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More than many other fields in medicine, cancer vaccine development has been plagued

by a wide gap between the massive amounts of highly encouraging preclinical data

on one hand, and the disappointing clinical results on the other. It is clear now that

traditional approaches from the infectious diseases’ vaccine field cannot be borrowed

as such to treat cancer. This review highlights some of the strategies developed to

improve vaccine formulations for oncology, including research into more powerful or

“smarter” adjuvants to elicit anti-tumoral cellular immune responses. As an illustration

of the difficulties in translating smart preclinical strategies into real benefit for the cancer

patient, the difficult road of vaccine development in lung cancer is given as example.

Finally, an outline is provided of the combinatorial strategies that leverage the increasing

knowledge on tumor-associated immune suppressive networks. Indeed, combining with

drugs that target the dominant immunosuppressive pathway in a given tumor promises

to unlock the true power of cancer vaccines and potentially offer long-term protection

from disease relapse.
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INTRODUCTION

The aim of a vaccine is to induce an in vivo adaptive immune response against a defined antigen or
set of antigens. This implies leveraging specific functions of professional antigen-presenting cells in
order to trigger T-helper cell responses to support production of antibody production and induce
cytotoxic effector T-cells.

The remarkable clinical responses observed with immune checkpoint inhibitors and CAR-T cell
therapy have put a definitive end to the discussion whether the human immune system, and T-cells
in particular, is capable of controlling or even eradicating cancer. The problem is that vaccination
approaches have largely been successful when it comes to inducing humoral immunity, while no
major breakthrough has been reached in diseases where cellular responses are also required, such
as tuberculosis, HIV, or cancer. For cancer, the bar is raised even higher as vaccines are primarily
developed in a therapeutic setting, i.e., with the aim of controlling clinically evident or, at best,
minimally residual disease.

The purpose of this review is not to give an exhaustive account of all attempts at cancer
vaccination so far, but to provide the reader with the necessary concepts to understand where
the field is going, specifically focusing on strategies to elicit clinically meaningful cellular immune
responses. Finally, this review will give a perspective of potential combinatorial strategies that could
unlock the unique power of vaccines in cancer.
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In order for vaccination to deliver unequivocal clinical benefit
for cancer patients, improvements must be achieved at two levels:
(1) maximizing the induction of a T-cell response with optimal
amplitude, specificity and effector profile, (2) ensuring that
vaccine-induced T-cells can reach the tumor site and perform
their function without any restraint.

The first level involves optimization of the choice of antigenic
target(s), of adjuvant potency, and of delivery system. The main
principles and some representative preclinical examples in this
field will be highlighted in the following section, followed by
clinical data (“reality check”) using lung cancer as an illustrative
case. In a last section we will outline combinatorial strategies that
could herald a revival of cancer vaccines. Molecular formulation
of antigens and specific antigen delivery systems constitute a wide
domain on their own and will not be handled in detail in this
review.

OPTIMIZING ANTIGENIC TARGETS

The antigenic landscape in cancer is far more complex than
that of viral or bacterial pathogens, where adaptive immunity
to well-defined epitopes can drive long term disease protection.
In cancer vaccines, it seems rational to target the broadest
repertoire of antigens possible in order to avoid selection of
escape variants. Approaches that can address this need are
the use of autologous tumor lysates, whole tumor-derived
mRNA, irradiated autologous tumor cells or allogeneic tumor
cell lines (3, 4). All of these pose challenges in terms of
logistics, standardization and compliance to regulatory demands
including Good Manufacturing Practice (GMP) requirements.
Many efforts have been devoted in developing vaccines targeting
one or a restricted set of cancer antigens. These can be either
differentiation antigens (e.g., MelanA, gp100, tyrosinase), cancer-
testis antigens (e.g., MAGE/LAGE/XAGE family, NY-ESO1), or
virus-derived antigens (e.g., HPV or EBV-derived proteins) (5).
On one hand, this is motivated by practical considerations,
including simplicity of vaccine manufacturing and monitoring
of immune responses. On the other hand, it is anticipated
that effective responses to one antigen, through tumor cell
destruction, can lead to an immunogenic release of additional
endogenous antigens and spark a broader immune response, a
phenomenon known as “epitope spreading” (6).

Mutanome-derived epitopes are the most recent addition
to defined tumor antigens for use in cancer vaccines. The
idea originates from the observation that objective responses to
immune checkpoint blockade are proportional to the mutational
burden of a given tumor, a number which is the highest in

Abbreviations: ASC, Apoptosis-Associated Speck-Like Protein Containing

CARD; CCL, CC chemokine ligand; cGAS, Cyclic GMP-AMP synthase; CSF-

1R, Colony-stimulating factor receptor-1; CTLA-4, Cytotoxic T-Lymphocyte

Associated Protein 4; IFN, Interferon; IKK, IκB kinase; IL, Interleukin; IRF3,

Interferon regulatory factor 3; ISCOM, Immune stimulating complexes; LMP-

2, Epstein–Barr virus (EBV) latent membrane protein 2; NFκB, Nuclear Factor

kappa-light-chain-enhancer of activated B cells; TAA, Tumor-associated antigen;

TAP-1, Transporter 1, ATP Binding Cassette Subfamily B Member; TBK1, TANK

Binding Kinase 1; TCR, T-cell receptor; TGF-β, Transforming growth factor beta;

TRAIL, TNF-related apoptosis-inducing ligand.

carcinogen-induced cancers (7). This is why the top targets for
immune checkpoint inhibition are melanoma, lung cancer and
bladder cancer, along with tumors with DNA mismatch repair
defects (8). It is now thought that among the total bulk of
non-synonymous mutations, a subset that is clonally distributed
within the tumor gives rise to mutation-containing peptides
(neo-epitopes) that can be recognized by cytotoxic T-cells (9). In
addition to single-nucleotide variants, indels have been shown
to be strongly predictive of response to immune checkpoint
inhibition as well (10). Complex bioinformatic pipelines have
been developed to extract a list of candidate immunogenic
neo-epitope for a given patient’s cancer. This requires deep
genomic sequencing of a tumor sample to list all single nucleotide
variations (SNVs) and indels. In parallel, RNA sequencing on the
samematerial allows to narrow down on the genomic aberrations
that are effectively expressed. Next, in silico algorithms are called
into action to predict which of the mutations will be presented to
T-cells based on proteasome processing and binding affinity for
human leucocyte antigen (HLA) molecules. The resulting coding
sequences can be synthesized either as peptides as synthetic
mRNA. This methodology has been validated in preclinical
experiments, showing that vaccination with mutanome-derived
neo-antigens can induce protective and therapeutic immune
response to autologous tumors (11). Today, this ambitious
approach, entirely patient-individualized has entered clinical
development with recent phase 1 data demonstrating the
feasibility, safety and immunogenicity of neo-antigen-targeted
vaccine in metastatic melanoma (12). Notwithstanding the
sophistication of this approach, two concerns can be brought
forward: (1) several algorithms exist for the prediction of neo-
epitopes, and the list of candidate antigens produced for a given
tumor can be influenced by the bioinformatic pipeline used,
(2) the whole process from next-generation sequencing until
manufacturing and release of a GMP-compliant mutanome-
derived mRNA vaccine currently takes around 100 days (12),
implying that only patients with maximally debulked or relatively
indolent tumors are optimally eligible.

THE (VERY CROWDED) ROAD TOWARD
OPTIMAL CANCER VACCINE ADJUVANTS

The benefit of adjuvants are best described by the operational
definition of Gaston Ramon, better known as the father of the
diphtheria vaccine (13): “substances used in combination with a
specific antigen that produce more immunity than the antigen
alone.” Finding adjuvant formulations that can unlock clinically
relevant immune responses against cancer antigens has remained
a challenging task: for one, cancer antigens are often poorly
immunogenic due to partial homology with self-antigens; on top
of that, the optimal cancer vaccine adjuvant must succeed in
driving a type 1-polarized, cell-mediated immunity rather than
a type 2-polarized and/or humoral response.

