytokines, essential for T-cell
activation (42, 49–52). Thus, the interaction between mature
DC and antigen-specific T cells is the trigger of antigen-specific
immune responses (53, 54).When interacting with CD4+ T cells,
DC may induce their differentiation into different T helper (Th)
subsets (52) such as Th1 (55–60), Th2 (56, 57, 61, 62), Th17
(63–65), or other CD4+ T cell subtypes (66) (Figure 2). T cell
differentiation in each subtype is a complex phenomenon, that
can be influenced by the cytokines in the DC tissue of origin
(67), their maturation state (42) and cause of tissue imbalance
(68). However, this process is not completely elucidated, as, for
example, the source of IL-4 during Th2 responses, which is
discussed extensively elsewhere (69).

DC present a unique characteristic: the ability to perform
cross-presentation (70–74). This phenomenon was described in
1976, by Bevan (75) and is defined as the presentation, in the
context of class I MHCmolecules (MHC-I), of antigens captured
from the extracellular milieu. This feature allows DC to trigger
responses against intracellular antigens from other cell types,
thus providing means for the system to deal with threats that
avoid professional APC (70, 76, 77) and, even, to prime CD8+
lymphocytes in the absence of CD4+ T cells (78, 79). Cross-
presentation is involved also in the induction of tolerance to
intracellular self-antigens that are not expressed by APC and,
then, called, cross-tolerance (80, 81).

Before receiving maturation stimuli, DC are said to be
in an “immature state.” Immature DC are poor inducers
of naïve lymphocyte effector responses, since they have low
surface expression of co-stimulatory molecules, low expression
of chemokine receptors, and do not release immunostimulatory
cytokines (44, 82). These “immature” cells, though, are very
efficient in antigen capture due to their high endocytic capacity,
via receptor-mediated endocytosis, including lectin- (83–85);

FIGURE 2 | CD4+ T cell fate induced by dendritic cells. When in contact with

DC, naïve CD4+ T cells can differentiate into a number of subtypes. Among

them, are regulatory T cells (Treg) and T helper (Th) subsets, which include

Th1, Th2, and Th17 cells. Each subtype expresses different transcription

factors, which regulate the function and cytokine secretion pattern of the cells.

The T cell fate decision is a complex phenomenon that heavily depends on the

interaction of DC with the T cells and the cytokines present in the

microenvironment.
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Toll-like- (86–88), FC- and complement receptors (89) and
macropinocytosis (84). Thus, immature DC act, indeed, as
sentinels against invading pathogens (32, 90), but also as tissue
scavengers, capturing apoptotic and necrotic cells (91).

This latter feature confers to immature DC an essential role
in the induction and maintenance of immune tolerance (31, 92–
95). Apoptotic cells that arise in consequence of natural tissue
turnover (96, 97) are internalized by DC but do not induce their
maturation (31, 98–100). Thus, their antigens are presented to T
cells without the activating co-stimulatory signals that a mature
DC would deliver, resulting in T cell apoptosis (80, 101), anergy
(102, 103) or development into regulatory T cells (104, 105).

These “tolerogenic DC” express less co-stimulatory molecules
and proinflammatory cytokines, but upregulate the expression
of inhibitory molecules (like PD-L1 and CTLA-4), secrete anti-
inflammatory cytokines (IL-10, for example) (102, 106–108) and
are essential to prevent responses against healthy tissues (30,
31, 109–112). However, in some contexts, immature DC can
be harmful to the body. It is known that DC that are unable
to induce lymphocyte effector responses may contribute to the
immune system’s failure to fight infections (113, 114) or tumors
(115–120). In these situations, DC, even after recognition of
pathogens or other changes in microenvironment, fail to increase
the co-stimulatory molecules required to activate T cells, thus
allowing the disease to “escape” immune control.

Although many factors are recognized as contributing to
drive DC maturation (100, 121, 122), the full set of such
factors is not precisely defined, but involves a long series of
transcriptional adaptations (119, 121, 123–125). The complexity
and heterogeneity of these adaptations allows DC to translate
effectively (most of the times) the pattern of homeostatic
disturbance to interacting T lymphocytes, thus establishing DC
as the main connector between innate and acquired mechanisms
of immunity (43, 126).

HUMAN DENDRITIC CELL
SUBPOPULATIONS AND
MONOCYTE-DERIVED DENDRITIC CELLS

Dendritic cells can be divided into resident lymphoid tissue
DC and migratory non-lymphoid tissue DC (16). Both are
heterogeneous cell populations with different subsets that can be
distinguished by phenotypicmarkers and genetic profile. The first
identification of different DC subsets arose from the observation
that CD8 expression occurred on some, but not all, mouse
resident splenic and thymic DCs (127). While the identification
of mouse DC subpopulations is well advanced (128, 129), mostly
due to tissue accessibility, the same is not true for human DC,
where most studies were performed only in peripheral blood or
skin, in spite of recent data characterizing DC subpopulations in
human lung (130) and intestine (131).

Recent efforts have been addressed to understand the
ontogeny and function of human DC subsets, attempting to
correlate well-defined murine subpopulations with those found
in human peripheral blood (16, 128, 132). DC arise from a
CD34+ hematopoietic precursor that gives rise to myeloid (MP)

and lymphoid (LP) precursors (Figure 3). MP differentiate into
monocyte, macrophage and DC precursors (MDP), which will
give rise to monocytes and to the common DC precursors
(CDP). CDP can differentiate into plasmacytoid DC (pDC) or
the preclassical DC (pre-cDC). Pre-cDC are the progenitors of
the two major cDC subpopulations named cDC1 and cDC2 (14),
which will be further discussed latter. Recent technologies, such
as single cell RNAseq, are allowing a better characterization of
DC ontogeny and the identification of DC subset precursors in
peripheral blood (133), demonstrating that the commitment with
a DC subset may be an early event, both in mice (134) and
humans (135).

