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The general understanding has been that only adaptive immunity is capable of

immunological memory, but this concept has been challenged in recent years by

studies showing that innate immune systems can mount resistance to reinfection—as

the innate immune system can adapt its function following an insult. Innate immune

training offers an attractive approach in intensive fish larval rearing, especially since

the adaptive immune system is not fully developed. Trained innate immunity will

potentially favor robust fish in terms of resistance to viral and bacterial diseases.

So-called immunostimulants such as ß-glucans have for decades been used both in

laboratories and in intensive fish aquaculture. Treatment of fish by ß-glucans (and by

other substances with pathogen-associated molecular patterns) often induces activation

of non-specific/innate immune mechanisms and induces higher disease resistance. The

reported effects of e.g., ß-glucans fit nicely into the concept “trained innate immunity,” but

the research on fish does not yet include analysis of epigenetic changes that may be a

prerequisite for long-lasting trained innate immunity. In this “perspective,” we will discuss

how in practical terms and based on prior knowledge one can introduce innate immune

training in brood stock fish, and their offspring, and whether innate immune training by

ß-glucans is a viable approach in larval aquaculture.
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INTRODUCTION

ß-glucans are naturally occurring polysaccharides consisting of glucose residues with
ß-1, 3→ß1, 4 or/and ß-1, 6→D-glycosidic bonds with various degree of polymerization.
They are major structural components of the cell walls of many organisms such as fungi,
plants, mushrooms, bacteria, and yeasts. ß-glucans have been reported to possess anti-
cancer, pro-inflammatory, and anti-fungal activities when administered to animals. Some
reports have even indicated anti-parasitic effects. Stimulation of non-specific defense
mechanisms has also been reported in fish (1–4). The terminology typically used to
indicate any activation of immune mechanisms is either “priming,” “immune induction”
“immunostimulation” or “immunomodulation,” explaining the outcome of a particular
treatment (5). More recently the terminology has more or less shifted and is now called
trained immunity, or better—trained innate immunity if the effects from the particular
treatment induces non-specific/heterologous disease resistance, it is relatively long-lasting and it
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induce epigenetic changes (5, 6). In this perspective, we will
discuss how in practical terms and based on prior knowledge
one can introduce innate immune training in brood stock fish,
and their offspring, and whether innate immune training by
ß-glucans is a viable approach in larval aquaculture.

TRAINED INNATE IMMUNITY: CONCEPT
AND EXAMPLES

Trained innate immunity can be explained by innate immune
defense stimulation that may in turn confer increased non-
specific resistance to infection by homologous or heterologous
pathogens. Examples have been retrieved from research on plants
and invertebrates, where a certain kind of memory from previous
insults exists (7). In vertebrate species, several approaches
using ligands to pattern recognition receptors (e.g., ß-glucan,
muramyl dipeptide, CpG containing oligodeoxynucleotides,
flagellin) have suggested that priming of mice by some of
these stimulants may facilitate protection against infection
by heterologous pathogens (8). An illustrative example is
where pretreatment of ß-glucan coated microbeads fully protect
mice against an otherwise lethal Escherichia coli challenge in
mice (9). Other examples are the prophylactic effects from
a ß-glucan (laminaran) injection against Vibrio salmonicida
infection in fish (10) and where Bacillus Calmette Guerin
(BCG) vaccination induce T-cell independent non-specific
disease protection against infections of e.g., Candida albicans
and Schistosoma mansoni in mice (11, 12). Thus, the term
trained innate immunity is a new wrapping of what has been
observed and reported decades ago. However, a few more
characteristics have since been added to the concept due to
more research and the use of modern technologies. These
are: T- and B-cell independent process, epigenetic changes
together with altered metabolic profile (13). The mechanisms
behind priming or training are acknowledged to be functional
(re)programming of cells (monocytes, macrophages, NK cells)
induced by activation of particular pattern recognition receptors,
mainly MAP kinase dependent intracellular signaling, and
resulting epigenetic changes (8, 14). It should be noted
that there exist other venues where cross-protection occurs.
Poly-specific lymphocytes, the Mackaness reaction (chronic
infection), and microbiota-mediated protection may all be
venues to protective mechanisms, reviewed by Muraille (15).
It is commonly acknowledged that B-cell produced antibodies,
including natural antibodies, are not involved in trained innate
immunity (16). Sea water is extremely rich in microbes (phages,
viruses, bacteria), containing molecules that may induce immune
activation or tolerance. The fish gut microbiome has been
reported to consist of many species of the proteobacterial
phylum (17). These are gram-negative bacteria with bacterial
lipopolysaccharide (LPS) in their outer membrane, which is
known to induce substantial immune activation. An attractive
research question is why continuous exposure of high amounts
of environmental LPS does not induce hyperactivation of the
immune system. This issue may be dependent on the dose, where