Adjuvants can be subdivided in two major classes: (1)
immunostimulatory molecules that trigger innate immune
receptors, and (2) particulate adjuvants which mainly act either
as antigen depots or as delivery systems. Immunostimulatory
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adjuvants mostly consist of molecules that mimic pathogen-
associated molecular patterns and engage Toll-like receptors
(TLRs) on antigen presenting cells (APCs) including B-cells,
macrophages and most importantly dendritic cells (DCs).
In the case of DCs this results in a complex and highly
coordinated cellular response aimed at sparking adaptive
immunity: (1) switch from antigen uptake mode to antigen
processing and presentation, upregulation of a whole array
of T-cell costimulatory molecules, upregulation of chemokine
receptors mediating migration into T-cell areas of draining
lymphoid tissues, and release of specific cytokines and
chemokines to polarize the resulting T-cell response. Due
to their immunostimulatory power and the capacity to prime
naïve T-cells, properly activated DCs are also referred to as
“nature’s adjuvants.” The use of ex vivo-generated and antigen-
loaded DCs as cellular vaccines will be reviewed in a different
article of this Special Edition. The following paragraphs provide
a non-exhaustive overview of some of the most notable acellular
adjuvant systems optimized for use in cancer vaccines.

Immunostimulatory Adjuvants: TLR
Ligands and Beyond
Among immunostimulatory adjuvants, TLR4 ligands constitute
some of the most potent members in terms of APC activation.
Lipopolysaccharide (LPS), the prototype TLR4-ligand, cannot
be used as such in clinical formulations due to toxicity issues.
MPL (3-O-desacyl-4′-monophosphoryl lipid A) is a chemically
detoxified form of LPS derived from strain R595 of Salmonella
minnesota, while still retaining immunostimulatory properties
(14). It is the only defined TLR ligand approved as part of a
vaccine in humans to this day and is a key ingredient of the
AS04 adjuvant formulation used in the commercially available
HPV and HBV vaccines. However, what makes MPL especially
attractive with respect to anti-cancer vaccination is its capacity
to induce robust Th1-polarized and cell-mediated immunity.
MPL is also an ingredient of the DETOX adjuvant system,
when combined with cell wall peptidoglycans fromMycobacteria
(15). DETOX is the adjuvant used in the Melacine R© vaccine
formulation, which incorporates lysate from two allogeneic
melanoma cell lines and has shown some modest clinical
benefit in resected stage III melanoma patients (16). Likewise,
CG-enriched oligodeoxynucleotides (CpG), by triggering the
intracellular TLR9, have also been described as powerful inducers
of Th1 and cytolytic T-cell responses. These properties have led
the incorporation of MPL together with CpG as part of the
proprietary adjuvant formula AS15 in the MAGE-A3-targeted
cancer vaccine developed by GSK Biologicals (17). Because of
biosynthetic variability in the structure of bacterial-derived LPS
and downstream hydrolytic steps, MPL is a heterogenous mix of
closely related structures (“congeners”). Hence, synthetic TLR4
agonists have been designed, i.e., aminoalkyl glucosaminide 4-
phosphates (AGPs) such as glucopyranosyl lipid A and RC-
529 (18). The latter has shown its capacity to induce Th1
responses equivalent to MPL, and still with much lesser in vivo
toxicity than LPS (19). Several other extra- and intracellular
TLR-ligands have been the subject of intensive research efforts

[reviewed in (20)], and all have shown value to varying degrees in
diverse preclinical tumor models. Although somemolecules such
as the TLR7/8 agonist imiquimod or the TLR2/4-stimulating
preparation Bacille-Calmette-Guérin (BCG) are used routinely
in the clinic as standalone therapies, no TLR agonist has so far
successfully entered standard of care as an ingredient of a cancer
vaccine.

It should be noted that triggering TLR signaling also
activates homeostatic counterregulatory mechanisms. These
include release of IL-10 by myeloid cells, induction of regulatory
T-cells (Tr1), and upregulation of the T-cell checkpoint molecule
programmed death ligand-1 (PD-L1) on APCs: all of which
contribute to the further induction of T-regs and the dampening
of anti-tumor cellular immune responses [reviewed in (21)]. The
TLR ligands Pam2Cys (TLR2), LPS (TLR4), imiquimod (TLR7)
and CpG (TLR9) all induce IL-10 production, and blockade of IL-
10/IL10R axis in these settings augments immune responses (17,
18) Similarly, the TLR3-ligand poly I:C induces PD-L1 on DCs,
while PD-L1 blockade boosts effector CD8+ T-cell expansion
after a tumor vaccine involving poly I:C as adjuvant (22). Another
counterregulatory mechanism after TLR stimulation is the
upregulation of indoleamine 2,3-dioxigenase expression in DCs,
a side-effect observed with CpG oligodeoxynucleotides (23).
IDO is a well-described mediator of immunological tolerance:
by depleting tryptophan and generating toxic catabolites, IDO
enzymatic activity suppresses T-cell activation and promotes T-
reg induction in the tumor micro-environment (discussed in
more detail below).

A different class of immunostimulatory adjuvants does not
belong to bacterial or viral pathogen-associated molecules but
consists of extracts from plant origin. Saponins derived from the
bark of the South American soapbark tree (Quillaja saponaria)
contain a family of water-soluble, structurally diverse molecules
with strongly pro-inflammatory properties. QS21 is one of the
RP-HPLC fractions of Q. saponaria extracts that has been used
the most in vaccine development (24). The triterpene aldehyde
group is considered as the adjuvant active site, resulting in
preclinical models in a strong mixed T-helper 1 (Th1), CD8 T-
cell and humoral response. QS21 was shown to primarily activate
the ASC/NALP3 inflammasome pathway, which converts pro-IL-
1β and pro-IL-18 into their bioactive forms (25). This provides
the rationale to combine with a TLR4 ligand in order to induce
upstream expression of the pro-forms. Still, it appears that the
magnitude and quality of the resulting immune response is not
proportional to the degree of inflammasome activation, and high
doses of QS21 can cause cell membrane lysis and apoptosis of
APCs (25). QS21 has been tested extensively in therapeutic cancer
vaccine formulations involving ganglioside antigens (GD2, GD3,
or GM2) (24). Although robust and humoral responses were
invariably observed, there was no convincing evidence of cell-
mediated immunity in humans. QS21 is also combined withMPL
as part of the AS01 and AS15 adjuvant formulation (GSK), as
evaluated in the MAGE-A3 cancer vaccines (discussed below).

STING agonists are a recent addition to the arsenal of
candidate vaccine adjuvants. STING (STimulator of INterferon
Genes) is a transmembrane protein located in the endoplasmic
reticulum that belongs to the family of nucleic acid sensors
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(26). STING activation triggers robust type 1 IFN responses in
a TBK1-IRF3-dependent way as well as IKK/NFkB-dependent
upregulation of inflammatory cytokines and chemokines. STING
can be activated in two ways. The presence of cytosolic double-
stranded DNA (e.g., originating from invading DNA viruses or
self-DNA from stressed/damaged cells) is first detected by the
cGASmolecule which generates cyclic 2′3′-GMP-AMP (cGAMP)
from ATP and GTP. As a second messenger, 2′3′-cGAMP then
goes on to bind and activate STING, triggering both IRF3-
and NFkB-dependent immune/inflammatory gene expression.
cGAS expression is by itself inducible by type I interferon,
which provides a positive feedback mechanism when relevant
ligands persist. Alternatively, STING can be directly triggered by
bacterial cyclic dinucleotides such as c-di-GMP. In preclinical
models, high doses of c-di-GMP injected intratumorally can
directly induce caspase 3-dependent apoptosis of tumor cells and
release of tumor-associated antigens, while lower exposure to
c-di-GMP can lead to activation of DCs and promote CD8+
T-cell responses against those antigens (27). Other preclinical
studies have demonstrated the value of STING agonists in the
setting of therapeutic cancer vaccination (28). Caution must be
paid however as among immune cells, STING expression is the
highest in T lymphocytes. STING activation has been shown
to lead to T-cell apoptosis, a phenomenon that appeared cell-
specific as macrophages and DCs did not display such sensitivity
(29). Hence, implementation of STING agonists in cancer
vaccines should ideally be combined with adjuvant/antigen
delivery systems that specifically target myeloid cells in vivo,
as already reported (30). A potential bonus with this type
of approach is that STING agonists can reprogram myeloid-
derived suppressor cells toward a DC-like immune-stimulating
phenotype expressing IL-12 and T-cell costimulatory molecules
(27). Another difficulty in translating preclinical data to clinical
development strategies is the fact that STING agonists can have
differential binding properties in murine vs. human cells. The
flavonoid compound DMXAA for instance can bind mouse
STING and induced anti-tumor immunity, but fails to activate
human STING (31). Still, based on its unique properties, the
STING pathway has become a “hot” candidate in the pipeline
of several biotech and larger pharmaceutical companies (IFM
Therapeutics, Selvita, iTeos, MSD). To date few compounds
have reached the stage of early clinical development: ADU-S100
(Novartis) and MK-1454 (MSD). Due to systemic toxicity, both
require accessible lesions for intratumoral injection, and both are
(quite rationally) combined with systemic administration of an
immune checkpoint inhibitor (NCT03172936, NCT03010176).