Curiously, in lymphohematopoietic tissue, such as spleen,
thymus and blood, DC commitment to a subpopulation is mainly
defined by ontogeny, while in non-lymphohematopoietic tissue,
such as lung and skin, DC subpopulations are more influenced
by signals derived from the microenvironment. This, once again,
confirms that DC are a very plastic cell population that can shape
its phenotype to the microenvironment and to homeostatic state
of the tissue where it is located (136).

In blood, DC constitute a rare cell population that can be
broadly divided into two subtypes (Figure 4): CD123+CD11c−

DC, called plasmacytoid DC (pDC), and CD123−CD11c+ cells,
called classical DC or myeloid DC (cDC) (25, 128, 137). Dzionek
et al. (138) identified three antigens called BDCA-2, BDCA-3,
and BDCA-4 (Blood Dendritic Cell Antigens), which, together
with BDCA-1 (CD1c), allowed the further discrimination of
human blood DC subsets. cDC can be separated into cDC1 and
cDC2 (139): cDC1 are characterized by the expression of BDCA-
3 (CD141) and Clec9A, while cDC2 express CD1c. BDCA-2
(CD303) and−4 (CD304), on the other hand, together with
CD123, characterize pDC.

It is noteworthy that recent genomic studies, with emphasis
on the subpopulations of monocytes and DC, made it possible
to align CD141+ DC (cDC1) and CD1c+ (cDC2) from
human peripheral blood with the mouse CD8α+/CD103+

and CD11b+DC, respectively (140, 141). This will allow the
confirmation, or not, of the roles played by these subsets in
murine immune responses also in humans.

cDC1
The human cDC1 subpopulation is present in blood
and in lymphoid and non-lymphoid tissues (142). This
subpopulation is characterized by the expression of CD141,
the chemokine receptor XCR1, C-type lectin CLEC9A, the cell
adhesion molecule CADM1, and is the counterpart of mouse
CD8α+/CD103+ cross-presenting DC subset (132, 142). cDC1
can be generated in vitro from CD34+ progenitors after 21
days of culture with fms-like tyrosine kinase 3 ligand (Flt3L)
and thrombopoietin (TPO) (143) or with Flt3L and murine
bone marrow stromal cell lines (144). As mentioned above,
this subpopulation of DC seems to be specially adapted to
perform cross-presentation, a phenomenon that is associated
with the expression of the chemokine receptor XCR1 (145). The
main transcription factors (TF) shown to be essential for the
generation of cDC1 are the basic leucine zipper transcriptional
factor ATF-like 3 (BATF3) (146) and IFN-regulatory factor 8
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FIGURE 3 | Simplified scheme of DC ontogeny. DC arise from HSC that give rise to MP and LP. MP are further differentiated into MDP that can differentiate into CDP

and monocytes. CDP differentiate further into pDC or pre-cDC. LP can also give rise to pDC, although this ontogenic pathway is not completely elucidated. Once in

the blood, pre-cDC give rise to two of the main DC subtypes: cDC1 and cDC2. Both pDC and cDC can migrate from the blood to lymphoid and non-lymphoid

tissues. HSC, hematopoietic stem cell; MP, myeloid precursors; LP, lymphoid precursors; MDP, macrophage-DC precursors; CDP, common DC precursors; pre-cDC,

pre-classical dendritic cells; pDC, plasmacytoid dendritic cells; cDCs, conventional dendritic cells; FLT3, Fms-Related Tyrosine Kinase 3.

FIGURE 4 | Main characteristics and differences of cDC1, cDC2, and pDC. In

human blood, it is possible to find two main populations of DC, named

conventional DC (cDC) and plasmacytoid DC (pDC). cDC can be further

subdivided in cDC1 and cDC2. All three subtypes of DC can be differentiated

by their signature transcription factors and also by the expression of specific

surface markers.

(IRF8) (130). In mice, besides BATF3 (147) and IRF8 (148),
gene knockout models pointed out to the role of two other
TF: DNA binding protein inhibitor ID2 (149) and nuclear
factor interleukin-3-regulated protein (NFIL3) (150), whose

participation in the generation of human cDC1 needs yet to be
demonstrated.

cDC1 prime CD8+ T cells efficiently, what is important
in anti-tumor and anti-virus immunity. However, the
induction and modulation of an immune response is a very
complex phenomenon that involves many cell interactions,
including interactions among different DC subsets, as recently
demonstrated in mice infected with modified vaccinia virus
Ankara (MVA) (151). In this model, activated CD8+ T cells
recruit both pDC (via CCL3/CCL4) and cDC1 (via XCL1);
type I interferons, (IFN-I) produced by pDC, act on cDC1
optimizing their maturation, costimulatory capacity and ability
to cross-present viral antigens, thus leading to an effective anti-
virus response. cDC1 were also shown to be important for the
antitumor activity induced by heat-inactivated MVA in murine
melanoma and colon cancer models (152). Furthermore, both
in mice and humans, cDC1 are found sparsely distributed along
tumor margins (competing with tumor associated macrophages–
TAM-for tumor antigens?) and their presence was important
for the success of adoptively transferred cytotoxic T cells (CTL)
(153) and for the delivery of tumor antigens to the draining
lymph nodes, in a CCR7 dependent manner (154).