sensitization occurs by a low-dose LPS, whereas priming with
high-dose LPS induces prolonged inhibition of inflammatory
cytokine release—dependent on the mTOR (mammalian target
of rapamycin) and AMPK (AMP-activated kinase) signaling
axes. Such inhibition can be translated as LPS tolerance (8,
18, 19). mTOR is involved in anabolic processes during cell
activation, whereas the latter is central in tissue homeostasis
and tolerogenic responses. It is not yet clear whether ß-glucans
themselves induce tolerance that would be detrimental to their
stimulating effects. Moreover, many fish species possess several
splicing isoforms of e.g., PPRs where an activation of one of
the spliced isoforms of a given pattern recognition receptor
(12) might give another outcome (e.g., negative regulation)
than expected (20–22).

ß-GLUCANS: NOT ALL ARE ALIKE

Since there are high level of heterogeneities (and impurities)
among different commercial preparations of ß-glucans from
various sources cautions must be made (23). One type of ß-
glucan from one species can be very different with respect to
solubility in e.g., PBS/saline and gelling characteristics, compared
to another ß-glucan preparation. Zymosan (Saccharomyces
cerevisiae), the most widely applied and investigated ß-glucan,
is composed of ∼50% ß-glucan, 17% mannan, 14% protein,
and other substances (24, 25). Zymosan (average 3µm particles)
is extremely aqueous insoluble, but the particles can be
dispersed in solutions. Other well-studied biologically active ß-
glucans includes laminarin, curdlan, lentinan, scleroglucan, and
schizophyllan. In many cases their names are trivial describing
their sources; Lentinan from Lentinula edodes, scleroglucan from
Sclerotium sp., and schizophyllan from Schizophyllum commune
(26). These microbial or fungal ß-glucans possess various degrees
of polymerization that dictate, in some instances, a higher order
of conformation—they are either linear and unbranched, or
branched with single glucose residue—which in turns determines
aqueous solubility, gelling characteristics, and often biological
activities (27). Many ß-glucans have been reported to possess
biological activities, such as induction of disease resistance, in
both animals (vertebrates, invertebrates) and plants (4, 28–30).

WHICH ß-GLUCANS INDUCE TRAINED
IMMUNITY?

It is suggested that in order to induce trained innate immunity by
ß-glucans, several different receptors must be engaged, such as
Dectin-1, and dimeric TLR2/6 (31). The simultaneous binding of
ß-glucan to two or more different receptors in clusters normally
gives a higher response, compared to a single receptor. It is
acknowledged that, among ß-glucans, particulate ß-glucans may
be the optimal preparation to induce innate immune training,
whereas low molecular weight ß-glucans (e.g., laminarin) do not
favor a high response (32).
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HIGH DIVERSITY OF INNATE RECEPTORS
FOR INNATE TRAINING

Teleost fish constitute a highly diverse group of animals,
comprising of more than 23,000 different species. Twenty-one
different Toll-like receptors (TLRs), together with additional
splicing variants (subtypes/isotypes), have thus far been identified
in teleost, reviewed by Chang et al. (22) and Nie et al.
(33). The number of TLR variants far exceeds that found in
mice and human (34). Furthermore, a recent analysis of the
Atlantic cod genome and RNAseq analysis revealed that the
cod TLR repertoire is extremely diversified, with 43 different
TLRs ortologs and paralogs (35). Another example is that of
the blue-spotted (Periophthalmodon schlosseri) and giant-fin
(Periophthalmus magnuspinnatus) mudskipper genomes which
contain 11 copies of TLR13 (36). Genome duplication events
in fishes during evolution has been attributed to the diversity
of TLRs, thus differences with respect to the number of
TLR loci exist between mammalian species and many fish
species (34). The number of TLRs added to other pattern
recognition receptors (12) (including splice variants) such
as different C-type lectin receptors, NOD-like (nucleotide-
binding oligomerization domain-like) receptors (NLRs), RIG-1-
like receptors, and scavenger receptors (37), suggests that fish
may very well be equipped with innate receptors that may likely
be targets for innate immune training. Especially NLRs has been
found to be highly expanded as shown in zebrafish, where nearly
400 NLR proteins are encoded in the zebrafish genome (38).
The TLRs and NLRs outnumbers RIG-1-like receptors (39) and
scavenger receptors (40) in fish, but future genomic analysis may
reveal whether there are more copies of the two latter receptor
families. The NLRs may likely be involved in gut responses to
microbiota, as NOD1/2 are expressed on gut (zebrafish) epithelial
cells (41).