Next to pathogen-derived molecules, specific host proteins
have been shown to perform adjuvant-like functions as well.
Immunostimulatory cytokines such as IL-2, IFN-γ, IL-12 and
granulocyte-macrophage colony stimulating factor (GM-CSF)
represent an obvious choice as an ingredient for a vaccine.
By far the most used in clinical trials is GM-CSF. Based on
preclinical studies, GM-CSF helps in the recruitment of dendritic
cells to the vaccine injection site, promotes DC maturation and
antigen-presentation, resulting in enhanced adaptive immune
responses (32). GM-CSF is also the essential ingredient for the
ex vivo generation of monocyte-derived DCs for vaccination

purposes, as discussed elsewhere in this edition. GM-CSF has
been incorporated in vaccine formulations either as a standalone
adjuvant, or in the shape of allogeneic tumor cell lines engineered
for stable expression of GM-CSF (GVAX R©) (32). A concern
still persists as to the optimal dosage of GM-CSF however, with
preclinical studies indicating the potential of this cytokine to
expand MDSCs, with paradoxical suppression of T-cell mediated
anti-tumor responses in vivo as a consequence (33). This effect
on MDSCs was also observed in clinical trials, where a low-
dose GM-CSF added to a cancer vaccine caused a systemic
expansion of an immunosuppressive CD14-positive HLA-DR-
low/-negative myeloid cell subset. In an another controlled
clinical trial, includingGM-CSF as part of an incomplete Freund’s
adjuvant formula resulted in significantly lower T-cell responses
to vaccine antigens compared to adjuvant without GM-CSF (34).
Still, a surprisingly large number of trials using GM-CSF as an
adjuvant component are active (listed in Supplementary Table);
their results will need to be interpreted with caution.

A different class of endogenous proteins with immunogenic
activity are heat-shock proteins (HSPs). HSPs are chaperones
that are released from stressed or dying (cancer) cells, with the
unique property of binding cell-derived peptides (35). These
peptides can be delivered to DCs resulting in cross-presentation
and induction of efficient CD8+ T-cell-mediated immunity (36).
The transfer of peptides from HSPs to the APC’s MHC class I
molecules is not passive but requires uptake by the HSP receptor
CD91 expressed by the APC and internal processing. The
repertoire of peptides bound by the HSPs reflects the antigenic
make-up of the cell of origin, a property which can be leveraged to
induce a broad T-cell-mediated protective immunity. In addition,
HSP carrier molecules by themselves act as innate immune
stimuli, triggering essential events in APCs including release of
TNF-α, IL-1β, IL-12, GM-CSF, inflammatory chemokines, and
upregulation of costimulatorymolecules (37). This effect could be
due to binding of HSPs to TLR4, which reinforces the notion that
HSPs constitute bona fide endogenous adjuvants. Immunization
with tumor cell-derived HSPs such as HSP70 and GP96
has demonstrated impressive protective immunity in several
preclinical studies [reviewed in (38)]. This has led to the clinical
development of autologous HSP96-based vaccines formulation
(e.g., vitespen / Oncophage R©). Clinical trials have shown that
this therapy is feasible and non-toxic, although clinical benefit
was low except maybe in subset analyses including early-stage
renal cell cancer (RCC) and a trend toward benefit in M1a/M1b
melanoma patients (39, 40). With these results, vitespen failed to
obtain approval from the European Medicines Agency (EMA).
Also, one major limitation for further development of HSP-
based vaccines is the manufacturing process itself which requires
access to sufficient amounts of autologous tumor material. Still, a
number of combination clinical trials implementing HSP-based
vaccines are ongoing (Supplementary Table).

Particulate Matter Adjuvants
The most widely used particulate adjuvants historically have
been aluminum salts, mostly in the shape of aluminum
hydroxide (“alum”). Alum triggers innate immune responses
in a TLR-independent way but rather stimulates the NALP3
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inflammasome. Being very potent in inducing pure T-helper
2 (Th2) and antibody responses, alum salts are by themselves
unfit for use in cancer vaccines. However, when associated with
type-1 polarizing ingredients such as ISA 51 (Montanide, see
below) and recombinant IL-12, alum was shown to enable a
more sustained immune response to tumor-associated antigens
probably due to a depot / slow release effect (41). Likewise,
combining alum with MPL (GSK’s AS04 adjuvant formula)
enables a more sustained type-1 polarized cytokine response (42).
Other particulate adjuvants have been tailored to better respond
to the demands of a cancer vaccine (43). The oldest prototype,
Freunds adjuvant, is a water-in-oil emulsion containing heat-
killed Mycobacteria. Although being very immunogenic in
preclinical models, it is much too toxic for human use. A less toxic
formulation that incorporates squalene and oleate, Montanide

ISA-51 (“Incomplete Freunds Adjuvant”) has been used in
many therapeutic cancer vaccines. This includes a pivotal trial
using the melanoma TAA gp100 as target, in which the clinical
activity of ipilimumab alone or in combination with a vaccine
vs. vaccine alone was assessed in metastatic melanoma patients
(44). Despite induction of robust antibody and CTL responses
and signals of clinical benefit in small patient cohorts, none of
theMontanide-adjuvanted cancer vaccines has reached advanced
clinical development in oncology so far. Adjuvants based on oil-
in-water emulsions have been subsequently developed and show
a superior safety profile, excellent depot properties, but produce
strongly Th2-biased and humoral immune responses (15).

It has been observed by many research groups that a
key to induce cellular immunity is the capacity to exploit
the cross-presentation capacity of dendritic cells. An efficient
way to achieve this goal is by packaging antigens in non-
soluble particles, such as virosomes, liposomes, ISCOMs, and
microspheres (45). Virosomes and virus-like particles (VLP)
are 20–100 nm size and consist of the membrane envelop of a
virus (including embedded proteins) but devoid of a replication-
competent genome. Nevertheless, VLPs can efficiently fuse with
the membrane of the target cell (ideally an APC), simultaneously
delivering an antigenic cargo and any PAMP that can be
incorporated in the design. A successful VLP-based vaccine is
Gardasil R©, which contains capsid proteins of HPV serotypes 6,
11, 16, and 18. The vaccine uses aluminum hydroxide phosphate
sulfate as adjuvant and is hence a potent inducer of long-lasting
and very protective humoral immune responses.

Considerable experience has also been gathered with
ISCOMs, which are 40 nm micellar structures in which a
saponin adjuvant (QS21) and protein antigen is incorporated.
ISCOMATRIX consists of just the micellar components and
adjuvant, with the flexibility of adding an antigen of choice.
ISCOMs differ from liposomes as the latter contain an internal
aqueous space confined by a lipid bilayer. As a consequence of
the built-in saponin, ISCOMs exert their adjuvant activity by
activating the NALP3 inflammasome, while delivering antigenic
cargo to dendritic cells to cross-prime CD8+ T-cells (46). In vivo,
tumor antigen-specific cellular and humoral immune responses
were observed after vaccination with NY-ESO1-containing
ISCOMs (47). Further intensive research efforts are being
devoted to engineer novel synthetic particles with the aims

of maximizing vaccine potency while specifically targeting
cross-presenting APCs. The wide spectrum of physico-chemical
parameters that can be varied in the manufacturing such
next-generation nanoparticles offers great flexibility in terms
of targeting and immunostimulatory properties (see (48) for a
comprehensive overview).

OPTIMIZING CANCER VACCINE
FORMULATIONS: A REALITY CHECK

The solid preclinical rationale upon which several types of
vaccine designs are based stands in sharp contrast to the
sobering clinical results observed. Here, we summarize vaccine
development in non-small cell lung cancer (NSCLC) as a good
example of the limited clinical benefit of cancer vaccines as
monotherapy. Many of the strategies described in the previous
section have been tested clinically in lung cancer, be it protein-,
liposome-, VLP-based or genetically engineered whole cell
vaccine platforms.