cDC2
cDC2 constitute a heterogeneous subset of DC that can be
found in blood, lymphoid and non-lymphoid tissue (16, 142).
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SIRPα (CD172a) is expressed by cDC2 (both in humans and
mice) (130) and, along with CD1c (humans) and CD11b (mice),
characterizes this subpopulation (25, 132). Coherently with its
heterogeneity, other markers are expressed by cDC2, according
to their localization, as for example, CD1a in dermal and
CD103 in gut cDC2 (25, 141). Like cDC1, cDC2 can also be
differentiated from CD34+ progenitors, after 21 days of culture
with Flt3L and TPO (143) or with Flt3L andmurine bonemarrow
stromal cell lines (144). More than one transcription factor is
involved in cDC2 differentiation and IRF4 seems to be the
master transcription factor (155), but other transcription factors
are required. In mice, PU.1 (156), RelB (157) and recombining
binding protein suppressor of hairless (RBP/J) (158) were shown
to be associated with the differentiation of cDC2, and in humans,
IRF8 (159).

Again, in accordance with their heterogeneity and innate
plasticity (132), cDC2 have been show to induce Th1, Th2, and
Th17 responses (160, 161). The puzzling heterogeneity of these
cells is further illustrated by the recent description of two novel
DC subtypes within the CD1c+ subpopulation: DC2 and DC3.
These two subpopulations diverged by the expression of CD32B
and CD163/CD36. Functional experiments showed that both
these cDC2 subtypes were potent stimulators of naïve T cell
proliferation, but show a different pattern of cytokine secretion
after stimulation with a series of toll like receptors (TLR) agonists
(162).

In the immune system physiology, cDC2 seem to have many,
but frequently, regulatory roles. These cells have been described
as potent inducers of regulatory T cells in intestine (141), and
as responsible for maintaining tolerance in the liver (163). Also,
cDC2 have been described as the only DC subset able to produce
retinoic acid upon stimulation with vitamin D3, thus stimulating
CD4+ naïve T cells to express gut-homing molecules and to
produce Th2 cytokines (164).

Plasmacytoid DC (pDC)
The pDC subpopulation is a subset of DC distinct from cDC,
that arises directly from the CDP (while cDC arise from pre-
DC precursor) (14). These cells are characterized by the secretion
of high levels of IFN-α/β upon TLR7/9 stimulation, and are
extremely important in viral infections (165). This subset of
DC is phenotypically distinct in mice and humans. In mice,
it is characterized as CD11cintCD11b−B220+SiglecH+CD317+

while in humans it is characterized by the absence of expression
of CD11c and the expression of CD123, CD303, and CD304
(25, 128, 132). In terms of transcription factors, on the other
hand, both mouse and human pDC seem to depend on the same
master transcription factor, E2.2 (25, 132, 166).

Since the secretion of IFN-α/β is the main feature of pDC,
their association with viral infections is not surprising. The
secretion of IFN-α/β by pDCs can be a consequence of direct viral
infection [like in HIV infection, where the virus infects pDC via
CD4, CCR5 and CXCR4 (167)], or from external stimuli. Indeed,
human pDC were shown to secrete high levels of IFN-α/β in
Aspergilus fumigatus infection in a Dectin-2-dependent manner
(168).

In keeping with the other DC subpopulations heterogeneity,
human pDC may be subdivided into two subpopulations,
distinguished by the expression of CD2 (169). Both pDC subsets
secrete IFN-α/β efficiently, but only the CD2hi subset secretes
IL-12p40 and induces CD4+ T cell proliferation. These data,
however, may be in need of a second look. As mentioned
before, single cell RNAseq analysis is providing new data
and allowing better characterization of DC subpopulations.
When this approach was used to study pDC subpopulations,
a “contaminant” putative precursor of cDC (pre-cDC),
characterized as CD123+CD33+CD303+CD304+CD2+, was
identified. When these putative pre-cDC and “pure” pDC
populations (characterized by the absence of CD2 and CD33
expression) were separated and stimulated, only pre-cDC were
able to induce CD4+ T cell proliferation and secrete IL-12p40
(135). This raises the possibility that many of the observed
attributes of pDC, such as their ability to induce Th1 responses
(170), to perform cross-presentation (171), to exhibit naïve T cell
allostimulatory capacity (169) and expression of co-stimulatory
(172) molecules might reflect the activity of this contaminating
pre-cDC population.

Puzzling, as these data may seem, they illustrate quite well
the plasticity of the cells “clustered” under the name of DC.
They further suggest that attempts to classify strictly these cells
may lead to more confusion than it is necessary to understand
their role in responding to microenvironmental challenges, in
shaping immune response patterns in the body and, eventually,
in driving the immune response toward therapeutic goals in
humans.

Monocyte-Derived DC (mo-DC)
Much of the knowledge acquired in the past years about human
DC biology was possible due to the methodology of in vitro
deriving DC from CD34+ precursors (stimulated with GM-
CSF and TNF-α) (173) or from monocytes (stimulated with
GM-CSF and IL-4) (174). Like cDC2, mo-DC depend on IRF4
for their differentiation (175). However, they do not seem to
be an equivalent population, since they arise from different
precursors (14).

In mice, the precursors used for in vitro generation of
DC are extracted from the bone marrow. In the presence of
GM-CSF, these precursors give rise to large number of cells
that resemble tissue DC and are called bone marrow-derived
dendritic cells (BMDC) (176). Helft et al. showed that BMDC
comprise a heterogeneous population expressing both CD11c
and MHCII. A CD11c+MHCIIint population seems to be more
closely related to macrophages (hence, called GM-Macs), while
the CD11c+MHCIIhigh population resembles DC and is, thus,
called GM-DC. Addition of IL-4 to these cultures limits, but
does not eliminate, the generation of GM-Macs (177). The
heterogeneity of precursors and cell populations obtained in
vitro fuels a vivid and complex discussion about the biological
relevance of these cells (178–180).