One may strongly assume that trained innate immunity
also exists in fish, but no definite proof exists—especially with
regards to both epigenetic and metabolic changes together with
the possibility of rewiring the trained state. Suggestions that
trained innate immunity indeed is present in fish are based
on experiments using ß-glucans and other immunostimulants
in vitro and in vivo, summarized by Petit and Wiegertjes (4) and
Rojo-Cebreros et al. (42).

TRAINED INNATE IMMUNITY IN BROOD
STOCK FISH AND FISH LARVAL REARING

Given that it is possible enhance the innate defense of fish
through immune training—especially against pathogens—it
opens up for several interesting approaches in fish larval rearing.
Firstly, brood stock (female and male) fish may be stimulated
with PAMP(s) at a low dose (16) inducing increased potential
to, not only resist present pathogens, but to also transfer trained
innate immunity to offspring (F1 generation). This is in line with
a study by Beemelmanns and Roth that suggested the occurrence
of maternal and paternal transfer of immune traits. In this study
they found that pipefish (Syngnathus tyhple) offspring expression

patterns of immune genes and epigenetic regulation is correlated
to parental gene expression patterns (43). Intergenerational
(F0F1) transfer of trained innate immunity has been reported
for other animal species such as Artemia, oyster, red flour beetle,
and humans (44–47). Interestingly transgenerational immune
priming beyond F1 generation (F0F2) has also been observed in
fish (S. typhle) (48).

Besides direct innate immune training of brood stock fish
and transfer to F1 (and maybe F2) generations, molecules
that are known to induce trained innate immunity may be
maternally transferred and taken up by developing oocytes
during vitellogenesis (49)—potentially increasing the innate
defense of developing embryo/larvae—while the fish embryo or
larvae is still in the eggs. The latter do not represent heritable
trained traits, merely a direct innate immune stimulation of
offspring. In summary, by administering immunostimulants
(e.g., certain PAMPs) to brood stock fish one may obtain: (1)
Direct maternal and paternal immunostimulation/training, (2)
consequently inherited trained innate immunity, and (3) direct

FIGURE 1 | Fluorescence (A, a) and light micrographs

(immunohistochemistry) (B, b) of sections from Atlantic halibut yolk sac larvae

(C) bath treated with FITC-labeled lipopolysaccharide (FITC-LPS). (a,b)

Sections obtained from untreated larvae. FITC-LPS was found in endothelial

cells in blood veins and in intestinal tissue documenting that yolk sac larvae

cells have taken up FITC-LPS after bath treatment. Permission has been

granted from Elsevier for (A), where the rabbit anti A. salmonicida pabs was

characterized and used (52).
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immune stimulation and training of developing embryo/larvae
(inside egg chorion).

Secondly, substances expected to induce trained innate
immunity may be administered directly to newly hatched fragile
fish larvae or alevins (before first feeding) simply by bath
treatment (50–54) (Figure 1).

Thirdly, first feeding represents a milestone during
development of fish. After the yolk has more or less been
utilized, the fish start feeding on algae, zooplankton, other prey,
or simply pelleted formulated fish feed [for overview see Davies
(53)] (55). For those fish species that feed on particulate feed,
immunostimulants may simply be added to the formulated fish
feed—for the purpose to induce innate immune training or
immunostimulation (42, 50, 53).

POTENTIAL NEGATIVE EFFECTS OF
EARLY TRAINED INNATE IMMUNITY

If the initial stimulation, with purpose to induce innate immune
training, otherwise induces hyperimmune responses in the
mother/father or offspring it may give unwanted effects (56, 57)—
especially in vulnerable offspring that have not fully developed
regulatory mechanisms. This issue, or related issues where brood
stock fish has been (over)stimulated, has not been addressed yet.
An important step will be to optimize the dose and duration for
full innate immune training in brood stock fish. Early trained
innate immunity may, at a later time point, interfere with
subsequent vaccination regime, e.g., in commercial salmonid
aquaculture. The fish vaccines often contain different inactivated
bacteria emulsified in mineral oil, containing many substances

(58) that potentially have effect on innate defense mechanisms.
Would the trained characteristics in non-vaccinated individuals
be wiped out/rewired or further potentiated? One should also
address whether innate trained immunity affects (later) antibody
response from vaccination, especially since there is an interplay
between innate pattern recognition receptors and acquired
immunity (59).

CONCLUSION

Training of innate immunity offers an interesting and attractive
approach to increase disease resistance of brood stock fish, newly
hatched fish larvae, and first feeding fish. Several TLR receptor
ligands may be used to study innate training, assessed by modern
technologies such as transcriptomics, epigenetics, proteomics,
andmetabolomics. In addition, in vivo pathogen challenge would
be necessary to analyze whether a trained innate immunity has
occurred or not.
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