One of the largest clinical trials ever undertaken in NSCLC
was a randomized, double-blind, placebo-controlled phase 3
study using GSK Biological’s recombinant MAGE-A3 vaccine
(49). The formulation contains full-length recombinant MAGE-
A3 protein, a cancer-testis antigen expressed in about 40%
of NSCLC patients, combined with the AS15 adjuvant system
described earlier. Despite the cancer-specificity of MAGE-
A3, notwithstanding the strong type-1 polarizing activity of
the AS15 adjuvant formulation and promising phase 2 trial
data, the phase 3 trial showed no benefit at all in terms of
overall and disease-free survival in early-stage NSCLC patients
vaccinated after surgical resection (49). Moreover, an “immune-
activated” predictive gene expression signature identified in
the melanoma MAGE-A3 vaccine trials failed to identify a
MAGE-A3+ NSCLC patient subset who might benefit from
vaccination. The vaccine produced strong and long-lasting
antibody responses, in line with early clinical data (50), but
no convincing evidence for the induction of cytotoxic T-cell
responses was provided in this trial. In part due to these
results, development of a similar vaccine targeting the cancer-
testis antigen PRAME in NSCLC was stopped prematurely
(51).

L-BLP25 (Stimuvax R©) is a liposomal formulation
incorporating as antigen a synthetic lipopeptide coding for
25 amino acids of the Muc-1 protein (tecemotide), and MPL
as adjuvant. Muc-1 is a glycoprotein that is overexpressed and
typically aberrantly glycosylated in a several adenocarcinomas,
among which a large subset of NSCLC. L-BLP25 failed to
demonstrate a benefit in overall survival in the intention to
treat population in a phase III trial involving locoregionally
advanced NSCLC patients after chemo-radiotherapy (START
trial, NCT00409188) (52). However, a major increase in median
OS was observed in the subgroup of patients who received
concurrent rather than sequential chemoradiotherapy. These
results were meant to be verified in a follow-up phase 3 trial
(START2, NCT02049151), however based on negative results of a
trial in Asian NSCLC patients (INSPIRE, NCT01015443) (53) the
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sponsor decided to stop development of L-BLP25 (“Stimuvax”)
in all indications.

TG4010 is another Muc-1-targeting vaccine evaluated in
NSCLC. It consists of a replication-deficient viral vector,
modified vaccinia Ankara (MVA), expressing both Muc-1 as well
as IL-2 to support T-cell proliferation. In preclinical models,
MVA induces expression of the incorporated antigen sequence
in target tissues at equivalent levels compared to replication-
competent virus, albeit with a faster kinetic (54). MVA can
trigger type-1 IFN production in a TLR-independent fashion.
This, combined with the induction of not only humoral but
also of type-1-polarized cellular immune response makes MVA
theoretically an attractive tool for cancer vaccination purposes.
A first trial in advanced NSCLC gave indication of benefit
when combined with 1st line chemotherapy, vs. chemotherapy
+ placebo (55). This prompted a confirmatory phase 2b/3 trial
that included a candidate predictive biomarker (the percentage
of activated NK-cells in peripheral blood). Results of the phase
2b part showed a significant increase in progression-free survival
(PFS; primary endpoint) that was most pronounced in non-
squamous NSCLC (where Muc-1 expression is expected to be the
highest) and with biomarker value in the lower 3 quartiles (56).
Results of the phase 3 part are still pending.

As a final example, in an attempt to target a broad
repertoire of antigens, a vaccine was designed containing
four irradiated NSCLC allogeneic cell lines (belagenpumatucel-
L, Lucanix R©). In addition, the cell lines where genetically
engineered to express an antisense gene vector that inhibits
TGF-β2 expression. TGF-β2, along with IL-10, is a prototypical
mediator of tumor-induced immune suppression and T-reg
induction, and introduction of TGF-β2 antisense plasmid was
shown to increase vaccine immunogenicity in preclinical studies
(57). It must be stressed though that while the production
of TGF-β2 by the vaccine cells themselves is suppressed, this
does not affect the levels of this suppressive cytokine emanating
from the tumor microenvironment. Belagenpumatucel-L has
been evaluated as consolidation therapy in locally advanced
and metastatic NSCLC patients that had not progressed on
their last line of chemotherapy. Data from a phase 2 trial
appeared promising with a clear dose-dependent increase in
overall survival (58). However, in a follow-up phase 3 study,
no benefit in OS was observed except in a subgroup of patients
that had received radiation and chemotherapy <6 months prior
to randomization (59). Patient numbers in this subgroup were
very small though and to this day it remains unsure whether this
analysis will prompt a confirmatory phase 3 study focusing on
this subpopulation.

The impossibility or at best difficulty to demonstrate
unequivocal clinical benefit in these vaccination trials raises
many questions. When it comes to cancer immunotherapy,
the avalanche of robust and positive data coming from the
immune checkpoint inhibitor field represents today’s benchmark.
Patient outcomes after vaccination highlight the difficulty
of inducing productive cytolytic responses against cancer in
humans. It is clear that a careful choice of antigenic target,
adjuvant formula and delivery platform are not sufficient to
elicit therapeutic or protective immunity against cancer. This

warrants more attention to the tumor-associated tolerogenic or
immunosuppressed climate that reigns in the cancer patient.

UNLEASHING IMMUNE EFFECTOR
MECHANISMS DOWNSTREAM OF
VACCINE ACTION

The immune response against cancer cells is a series of critical
steps, also described as the “cancer immunity cycle” (60). As
a consequence, the strength of the response at the end of this
chain of events will be determined by its weakest link (see
Figure 1). Each of the obstacles to successful antitumor immune
responses have been studied in detail and offers opportunity for
therapeutic modulation. Clinical trials exploring combinatorial
strategies are summarized in Table 1. The underlying principles
will be discussed below.

Improving Effector T-Cell Access Into the
Tumor
Following successful expansion and adequate polarization of
tumor-antigen specific T-cells, the latter acquire the capacity of
exiting the lymph node and recirculate through the bloodstream
to scan for antigens in peripheral tissues. Unfortunately,
penetration of effector lymphocytes into tumoral beds is
hampered in many ways. Tumor-induced angiogenesis results
in a network of aberrant blood vessels in which proper
adhesion and extravasation of cytolytic T-cells is impaired. The
endothelium of tumoral vasculature is known to be poor in
leukocyte adhesion molecules such as intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1). Overactivity of the endothelin-endothelin receptor
axis on tumoral endothelia further limits T-cell extravasation
by decreasing ICAM-1 expression while further boosting the
production of angiogenetic factors such as vascular-endothelial
growth factor (VEGF) (61). Similar to physiological immune-
privileged organs, the endothelium of tumoral vessels also
overexpresses T-cell checkpoint ligands including PD-L1, death
receptors such as FasL and TRAIL, and IDO. All of these
factors do not seem to hamper the recruitment of T-regs, and
together contribute in shielding tumor cells from immune attack.
Hence, the clinical benefit obtained with commonly used anti-
angiogenic compounds such as the VEGF blocker bevacizumab
potentially relies on boosting immune infiltration into tumors
(62). Also, inhibition of endothelin receptor signaling has been
shown to restore endothelial ICAM-1 expression, increase T-cell
infiltration and importantly, act synergistically together with
a cancer vaccine (63). Regardless of its prototypical role in
angiogenesis, VEGF is also known as a cytokine that suppresses
T-cell function and DC activation. Hence VEGF-targeted anti-
angiogenic therapy can also exert positive immunomodulatory
effects in a cancer immunotherapy setting (64–66).

Fighting Suppressive Immune Cells in the
Tumor Microenvironment
A next obstacle for vaccine elicited T-cells is the influence
of several immune suppressive leukocytes that populate
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FIGURE 1 | The multiple obstacles to effective anti-tumor immune responses following successful priming of tumor antigen-specific T-cells by a vaccine. Each
obstacle offers opportunities for therapeutic intervention in order to increase vaccine efficacy, as discussed in more detail in the main text.

the tumor micro-environment, foremost regulatory T-cells

(T-regs) and myeloid-derived suppressor cells (MDSCs).
T-regs are known to be preferentially recruited into tumors
and inhibit the functions of antitumoral T-cells by producing
immunosuppressive mediators such as interleukin-10 (IL-10),
transforming growth factor-beta (TGF-β) and adenosine or by
consuming interleukin-2 (IL-2) which is critical for cytolytic
T-lymphocyte (CTL) proliferation. In a clinical trial involving
a NY-ESO1-ISCOMATRIX vaccine in melanoma, absence of
clinical efficacy and cellular immune responses was correlated
to increased T-reg activity in metastatic compared to early
stage patients (67). Preclinical exploration of this phenomenon
in a mouse model of pancreatic cancer showed that impaired
responses to ISCOM vaccine can be restored by anti-CD25
mAb-mediated depletion of T-regs, or interestingly by adding
low-dose CpG-ODN to the ISCOM formulation (68). Numerous
other preclinical studies have shown that therapeutic vaccine
efficacy can be boosted by depleting T-regs in vivo (69).
However, selectively eliminating T-regs in a clinical setting is
not a straightforward task. As an example the alkylating agent
cyclophosphamide can decrease the number of T-regs in cancer
patients (70), however this effect is not easily reproducible
and is only achieved within a narrow dose range (“metronomic
scheduling”). The development of new clinical-grade compounds
that can specifically interfere with the suppressive function of
T-regs enables interesting combinatorial approaches with
vaccines. T-regs typically express high levels of CTLA-4, and
the anti-CTLA4 checkpoint inhibitor ipilimumab, being an
IgG1-class antibody, can mediate Fc-dependent depletion
of these cells in the tumor micro-environment (TME) (71).
Glucocorticoid-induced tumor necrosis factor (TNF) receptor
related gene (GITR) is another receptor that is highly expressed
on T-regs. Engaging GITR with an agonist has the capacity to
shut down the immunosuppressive functions of T-regs, while
also stimulating CD8+ T-cell function (72). GITR agonists are

currently in clinical development as an add-on to anti-PD-1
checkpoint blockade. Preclinical experiments also indicate a
clear synergism between GITR agonists and therapeutic cancer
vaccines (73, 74), yet to date no clinical trials are investigating
this avenue in cancer patients.