It is still unclear to which subpopulation of DC, mo-DC are
more closely related, but DC ontogeny data suggest that mo-
DC are similar to the inflammatory DC (132). Not surprisingly,
inflammatory DC is the designation of another heterogeneous
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subpopulation of DC, typically CD11chiMHCIIhi. One of the
first reports of inflammatory DCs described a population of DC
characterized by the production of TNF and iNOS, named Tip-
DCs (181). Another study identified inflammatory DC in the skin
of atopic dermatitis patients and named these cells inflammatory
epidermal dendritic cells (IDECs), which were characterized
by the expression of CD11c, CD206, CD1a, CD11b, CD209,
FcεRI (182). Recently, another inflammatory DC population
was described in the synovial fluid of rheumatoid arthritis
patients and in the inflammatory ascites of untreated cancer
patients. In this study, inflammatory DC were characterized as
CD14+CD1c+SIRPα+CD206+FcεRI+ and their gene signature
(when compared to in vitro generated mo-DC, macrophages,
cDC2, CD16+ monocytes and CD14+ monocytes) was more
closely related to that of mo-DC, suggesting that inflammatory
DC could be, indeed, the in vivo counterparts of mo-DC (183).

MO-DC AS A “WINDOW” TO IMMUNE
SYSTEM EVALUATION IN CANCER
PATIENTS

It has been known for a while that established tumors affect their
microenvironment in ways that facilitate their persistence and
progression. These local modifications include zones of hypoxia,
altered pH, induction of angiogenesis (184), alterations of pre-
mRNA splicing in surrounding cells (185) and the recruitment of
cells that facilitate tumor progression, such as tumor-associated
macrophages (TAM) (186), immature DC (115), myeloid-derived
suppressor cells (MDSC) (187) and regulatory T cells (188).
However, mechanisms to avoid immune system surveillance and
tumor progression (189) are not limited to the tumor site and,
today, it is recognized that individuals with cancer present also
systemic modifications to that effect as well (190). As discussed
before, DC are a plastic and heterogeneous population and it
should be expected that, among these systemic adaptations, some
affect the various DC subpopulations, including mo-DC.

Described Alterations in mo-DC of Cancer
Patients
Various publications have described phenotypic and functional
alterations in mo-DC from patients with different tumors
(191–193). Our group demonstrated that mo-DC from breast
cancer patients are poor stimulators of allogeneic T lymphocytes
proliferation but are good inducers of regulatory T cells. These
characteristics were observed both in immature and mature
mo-DC and the regulatory T cell bias, though decreased by
blocking of TGF-β, was not completely inhibited (192). Similar
phenomena were also observed in patients with CLL, whose mo-
DC expressed reduced levels of important molecules involved in
antigen presentation and lymphocyte activation, such as HLA-
DR, CD80, CD86, CD83, and CD40, and, coherently, were less
effective in inducing proliferation of both CD4+ and CD8+

T cells. Furthermore, CD4+ T lymphocytes co-cultivated with
mo-DC from CLL patients presented reduced IFN-γ and IL-4
production, when compared to healthy donors (193). Further
similar results were also observed in chronic myeloid leukemia

(194), colorectal cancer (195), and cervical neoplasia (196). It
is worth noting that dysfunctional and apoptosis prone mo-DC
were also obtained from healthy donors, when their monocytes
were exposed to tumor culture supernatants (197).

Although detected in cancer patients, the altered phenotype
and functions of mo-DC could precede the emergence of the
tumor and reflect an individual constitutional characteristic of
the patients, which might be related or not to their disease.
The follow up of cancer patients that present such alterations,
however, suggests otherwise and indicate that, indeed, it is the
presence of the tumor that affects the cells.

In a study of a chromophobe renal carcinoma patient, mo-
DC obtained before surgery induced less allogeneic T cell
proliferation and more regulatory T cells when compared to
cells from healthy donors. Three months after surgery, yet, mo-
DC from the patient exhibited functional properties similar to
that of healthy controls, suggesting that the presence of the
tumor was the cause of the biased mo-DC function in the
patient (198). Another example of the transitory and, possibly,
in this case, tumor-dependent functional bias of circulating cells
has been described in a study with patients with obstructive
jaundice. Monocytes from 53 patients with obstructive jaundice
(44 due to cancer and 9 due to non-neoplastic diseases) were
obtained before surgery and found unable to release H2O2

upon stimulation, but this was progressively reversed after
surgery (199). Yet, in another paper we described a patient
with type 2-papillary renal cell carcinoma, whose mo-DC
also presented functional biases. Though after the tumor was
surgically removed, the patient’s mo-DC already regained some
activity, their T lymphocyte-stimulating activity reached healthy
controls’ levels only after the patient was submitted to treatment
with a dendritic cell-based cancer vaccine (200).

Altogether, these data point out to the fact that circulating
monocytes may reflect systemic effects of tumors in such
a manner that their functional evaluation could become an
effective tool to monitor disease progression and/or response to
therapy.

Alterations in Circulating Subpopulations
of DC in Cancer Patients
Circulating subsets of DC are also affected in cancer patients.
Diminished numbers of total DC have been observed in
melanoma patients; this was more intense in stage IV patients
and, though it was more pronounced in the pDCs, it also
occurred among cDC (201). In breast cancer patients, reductions
in total circulating DC and in DC IL-12 production was also
described. However, in these patients cDC were the culprit and
not pDC (117). Circulating DC isolated from patients with
CLL showed decreased expression of co-stimulatory molecules,
lower ability to stimulate allogeneic T lymphocytes and did not
secrete IL-12, but retained the ability to secrete IL-10 (202). A
recent publication, evaluating the effects of different TLR-L in
cDC1, cDC2, pDC, and monocytes from breast cancer patients
showed that, upon stimulation with IFN-α, cDC2 and non-
classical monocytes (CD14−CD16+) exhibited reduced secretion
of TNF-α (203).
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These observations point out to systemic effects induced by
tumors upon the immune-hematopoietic system and suggest
that circulating cells are influenced and, possibly functionally
handicapped to fight the tumor, even before actually infiltrating
the tumor mass. These phenomena, added to our view and
understanding of tumor biology, should allow the design of
improved therapeutic approaches, even for those that do not
specifically target the immune system.

Possible Mechanisms
It is quite evident, thus, that tumors promote local and systemic
alterations in immune cells and substantial efforts have been
made to identify possible mechanisms of how tumors promote
these alterations and, most importantly, how to correct them.

Signal Transducer and Activator of Transcription 6 (STAT6) is
an important molecule, induced by IL-4, in the process of mo-DC
differentiation. STAT6 is naturally inhibited by the Suppressor Of
Cytokine Signaling 5 (SOCS5), which, in turn, is up regulated
by phosphorylated STAT3 in monocytes. In CLL patients, IL-
10 induces the phosphorylation of STAT3, thus up regulating
the expression of SOCS5. As a consequence, monocytes of
CLL patients have impaired phosphorylation of STAT6 and its
downstream genes, blocking their differentiation and maturation
into functional mo-DC (193). However, mo-DC from healthy
donors differentiated in the presence of lung cancer patients’
sera, showed decreased STAT3 phosphorylation (204). Although
apparently contradictory, these findings might reflect a difference
in themonocytes of patients and healthy donors or a difference in
the moment of analysis. If monocytes from patients and healthy
donors differ, it would not be surprising that they would respond
differently to the same stimuli. Likewise, the moment when
STAT3 phosphorylation is analyzed may show quite different
results. When monocytes from healthy donors were pre-treated
with IL-10 and then stimulated with IL-4, an initial increase
in STAT3 phosphorylation occurred during the first 72 h, but
with the increasing SOCS5 expression, STAT3 (and STAT6)
phosphorylation was downregulated (193).

The STAT3 pathway is activated also by IL-6, which, like
IL-10, is found in higher concentration in patients sera (205).
The impaired functions of DC have been, thus, also attributed
to upregulation of IL-6-induced STAT3 activity, both in animal
models (206) and humans (207)- these data were recently
reviewed by Kitamura et al. (208). Offering a potential solution
to these hard to reconcile data is the fact that STAT3 signaling
induced by IL-6 seems to be modulated by SOCS in a different
way than the IL-10-induced signaling, at least in human
macrophages (209).

Undeniably, the available data, though suggesting possible
pathways are not enough to elucidate the complex molecular
mechanisms underlying DC dysfunction in patients.

DENDRITIC CELLS AS THERAPEUTIC
INSTRUMENTS

The key concept of the cancer immunotherapy is that the
manipulation of the immune system can achieve cancer control

and, ideally, cure. The possibility of cancer immunotherapy was
first shown by Coley, who used a mixture of bacterial toxins
to treat patients with inoperable sarcomas (210). Since then,
many studies have shown clinical benefit when using general
immune system activators, such as bacterial products (211) and
TLR agonists (212). The antitumor activity of these approaches,
when it occurs, is attributed to the ability of these compounds
to activate the immune system that, in turn, acquires the ability
to kill tumor cells. Much of this effect was shown to be due to
DC activation followed by the generation of T cell responses
(213). Dendritic cells, as key activators of the adaptive immune
response, would be expected to have a central role in inducing
antitumor immune responses and themany functional deviations
these cells show in cancer patients emphasize the relevant role
they may, indeed, play in anti-tumor immune responses. In
face of these data, it would be intuitive to exploit the immune
activating potential of DC to induce antitumor responses in
cancer patients. However, because of the difficulty of obtaining
large numbers of these cells by non-invasivemethods, therapeutic
approaches using DC became possible only after methods for the
in vitro generation of these cells were described (174).

Use of Monocyte-Derived Dendritic Cells
mo-DC are able to present antigens in the context of both MHC
class I (91) and class II molecules (214) and, hence, can be used to
generate therapeutic cancer vaccines. When injected in humans,
mo-DC can prime CD4+ and CD8+ T cells (215) and expand
antigen-specific cytotoxic T cells, which can lead to regression
of metastatic lesions in patients (216). Nevertheless, some argue
that mo-DC, possibly due to a limited migration potential, might
be insufficient to consistently induce effective immune responses
in vivo (217). Contrastingly, Kuhn and co-workers have shown
that successful therapy using immune-activating compounds was
followed by the appearance of mo-DC in the draining lymph
nodes of treated mice (218) and these cells were essential for the
priming of CD8+ T cells and antitumor immunity (219).

Nonetheless, to be used as therapeutic instruments, mo-DC
must be properly differentiated in vitro, induced to mature,
loaded with tumor antigens, and, finally, administered to the
patient (Figure 5). It is easy, thus, to realize the challenges that
face the development of mo-DC-based vaccines. What are the
markers of a “properly activated” DC? What is the “proper”
response to be induced? What are the relevant tumor antigens?
What is the best pathway for these cells to reach secondary
lymphoid organs, where they should encounter tumor-specific T
lymphocytes? Not surprisingly, each of the aforementioned steps
diverges among the various clinical reported protocols, adding
much complexity to the evaluation of the approach, but also
a possible explanation for the large diversity in the reported
efficiencies of such treatments.