MDSCs constitute another potential obstacle to vaccine
success. This heterogenous population of immature monocytic
and granulocytic leukocytes are released from the bone marrow
in advanced cancer patients and can severely disrupt CD8+ T-
cell function through several mechanisms. For instance, MDSCs
produce high levels of nitrogen monoxyde (NO) and reactive
oxygen species (ROS), combining to form nitrosamines that
impair TCR function (75). MDSCs also typically overexpress
arginase 1 which depletes arginine in the TME, thereby depriving
effector T-cells with an essential “fuel” for proliferation (76).
Tumor-associated macrophages are myeloid cells which share
several T-cell suppressive properties with MDSCs. Tumor-
associated macrophages (TAMs) release TGF-β, IL-10, pro-
fibrogenic, and pro-angiogenetic factors (77).

Several classes of compounds can be “repurposed” to achieve
a reduction of MDSCs both systemically and intratumorally,
and/or interfere with these cell’s suppressive capacity (78). In
many cases this results in enhancement of T-cell responses in a
therapeutic cancer vaccine setting. This is true for myeloablative
chemotherapeutics such as platinum salts, taxanes, and anti-
metabolites (gemcitabine, 5-FU) (79–81), which are known to
decrease systemic MDSC numbers in metastatic cancer patients.
In preclinical vaccination models, this has been shown to
translate into a boosted in T-cell response to vaccination (82,
83). Alternative strategies to target suppressive myeloid cells
include administration of all-trans retinoic acids, triterpenoids,
phosphodiesterase inhibitors (e.g., sildenafil), tyrosine kinase
inhibitors (e.g., sunitinib), amino-bisphosphonates, recombinant
IL-12 and anti-IL-6R monoclonal antibodies (84–89). Anti-
CSF-1R and anti-CCL2 can both reduce the recruitment of
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TABLE 1 | Current clinical trial landscape exploring combinatorial approaches to improve therapeutic cancer vaccine efficacy.

Clinical trial I.D. Study title Interventions Phase

(A) Cancer Vaccine + Angiogenesis-Targeting

NCT03050814 Standard of Care Alone or in Combination With Ad-CEA
Vaccine and Avelumab in People With Previously
Untreated Metastatic Colorectal Cancer QUILT-2.004

Drug: Avelumab|Biological: Ad-CEA vaccine|Drug:
Bevacizumab|Drug: 5-FU|Drug: Leucovorin|Drug:
Oxaliplatin|Drug: Capecitabine

Phase 2

NCT02754362 A Toll-like Receptor Agonist as an Adjuvant to Tumor
Associated Antigens (TAA) Mixed With Montanide ISA-51
VG With Bevacizumab for Patients With Recurrent
Glioblastoma

Drug: Bevacizumab|Biological: Peptide Vaccine|Drug:
Poly-ICLC as immune adjuvant|Drug: Keyhole limpet
hemocyanin (KLH)

Phase 2

NCT02432846 Intratumoral Vaccination With Intuvax Pre-nephrectomy
Followed by Sunitinib Post-nephrectomy vs. Sunitinib
Post-nephrectomy in Newly Diagnosed Metastatic Renal
Cell Carcinoma (mRCC)

Biological: Intuvax (ilixadencel)|Drug: Sunitinib Phase 2

NCT02010606 Phase I Study of a Dendritic Cell Vaccine for Patients
With Either Newly Diagnosed or Recurrent Glioblastoma

Biological: Dendritic cell vaccination, in addition to
standard temozolomide chemotherapy and involved field
radiation therapy|Biological: Dendritic cell vaccination,
with optional bevacizumab treatment for patients
previously treated with bevacizumab

Phase 1

NCT01814813 Vaccine Therapy With Bevacizumab vs. Bevacizumab
Alone in Treating Patients With Recurrent Glioblastoma
Multiforme That Can Be Removed by Surgery

Biological: HSPPC-96|Drug: bevacizumab Phase 2

NCT01551745 Salvage Ovarian FANG Vaccine + Bevacizumab Biological: Vigil,Ñc Vaccine|Drug: Bevacizumab Phase 2

NCT01312376 Autologous T-Cells Combined With Autologous OC-DC
Vaccine in Ovarian Cancer

Biological: OC-DC vaccine|Drug: Bevacizumab|Drug:
cyclophosphamide 300 mg/m2/d for 3 days|Drug:
fludarabine 30 mg/m2/d for 3 days|Drug: ex vivo
CD3/CD28-costimulated vaccine-primed peripheral
blood autologous T cells

Phase 1

NCT01223235 Polyvalent Vaccine-KLH Conjugate + Opt-821 Given in
Combination With Bevacizumab

Biological: bevacizumab and the polyvalent vaccine-KLH
conjugate + OPT-821

N/A

NCT00913913 Bevacizumab, Autologous Tumor/DC Vaccine, IL-2 and
IFNŒ±-2b in Metastatic Renal Cell Carcinoma (RCC)
Patients

Biological: DC vaccine|Drug: Bevacizumab|Biological:
IL-2|Biological: IFN

Phase 2

NCT00874588 Peptide Vaccine Targeting to Cancer Specific Antigen
Combined With Anti-angiogenic Peptide Antigen in
Treating Patients With Non-small Cell Lung Cancer

Biological: HLA-A*2402restricted URLC10, CDCA1,
VEGFR1, and VEGFR2

Phase 1

NCT00828009 BLP25 Liposome Vaccine and Bevacizumab After
Chemotherapy and Radiation Therapy in Treating
Patients With Newly Diagnosed Stage IIIA or Stage IIIB
Non-Small Cell Lung Cancer That Cannot Be Removed
by Surgery

Biological: bevacizumab|Biological: emepepimut-S|Drug:
carboplatin|Drug: cyclophosphamide|Drug:
paclitaxel|Radiation: radiation therapy

Phase 2

(B) Cancer Vaccine + TAM/MDSC-Targeting

NCT02544880 PDE5 Inhibition Via Tadalafil to Enhance Anti-Tumor
Mucin 1 (MUC1) Vaccine Efficacy in Patients With
HNSCC

Drug: Tadalafil|Biological: Anti-MUC1 Vaccine|Biological:
Anti-Influenza Vaccine|Other: Tadalafil Placebo|Other:
Vaccine Placebo|Procedure: Peripheral Blood
Collection|Procedure: DTH Skin Test|Procedure: Tumor
specimen collection

Phase
1/2

NCT02479230 Type I-Polarized Autologous Dendritic Cell Vaccine With
Tumor Blood Vessel Antigen-Derived Peptides in
Metastatic Breast Cancer Patients

Biological: tumor blood vessel antigen peptide-pulsed
alpha-type-1 polarized dendritic cell vaccine|Drug:
gemcitabine hydrochloride

Phase 1

NCT02432378 Intensive Locoregional Chemoimmunotherapy for
Recurrent Ovarian Cancer Plus Intranodal DC Vaccines

Biological: Cisplatin + celecoxib + DC
vaccine|Biological: Cisplatin + CKM + Celecoxib + DC
Vaccine

Phase
1/2

NCT02275039 p53MVA Vaccine and Gemcitabine Hydrochloride in
Treating Patients With Recurrent Ovarian Epithelial
Cancer

Biological: modified vaccinia virus ankara vaccine
expressing p53|Drug: gemcitabine hydrochloride|Other:
laboratory biomarker analysis