To differentiate monocytes into dendritic cells, the cytokines
IL-4 and GM-CSF are classically used (174). Most approaches use
this protocol to obtain mo-DC, but other ways to differentiate
monocytes into dendritic cells have been described and tested.
mo-DC differentiated in the presence of GM-CSF and IFN-α, for
example, secrete large amounts of pro-inflammatory cytokines,
induce a IL-12p70-independent Th1 response (220) and have
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FIGURE 5 | Vaccination strategy with monocyte derived dendritic cells. (1) Monocytes are obtained from peripheral blood and differentiated into dendritic cells. This

differentiation can be achieved by using different recombinant cytokines, with rGMCSF + rIL-4 as the most common combination, or by transfecting monocytes with

plasmids encoding the cytokines. (2) Once differentiated, DC activation can be accomplished by using different stimuli, most of them associated with tissue damage,

inflammation or the presence of a pathogen. (3) The last step is to load the DC with selected or total tumor antigens. Finally, the cells are injected in the patient,

expecting them to induce a tumor-specific adaptive immune response able to eradicate the tumor.

given rise to cancer-specific CD8 responses, in phase I/II clinical
trials (221). mo-DC differentiated in the presence of GM-CSF
and IL-15, on the other hand, were better inducers of Th17
responses (222).

The lengthy culture time to achieve the differentiation of
mo-DC (usually 5–7 days) is a limitation of the wide clinical
use of these protocols. Thus, alternative protocols for mo-
DC differentiation were developed. Dauer et al. have shown
that monocytes cultured for 48-hours with IL-4 and GM-CSF
already have characteristics of immature DC (223) and these,
so called FastDC, prime tumor-antigen specific CD8T cells as
efficiently as conventional mo-DC (224). Another strategy is the
transduction of monocytes with plasmids containing the genes
of the cytokines, which, constitutively expressed, will lead to
their differentiation into DC (225). The FDA-approved cancer
vaccine, Sipuleucel-T (PROVENGE R©) uses a similar approach
for mo-DC generation, in a protocol that only requires 3 days
for manufacturing (226). This vaccine is approved for castration-
resistant prostate cancer and consists of autologous PBMC
incubated with a fusion protein containing both GM-CSF and
PAP, a prostate-specific cancer-associated antigen (227).

The second step in vaccines generation consists of mo-DC
activation, since differentiation generates immature cells. The
maturation stimulus can come from a variety of molecules,
including cytokines (TNF-α, IFN-γ), TLR agonists (LPS),
agonistic recombinant proteins (CD40L) or maturation cocktails
(228). However, the best conditions for mo-DC activation
are still unclear. Activation with TNF-α, for example, has

been implicated in the induction of mo-DC with impaired
ability to secrete pro-inflammatory cytokines, which could
even protect mice from autoimmunity (229). On the other
hand, combinations of TLR agonists synergize to promote
Th1 responses (230). Vopenkova et al. made a direct in vitro
comparison of different maturation stimuli to induce tumor-
specific T cells, showing that the highest response was achieved
with the combination of IFN-γ and LPS (231). However, clinical
effectiveness comparisons of different mo-DC formulations are
still lacking.

Next, mo-DC need to be loaded with tumor antigens. For
this, bulk tumor products or selected tumor antigens have
been used. Tumor associated antigens (TAAs), recognized by
T cells, are found in several tumors (232). Immunodominant
synthetic peptides derived from TAAs have been tested and
were able to induce clinical and immunological responses of the
vaccinated patients (233). Also DNA molecules encoding TAA
genes can be employed to load mo-DC, in which case, viral
vectors, intrinsically able to activate DC (234), bring further
advantage. It is noteworthy that, for all these methods, there
is no need of tumor samples from the patient, which may be
scarce. However, the use of single antigens has its drawback.
Due to the cellular heterogeneity of tumors, they can escape
from the immune response generated by the vaccine, through
the selection of cells that do not express the immunizing
antigens (235). Strategies that involve the induction of a poly-
antigenic response can be used to avoid this resistance, especially
in melanoma, where this effect is frequently observed. Bulk
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tumor products may be used as a broad source of tumor
antigens.

In addition to tumor lysates, living tumor cells, necrotic
debris, apoptotic bodies and tumor-derived exosomes have been
used (236). The type of antigenic source used, however, can
interfere with the type of immune response obtained and it
is impossible, today, to predict which would be the most
appropriate antigenic source. For example, in mice, dendritic
cells loaded with apoptotic tumor cells were show to induce better
responses than tumor lysates, peptides or RNA (237), a finding
that contradicts the many data showing that apoptotic cells
captured by DC constitute a mechanism of immune tolerance
induction.

Although several protocols of vaccination with mo-DC have
been tested in clinical trials, only a few obtained relevant
clinical responses, and most of them failed to reach the expected
results (238). The lack of success in these approaches could be
attributed to the functional alterations found in cancer patients
mo-DC (239). The use of allogeneic mo-DC obtained from
healthy histocompatible donors would be a strategy to bypass
this problem, although limited by the need of a MHC-matched
donor. Another approach is the use of dendritic cell-tumor
cell hybrids. These fused cells express MHC molecules from
both tumor and DC origin, forsaking the need of a MHC-
matched donor to generate the mo-DC (240). They are also
superior than the mixture of these cells, induce antitumor
responses and clinical response in patients with advanced
metastatic tumors (241). Regardless of the strategy, however,
clinical responses to mo-DC-based vaccines are still beyond the
desired. This suggests that it may be not enough to have an
efficient antigen presentation to induce tumor regression, once
it is established. Other compromises between the tumor and the
immune system might still prevent an effective tumor-clearing
immune response requiring the design of new approaches and,
very likely, the combined targeting of different immunological
pathways.