Phase 1

NCT01876212 Dendritic Cell Vaccines + Dasatinib for Metastatic
Melanoma

Biological: DC vaccine|Drug: Dasatinib Phase 2

NCT01803152 Dendritic Cell Vaccine With or Without Gemcitabine
Pre-Treatment for Adults and Children With Sarcoma

Biological: Dendritic Cells Vaccine|Biological: Lysate of
Tumor|Drug: Gemcitabine|Drug: Imiquimod|Procedure:
Leukapheresis

Phase 1

(Continued)
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TABLE 1 | Continued

Clinical trial I.D. Study title Interventions Phase

NCT01697800 A Phase II Trial of Tadalafil in Patients With Squamous
Cell Carcinoma of the Upper Aero Digestive Tract

Drug: Tadalafil|Drug: Placebo Phase 2

NCT02616185 A Phase 1 Study To Evaluate Escalating Doses Of A
Vaccine-Based Immunotherapy Regimen For Prostate
Cancer (PrCa VBIR)

Biological: PF-06755992|Biological:
PF-06755990|Device: TDS-IM Electroporation
Device|Biological: Tremelimumab|Drug:
Sunitinib|Biological: PF-06801591

Phase 1

NCT02432846 Intratumoral Vaccination With Intuvax Pre-nephrectomy
Followed by Sunitinib Post-nephrectomy vs. Sunitinib
Post-nephrectomy in Newly Diagnosed Metastatic Renal
Cell Carcinoma (mRCC)

Biological: Intuvax (ilixadencel)|Drug: Sunitinib Phase 2

NCT03153410 Pilot Study With CY, Pembrolizumab, GVAX, and
IMC-CS4 (LY3022855) in Patients With Borderline
Resectable Adenocarcinoma of the Pancreas

Drug: Cyclophosphamide|Drug: GVAX|Drug:
Pembrolizumab|Drug: IMC-CS4

Early
Phase 1

NCT02432378 Intensive Locoregional Chemoimmunotherapy for
Recurrent Ovarian Cancer Plus Intranodal DC Vaccines

Biological: Cisplatin + celecoxib + DC
vaccine|Biological: Cisplatin + CKM + Celecoxib + DC
Vaccine

Phase
1/2

(C) Cancer Vaccine + T-Reg-Targeting

NCT03203005 IMA970A Plus CV8102 in Very Early, Early and
Intermediate Stage Hepatocellular Carcinoma Patients

Drug: IMA970A plus CV8102 and Cyclophosphamide Phase
1/2

NCT03066947 SV-BR-1-GM in Metastatic or Locally Recurrent Breast
Cancer

Biological: SV-BR-1-GM|Drug:
Cyclophosphamide|Biological: Interferon-alpha-2b

Phase
1/2

NCT02709993 Consolidation Therapy in Patients With Hematologic
Malignancies

Biological: TAPA-pulsed DC vaccine Phase
1/2

NCT02705703 Consolidation Therapy in Patients With Metastatic Solid
Malignancies

Biological: TAPA-pulsed DC vaccine Phase
1/2

NCT02390063 Vaccination in Prostate Cancer (VANCE) Biological: ChAdOx1.5T4|Biological: MVA.5T4|Drug:
Cyclophosphamide

Phase 1

NCT02224599 Treatment of Patients With Progressive and/or Refractory
Solid Malignancies

Biological: TAPA-pulsed DC vaccine Phase
1/2

NCT02223312 Therapy for Progressive and/or Refractory Hematologic
Malignancies

Biological: TAPA-pulsed DC vaccine Phase
1/2

NCT01696877 A Neoadjuvant Study of Androgen Ablation Combined
With Cyclophosphamide and GVAX Vaccine for
Localized Prostate Cancer

Drug: degarelix acetate|Drug: Cyclophosphamide|Drug:
GVAX

Phase
1/2

NCT01192555 Allogeneic Tumor Cell Vaccination With Oral Metronomic
Cytoxan in Patients With High-Risk Neuroblastoma

Biological: Neuroblastoma Vaccine (unmodified SKNLP,
with gene-modified SJNB-JF-IL2 and SJNB-JF-LTN
neuroblastoma cells)|Drug: Cytoxan

Phase
1/2

NCT00703105 Ovarian Dendritic Cell Vaccine Trial Biological: Ontak DC|Biological: DC vaccination|Drug:
Ontak

Phase 2

NCT00626483 Basiliximab in Treating Patients With Newly Diagnosed
Glioblastoma Multiforme Undergoing Targeted
Immunotherapy and Temozolomide-Caused
Lymphopenia

Biological: RNA-loaded dendritic cell vaccine|Drug:
basiliximab

Phase 1

NCT00515528 Vaccination Plus Ontak in Patients With Metastatic
Melanoma

Drug: 4-peptide melanoma vaccine|Drug: 4-peptide
melanoma vaccine plus Ontak|Drug: ontak

Phase 2

(D) Cancer Vaccine + Checkpoint inhibition

NCT03548467 A Study to Evaluate Safety, Feasibility, Efficacy of Multiple
Dosing With VB10.NEO Immunotherapy in Patients With
Locally Advanced or Metastatic Cancer

Drug: VB10.NEO Phase
1/2

NCT03532217 Neoantigen DNA Vaccine in Combination With
Nivolumab/Ipilimumab and PROSTVAC in Metastatic
Hormone-Sensitive Prostate Cancer

Biological: PROSTVAC-V|Biological: PROSTVAC-F|Drug:
Nivolumab|Drug: Ipilimumab|Biological: Neoantigen DNA
vaccine|Device: TriGrid Delivery System|Procedure:
Tumor biopsy|Procedure: Peripheral blood|Procedure:
Fecal samples

Phase 1

NCT03422094 Neoantigen-based Personalized Vaccine Combined With
Immune Checkpoint Blockade Therapy in Patients With
Newly Diagnosed, Unmethylated Glioblastoma

Biological: NeoVax|Biological: Nivolumab|Biological:
Ipilimumab|Procedure: Research blood draw|Procedure:
Leukapheresis for research

Phase 1

(Continued)
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TABLE 1 | Continued

Clinical trial I.D. Study title Interventions Phase

NCT03362060 PVX-410 Vaccine Plus Pembrolizumab in HLA-A2+
Metastatic Triple Negative Breast Cancer

Drug: Pembrolizumab|Biological: PVX-410 Phase 1

NCT03311334 A Study of DSP-7888 Dosing Emulsion in Combination
With Immune Checkpoint Inhibitors in Adult Subjects
With Advanced Solid Tumors

Drug: DSP-7888 Dosing Emulsion|Drug:
Nivolumab|Drug: Atezolizumab

Phase 1

NCT02654587 Study of OSE2101 vs. Standard Treatment as 2nd or 3rd
Line in HLA-A2 Positive Patients With Advanced NSCLC
After Failure of Immune Checkpoint Inhibitor

Drug: OSE2101|Drug: Docetaxel|Drug: Pemetrexed Phase 3

NCT03113487 P53MVA and Pembrolizumab in Treating Patients With
Recurrent Ovarian, Primary Peritoneal, or Fallopian Tube
Cancer

Other: Laboratory Biomarker Analysis|Biological:
Modified Vaccinia Virus Ankara Vaccine Expressing
p53|Biological: Pembrolizumab

Phase 2

NCT02977156 Immunization Strategy With Intra-tumoral Injections of
Pexa-Vec With Ipilimumab in Metastatic / Advanced
Solid Tumors.