Targeting DC Subsets in vivo
More recently, a new modality of DC-based immunotherapy
strategy is under development. With the better DC subsets
characterization and the identification of specific surface markers
for these subsets, it became possible to design strategies to
deliver different molecules or “packages” to these cells in vivo
(242). This would allow the selective delivery of antigens
and/or immunostimulatory molecules to defined cell subtypes
in vivo, preventing the costly and laborious ex vivo mo-DC
generation.

Among the most studied DC-targeting antibodies are those
specific for DEC205, CLEC9A, and CLEC12A. These C-type
lectin receptors are expressed, in mice, by cDC1 and, the last
two, also by pDC (243). Due to their cross-presentation ability,
targeting to cDC1 seems to be a reasonable choice, which would
favor a higher CD8+ T cell response.

Indeed, experimental settings targeting these molecules were
able to induce T cell responses (244, 245) and regression of
metastaticmelanoma inmice (246). Interesting andwell designed

as this strategymay be, in humans this strategy is still restricted to
in vitro studies (247) and awaits, urgently, translational research.

STRATEGIES TO IMPROVE THE CLINICAL
EFFECTIVENESS OF MO-DC-BASED
THERAPIES

Before specifically addressing the many current pathways for
the improved translation of our knowledge of DC biology
into clinical applications, it is worth mentioning that, though
most of this effort is concentrated into the use of these cells
to induce effector immune responses, it is only a matter of
time till it becomes feasible to delineate DC-based strategies to
treat conditions where the immune system went rogue and is
causing autoimmunity, or where medical interventions require
the limitation of immune responses, like organ transplantations.

That said, let us consider the strategies that may lead to
enhanced immunogenic effects of mo-DC-based treatments.

Approaches for the Improvement of
DC-Based Treatments
Since mo-DC show deviant phenotypes in cancer (192) and
are susceptible to negative modulation by different drugs, for
example STAT5 inhibitors (248), the converse is also true
and various approaches are under development to achieve the
generation of “better” mo-DC.

The chemokine CXCL-4 is a powerful chemoattractant to
monocytes and an important immunoregulator that has been
shown to enhance the expression of MHC, CD86, and CD83
molecules by mo-DC of healthy donors, leading to more efficient
antigen presentation, induction of CD4+ and CD8+ T cells
proliferation and production of IFN-γ (249).

As mentioned before, IL-6 through the activation of STAT3
interferes with proper DC maturation and, indeed, in patients
with colorectal cancer has been associated with poor CD4+ T
cells responses (207). Coherently, a phase-I study in ovarian
cancer patients showed that, combined with chemotherapy, IL-6
blockade was safe and induced a series of positive modifications
in immune parameters of the treated patients, including increases
in IL-12, IL-1β, TNF-α, and IFN-γ secretion (250).

Besides targeting the negative regulators of DC activation,
it is possible to overcome this phenomenon by changing the
activating signals delivered to these cells. Following this line
of research, a cocktail of inflammatory cytokines (TNF-α, IL-
1β, poly I:C, IFN-α, and IFN-γ) has been tested for mo-DC
maturation and was shown to increase their IL-12 production
and their ability to prime melanoma-antigens-specific T cells
in vitro (251). This mo-DC activating cocktail, in a vaccination
study of 22 recurrent glioma patients, was associated with
increases in serum type 1 cytokines and chemokines, tumor-
associated antigens-specific T cell responses and clinical benefit
in 9 patients (252).

Another approach is based on the use of adjuvants to boost
the immune response. Among these, GM-CSF used in vaccines
as GVAX (253) and STINGVAX (254) and, even TLR agonists
(255), may be more effective for cell maturation. Other adjuvants
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could be listed, as for example, aluminum salts (256) (an
inflammasome activator), and montanide (257) (an equivalent
to incomplete Freund’s adjuvant). Those adjuvants may boost
responses due to physical effects upon antigens and cells, but also
enhance DC activation. Nonetheless, the consideration of such
a heterogeneous group of substances is enough to realize that
adjuvant research is a rich field that may broaden the applicability
and enhance the effectiveness of DC-based vaccination (258).

A different pathway to improve the effectiveness of DC-
based therapy focuses on the selection of the immunizing
antigens. In cancer, the mapping of a patient’s set of neoantigens
and use thereof would represent the epitome of personalized
medicine. Though very tempting, this approach would still have
its drawbacks, a significant one being the fact that not all
tumors express immunogenic neoantigens (259), not to mention
the cost that such strategy would impose on any health care
system. Nevertheless, its feasibility and efficacy has already been
demonstrated in an elegant study (260) where personalized
vaccines were prepared for 6 melanoma patients. Whole-exome
sequencing of their tumors allowed the identification of the
mutated antigens from which a set of peptides was selected
and synthesized so that they would be presented in the context
of MHC-I. Four patients presented complete clinical responses
to the vaccine alone and the other two, who had progressive
disease after the vaccination, experienced complete responses
after treatment with anti-PD-1. Curiously, in spite of the selection
of MHC-I selective peptides, both CD4+ and CD8+ antigen-
specific T cells were stimulated, with a predominance of CD4+
T cell responses. This observation illustrates very well how much
“real life” immune responses still differ from our predictions.