Biological: Pexa-Vec|Drug: Ipilimumab Phase 1

NCT02506114 Neoadjuvant PROSTVAC-VF With or Without Ipilimumab
for Prostate Cancer

Biological: PROSTVAC V/F|Drug: Ipilimumab Phase 2

NCT02432963 Vaccine Therapy and Pembrolizumab in Treating Patients
With Solid Tumors That Have Failed Prior Therapy

Other: Laboratory Biomarker Analysis|Biological:
Modified Vaccinia Virus Ankara Vaccine Expressing
p53|Biological: Pembrolizumab

Phase 1

(E) Cancer Vaccine + Costimulation Agonists

NCT03258008 Utomilumab and ISA101b Vaccination in Patients With
HPV-16-Positive Incurable Oropharyngeal Cancer

Drug: Utomilumab|Biological: ISA101b Phase 2

NCT01898039 Modified Melanoma Vaccine for High Risk or Low
Residual Disease Patients

Biological: A2/4-1BBL melanoma vaccine|Procedure:
DNP sensititzation|Drug: Cyclophosphamide

Phase
1/2

NCT01861938 Modified Melanoma Vaccine for High Risk or Low
Residual Disease Patients

Biological: Melanoma vaccine modified to express HLA
A2/4-1BB ligand

Phase
2/3

NCT01644968 Phase 1 Study of Anti-OX40 in Patients With Advanced
Cancer

Drug: Cohort 1 anti-OX40|Drug: Cohort 2
anti-OX40|Drug: Cohort 3 anti-OX40|Biological: Tetanus
Day 29|Biological: Tetanus Day 1|Biological: KLH Day
1|Biological: KLH Day 29

Phase 1

NCT00534209 Vaccine Therapy in Patients With Stages IIIB/IV
Non-Small Cell Lung Cancer Who Have Finished
First-Line Chemotherapy

Biological: Allogeneic B7.1/HLA-A1|Other: Placebo Phase
1/2

NCT00031564 Phase II Study of a B7-1 Gene-Modified Autologous
Tumor Cell Vaccine and Systemic IL-2

Biological: Interleukin-2|Biological: B7-1 Phase 2

(F) Cancer Vaccine + IDO-Inhibition

NCT02166905 DEC-205/NY-ESO-1 Fusion Protein CDX-1401, Poly
ICLC, and IDO1 Inhibitor INCB024360 in Treating
Patients With Ovarian, Fallopian Tube, or Primary
Peritoneal Cancer in Remission

Biological: DEC-205/NY-ESO-1 Fusion Protein
CDX-1401|Drug: Epacadostat|Other: Laboratory
Biomarker Analysis|Other: Pharmacological Study|Drug:
Poly ICLC

Phase
1/2

NCT03047928 Combination Therapy With Nivolumab and PD-L1/IDO
Peptide Vaccine to Patients With Metastatic Melanoma

Drug: Nivolumab|Biological: PD-L1/IDO peptide vaccine Phase
1/2

(G) Cancer Vaccine + Epigenetic Modulation

NCT02166905 DEC-205/NY-ESO-1 Fusion Protein CDX-1401, Poly
ICLC, and IDO1 Inhibitor INCB024360 in Treating
Patients With Ovarian, Fallopian Tube, or Primary
Peritoneal Cancer in Remission

Biological: DEC-205/NY-ESO-1 Fusion Protein
CDX-1401|Drug: Epacadostat|Other: Laboratory
Biomarker Analysis|Other: Pharmacological Study|Drug:
Poly ICLC

Phase
1/2

NCT02886065 A Study of PVX-410, a Cancer Vaccine, and Citarinostat
+/- Lenalidomide for Smoldering MM

Drug: Hiltonol|Drug: Citarinostat|Drug:
Lenalidomide|Biological: PVX-410

Phase 1

Combinations were structured in line with discussion in the text. Database searches were focused on combinations with agents that target (A) angiogenesis, (B) MDSCs/TAMs, (C)

T-regs, (D) immune checkpoint molecules, (E) costimulatory molecules, (F) IDO, and (G) epigenetic modifications. No trials were found combining vaccines with interventions targeting

immunosuppressive cytokines (IL-10, TGF-β, IL-6), arginase activity, hypoxic metabolism or adenosine signaling. Notes: Database search restricted to clinical trials that are active or will

be activated in the near future. Only antigen-specific vaccination protocols were retained (e.g., the use of radiotherapy or intratumoral injections of checkpoint inhibitors was excluded).

Combinations with anti-CTLA4 were listed onder “Vaccine + checkpoint inhibition” even though CTLA-4 blockers such as ipilimumab may also directly deplete T-regs. Interventions

targeted at hematological malignancies were omitted.

Frontiers in Immunology | www.frontiersin.org 10 January 2019 | Volume 10 | Article 8

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vermaelen Improving Cancer Vaccines

MDSCs and monocyte-derived TAMs into the tumor bed and
also contribute to revert the immunosuppressive climate within
tumors (90, 91).

Finally, as noted earlier, next to their adjuvant property in
itself, STING agonists have the interesting property of being able
to reprogram MDSCs from a T-cell suppressive into a type-1
immune polarizing leukocyte (27).

Freeing T-Cells From Negative Checkpoint
Signals
On a molecular level, tumor beds also maintain a climate
of tolerance and immune suppression through the abundant
expression of T-cell checkpoint ligands and a relative lack
of costimulatory molecules. Fortunately, the field of immuno-
oncology is currently driven forward by the development of
several compounds that can disrupt this inhibitory climate: in
a first wave of clinical trials, immune checkpoint inhibitors

(ICIs) such as CTLA-4, PD-1 and PD-L1 blocking antibodies
have demonstrated unequivocal clinical activity as monotherapy
in many types of cancer. The performance plateau of immune
checkpoint blockade is now being pushed upward by applying
combinatorial strategies (e.g., ICI + chemotherapy or ICI
+ ICI). It can be expected that combinatorial approaches
that include ICIs will be the major development that will
unlock the full potential of cancer vaccines. Indeed, a robust
activation of T-cells (as potentially achieved by a powerful
vaccine) will induce expression of counterregulatory checkpoints
such as CTLA-4 and PD-1. CTLA-4 can “steal the steam”
of signaling through the B7-CD28 costimulatory axis, hereby
shutting down T-cell activation by the APC. PD-1, when
engaging PD-L1 which is abundantly expressed on cancer cells
and intratumoral myeloid cells by exposure to IFN-γ and/or
hypoxia, results in paralysis of T-cell effectors at the tumor
front. As a clinical indication for this obstacle to vaccine
efficacy, in the trial evaluating the TG4010 Muc-1 vaccine in
lung cancer only patients whose tumor expressed low levels
of PD-L1 had a marked benefit in progression-free survival
(56).

Mechanistically, ICIs can potentiate vaccine responses in two
main ways. Anti-CTLA-4 checkpoint inhibition will mainly act
by boosting the amplitude of the priming phase, by broadening
the repertoire of the T-cell response (92) and also by removing
the suppressive activity of T-regs in the TME, as noted earlier.
PD-1 or PD-L1 blockade will ensure that vaccine-elicited anti-
tumoral T-cells can exert their function unhampered once inside
the tumor micro-environment. Conversely, vaccination may be
an additional combination partner to improve the performance
of checkpoint inhibition, whose response rate as monotherapy
across all tumors plateaus around 20% in biomarker-unselected
patients.

The benefits of combining vaccines with ICIs have
been demonstrated in numerous preclinical tumor models
(93–96), and these proof-of-concepts have already led
to the design of several clinical trials (summarized in
Table 1D). Initial results in humans were not encouraging
though, when a pivotal trial showed no benefit at all of

combining an adjuvanted gp100 peptide vaccine with anti-
CTLA4, compared with anti-CTLA4 alone (44). However,
more advanced vaccine platforms may still benefit from
combination with ICI, as illustrated by a more recent phase
2 trial exploring the combination of a DC vaccine plus
ipilimumab: objective response rates and survival were
markedly superior than historical data with ipilimumab as
monotherapy (97).

The relative timing of vaccination and immune checkpoint
blockade could be very critical for optimal anti-tumor effect.
CTLA-4 blockade was found to synergize optimally with
a prostate cancer GVAX vaccine when administered after
vaccination (98). Likewise, responses to TG4010 (Muc-1-
targeted MVA vaccine) were enhanced when PD-1 blockade was
administered several days after the vaccine (99). By contrast
McNeel et al. observed that responses to a PSA-targeted
DNA vaccine against prostate cancer were only observed with
concurrent rather than sequential PD-1 checkpoint blockade,
both inmurinemodels as well as in a small clinical trial (100). The
sequencing could be different when it comes to PD-L1 blockade:
PD-L1 upregulation is a physiological phenomenon upon DC
activation which may serve to protect the DC from elimination
during cognate interaction with the CD8+ T-cell. Hence, PD-L1
blockade at the time of vaccination/DC activation may result in
abortive T-cell priming due to shortened APC survival and limit
effector T-cell polarization and expansion.

Additional checkpoint molecules are currently being explored
as clinical targets. Lymphocyte-activation gene 3 (LAG3)
is the third immune checkpoint to have been targeted in
humans after CTLA4 and the PD-1/PD-L1 axis. LAG-3 is
expressed by “exhausted” TILs and T-regs. It shares high
structural homology to CD4 and binds MHC class II on
APCs. Besides keeping the T-cell itself in an inactive state,
LAG3 can reverse-signal to the APC and maintain the latter in
an immature/pro-tolerogenic state with impaired upregulation
of costimulatory molecules and IL-12 secretion (101). LAG3
blockade as such shows limited effects, but it can roughly
double the response rate to PD-1 blockade when used in
combination, an added benefit that is clearly enhanced in
LAG3-expressing tumor beds (NCT01968109, P. Ascierto et
al presented at ESMO 2017). Interestingly, a soluble dimeric
recombinant protein consisting of four LAG3 extracellular
domains fused to the Fc portion of human IgG1 (LAG3-
Ig) has been shown to act as an “APC activator” (102). A
possible concern however is that it also stimulates release
of the chemokines CCL17 and CCL22, which are known to
preferentially attract Th2 lymphocytes and T-regs. The clinical
compound, IMP321, is now being evaluated in patients in
combination with cancer vaccines in different tumor settings
(Table 1D).