Another ingenious strategy bypasses many of the known
hurdles to exploit the immunogenic potential of DC. This
approach aims to deliver RNA-containing nanoparticles
systemically, which due to their lipid composition would
be preferentially captured by DC and, then, release the
RNA encoding the selected antigen(s) to be synthesized and
presented. In a murine model, this approach lead, indeed, to
DC maturation, IFN-α production and strong antigen-specific
immune responses, which were effective in a series of tumor
models (261). Accordingly, this strategy is under investigation
in a clinical trial (NCT02410733) for patients with advanced
melanoma.

Combination Treatments Including mo-DC
Chemotherapy and radiotherapy, together with surgery, still
remain as the main pillars of cancer therapy. Since chemotherapy
in general was formerly considered immunosuppressive, little
attention was given to the fact that this is not always true.
Indeed, some drugs might potentiate the anti-tumor immune
response, by inducing the now recognized “immunogenic cell
death” (262, 263). However, due to the frequently observed
cancer patients’ DC dysfunctions, the simple immunogenic
death may not be enough to disrupt the tumor-favoring status
of the immune response in patients. To achieve that, active
immune interventions may be necessary to take advantage of the
phenomenon. Indeed, a series of studies, both experimental and

in humans, has been addressing this issue with promising results
(264–266).

Radiationmay also favor the induction of anti-tumor immune
responses and, as with chemotherapy, there are plenty of
data indicating a beneficial effect of its combination with
cancer vaccines or other immune-stimulating strategies in
different settings, including hepatocellular carcinoma (267),
prostate cancer (268), lymphoma (269), and glioblastoma (270).
Currently, the potential of such combinations are under scrutiny
in a series of clinical trials for patients with such disparate diseases
as anal (NCT01671488), lung (NCT01579188) and pancreatic
cancer (NCT01072981) (271).

The disparity of the diseases mentioned at the previous
paragraphs is a good indicator of the contrast between
therapeutic strategies directed against the tumor cell and those
targeting the immune system. Those that aim at the tumor
cell will differ significantly from one tumor to the other, since
each tumor has its own set of genetic changes and will respond
differently to a given treatment. On the other hand, strategies
that target the immune system, though still dealing with a very
complex set of interactions, will face, very frequently, standard
responses of the immune system to the perturbations caused by
the presence of the tumor, regardless of the tumor’s set of genetic
mutations.

Actually, the realization of this scenario and the better
understanding of the immune system and its interactions with
tumors opened the way to a very attractive and successful
approach for cancer immunotherapy: instead of targeting directly
the tumor, one could target the immune regulatory mechanisms
that allow a frequently immunogenic tumor to grow in an
otherwise immunocompetent host. With this, the “checkpoint
inhibitors era” started and achieved unprecedented good clinical
results (272), leading to this 2018’s award of the Nobel Prize in
Medicine for James Allison and Tasuku Honjo for their work in
this area.

However, after the initial excitement and even after the
inclusion of other checkpoint inhibitors among the available
armamentarium against cancer, it is necessary to appreciate
that not all patients will respond to this approach, since it
needs an existing response, kept in check and “waiting” to be
released by the treatment. On the other hand, it is quite possible
that the frequently unsatisfactory response to cancer vaccines
is caused by the pre-existence or vaccine-induced activation of
these same regulatory circuits. Hence, a coherent path to achieve
better clinical results would be the combination of both immune
modulating strategies. Indeed, experimental (273) and clinical
data (274) suggest that this may be true. In the aforementioned
clinical study, patients with advanced melanoma were treated
with a combination of MART-1-peptide pulsed-DC and anti-
CTLA-4 and the results indicated that the combination might be,
indeed, more effective than either approach alone. Likewise, also
in the PD-1/PD-L1-PD-L2 pathway (275, 276) the combination
of DC vaccination with checkpoint inhibition may offer, at least
theoretical, advantages.

A different set of combination treatments has been targeting
immune modulatory enzymes. The enzyme indoleamine 2,3-
dioxygenase (IDO) catalyzes the degradation of tryptophan
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contributing to tolerance induction by favoring regulatory T cell
differentiation and reducing DC activity (277). IDO expression
by DC is induced by inflammatory stimuli (278), but also
by CTLA-4 and PD-1 (279). Accordingly, IDO inhibition
has shown positive effects in murine models of pancreatic
cancer (280) and a study combining IDO inhibitors with DC
vaccines for breast cancer patients has completed recruitment
(NCT01042535). Similarly, an inhibitor of BCR-ABL, SRC, c-
KIT, PDGFR, and ephrin tyrosine kinases has shown synergistic
effects with a DC vaccine in a mouse melanoma model (281)
and this combination is the object of ongoing clinical trials in
patients with melanoma (NCT01876212) and metastatic renal
cells carcinoma (NCT02432846 phase II e NCT01582672 phase
III). Arginase-1, an enzyme that regulates cell proliferation and
is constitutively expressed by myeloid-derived suppressor cells
(MDSC) (282) and cyclooxygenase-2 (COX2), are other two
enzyme whose inhibition might have positive interactions with
immunotherapeutic approaches, including those that exploit DC.

CONCLUDING REMARKS

Dendritic cells have a central role in the immune system
homeostasis and are directly involved in defining the patterns
of response the system develops when facing an antigenic
challenge. Their normal function warrants protection against
infections, possibly cancer, but also against autoimmunity

and hypersensitivity reactions. The more is uncovered of the
mechanisms that drive these cells to modulate the response

in one way or another, the more tools will be available to
direct the immune system to desired therapeutic outcomes.
Today, much of the efforts and clinical results are focused into
harnessing these cells to induce effector responses, mainly, but
not only, in cancer. With the advancement of the understanding
of their physiology and regulatory pathways, it is possible
to predict their effective use in such opposing conditions as
cancer and diabetes, with less untoward and more durable
effects.
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