Besides an abundance in negative checkpoint molecules, the
tumor milieu also fosters immune tolerance through a lack
in costimulatory molecules. Agonists of T-cell costimulatory
pathways are in clinical development, notably monoclonal
antibodies that bind to TNF-superfamily receptors such as OX40
and 4-1BB. Preclinical experiments indicate that costimulation
agonists can synergize with vaccination to break tolerance toward
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poorly immunogenic tumors (103, 104), with several clinical
trials now underway (Table 1E).

Dealing With the Immunosuppressive
Metabolic Tumor Environment
Next to defined molecular axes, the global metabolic climate
within solid tumors provides a hostile environment for proper
effector T-cell function as well. An important counterregulatory
mechanism in response to an IFN-γ-dominated T-cell attack
is the upregulation of IDO (indoleamine-2,3-dioxygenase).
Also, activation of DCs results in IDO expression in these
cells and promotes paradoxical induction of T-regs (105).
Prostaglandin E2, generated by COX2-expressing TAMs, is
also an inducer of IDO (106, 107). Originally identified as a
major contributor to immune tolerance at the maternofoetal
interface (108), IDO enzymatic activity is now recognized as
one of the “metabolic checkpoints” in tumors such as melanoma
and lung cancer: IDO catabolises tryptophan, which is also
a “fuel” for proper T-cell activation and proliferation, into
kynurenines that act as T-cell toxic metabolites. Tryptophan
depletion will also favor the induction of T-regs (109). IDO
inhibitors have demonstrated positive effects in many preclinical
models of cancer immunotherapy (109). Clinical development
of IDO inhibitors took a hit recently with negative phase
3 results in combination with ICI in melanoma, despite
promising phase 2 data (NCT02752074, results presented
at ASCO 2018). Nevertheless, results in other tumors are
still pending, and combining IDO-inhibition with a vaccine
may still be an effective strategy (110) (Table 1F). Arginase
activity is also increased in tumors in proportion to myeloid
cell infiltration and induces T-cell paralysis by depleting
arginine (as described above). Arginase inhibitors are currently
in early clinical development [NCT02903914 (111)], with
preclinical data showing clear synergism with anti-PD-L1
checkpoint inhibition (112). No clinical trials combining arginase
inhibitors with a cancer vaccine have been reported to
date.

More difficult to correct through therapeutic intervention
are the consequences of aberrant energy metabolism in
tumors, where cancer cells out-compete TILs for glucose
availability and establish a high lactate/low-pH milieu that
blocks T-cell proliferation and IFN-γ release (113). These
conditions are further exacerbated by the poor quality of the
tumor vasculature which prevents proper clearance of toxic
metabolites and exacerbates intratumoral hypoxia. The latter
induces upregulation of glucose transporters on tumor cells,
further decreasing extracellular glucose availability for effector
T-cells.

Metformin, better known as a therapy for insulin-resistant
diabetes, also inhibits cancer cell oxygen consumption. This has
been shown to decrease tumoral hypoxia, hereby augmenting
intratumoral CD8+ T-cell activation and unlocking synergistic
effects with checkpoint blockade in otherwise immunotherapy-
resistant tumors (114).

Hypoxia also increases expression of ectonucleotidases on
the cell membrane of cancer cells and myeloid cells, resulting

in degradation of ATP to adenosine. Adenosine triggers A2AR,
the most predominant adenosine receptor on immune cells,
leading to an increase in intracellular cAMP levels which
mediates a plethora of immunosuppressive effects: inhibition
T-cell and NK-cell functions, suppression of DC maturation
and IL-12 secretion, increase in IL-10 production, induction of
T-regs (115).

A2AR antagonists have been developed, with preclinical
studies showing promising activity. In a phase I trial the
A2AR antagonist CPI-444 produced marked CD8 T-cell
infiltration when comparing pre- vs. post-treatment biopsies
(116). Preliminary clinical data suggests synergism with
PD-L1 blockade, however it is clear from their biological
effect that adenosine receptor or ectonucleotidase inhibitors
could be attractive add-ons in a therapeutic vaccine
setting.

Improving Tumor Visibility to the Immune
System
For vaccine-induced T-cells to fulfil their final role, in addition
to intratumoral penetration and surmounting suppressive
mechanisms, tumor cells must expose sufficient levels of
relevant antigen on their surface. This cannot be taken for
granted as cancer cells can reduce expression of tumor-
associated antigens or downregulate critical components of
the antigen-processing and MHC presentation machinery.
Interestingly, this loss of “visibility” to the immune system
seems to be mediated by epigenetic mechanisms, i.e., DNA
hypermethylation and histone deacetylation, which opens up
opportunity for therapeutic modulation (117). Expression
of cancer-testis antigens is in particular regulated through
epigenetic mechanisms, and treatment with DNA methyl
transferase (DNMT) inhibitors can increase cancer-testis antigen
(CTAG) expression levels on cancer cells. Components of the
antigen-processing machinery (APM) such as TAP-1, TAP-2,
LMP-2 and Tapasin can be increased by treatment of cancer
cells with histone deacetylase (HDAC) inhibitors, which ends up
increasing surface expression of MHC class I molecules as well
(118, 119).

In addition, epigenetic drugs can help create a more
favorite immunological climate within tumors. HDAC
inhibitors have been shown to induce Th1, CD8 and NK-
cell-attracting chemokines and boost response to anti-PD1
immune checkpoint blockade (120). The combination
of DNMT and HDAC-inhibition can also potentiate ICI
efficacy by reducing granulocytic MDSC levels (121). Another
fascinating discovery is the fact that DNMT-inhibitors can
awaken expression of endogenous retroviral vectors (also
known as long terminal repeat retro-transposons), thus
generating intracellular dsRNAs that can be sensed by the
MAD5/MAVS cytosolic sensor and trigger type 1 interferon
responses (122).

A large number of clinical trials are now combining
checkpoint inhibitors with epigenetic modulators, however only
1 trial exploring the combination a DNMT-inhibitor with a DC-
based cancer vaccines in pediatric sarcoma has been completed:
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remarkably 1 patient of the 10 included experienced a complete
response (123). A few other trials combining vaccination with
epigenetic modulation are active at the time of this writing
(Table 1G).

CONCLUSION

Given the daunting complexity of tumor-associated immune
suppressive networks, it comes as no surprise that vaccination
in a therapeutic setting has delivered so little benefits to cancer
patients so far. Still, the overwhelming amount of preclinical
data supports the notion that vaccination can control or even
eradicate tumors, just as preclinical work showed the value
of immune checkpoint blockade many years ago. Given the
multiple obstacles to T-cell mediated cancer cell destruction, it
is clear that the success of a vaccine will depend on our capacity
to accurately map the dominant immunosuppressive pathway
for each individual patient. An essential aspect when it comes
to therapeutic modulation of these pathways is to delineate
the hierarchy of obstacles to effective immune responses. For
instance, combining a vaccine with immune checkpoint blockade
is an effort in vain when a large part of the tumor has acquired
defects in MHC class I presentation. An important challenge
will be to develop technologies that can deliver comprehensive
tumor “immunomics” in a timely and cost-effective fashion. The
aim is to provide clinicians with robust biomarkers to guide
therapeutic decision making especially when it comes to the
wide repertoire of possible combination therapies. An additional
challenge is to take into account both the spatial and the temporal

heterogeneity of a tumor for a given patient, i.e., are different

metastatic sites sensitive/resistant to immunotherapy to the same
extent, and how does this evolve over time during the course of
specific treatments? As the field of cancer immunology further
evolves, several additional questions are raised: what is the role of
CD4+ T-cells in vaccine-induced anti-tumor responses? Which
could be the optimal chemotherapy or radiotherapy regimen in
combination with a cancer vaccine? Does the gut microbiome
impact on cancer vaccine efficacy the same way as it influences
responses to checkpoint inhibitors? As difficult as these
challenges may be, the reward is considerable given the excellent
tolerability of vaccines and the promise of long term protective
immunological memory, which may transform disease control
into cure.
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