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Inflammation has been recognized as an important driver in the development and

growth of malignancies. Inflammatory signaling in cancer emerges from the combinatorial

interaction of several deregulated pathways. Pathway deregulation is often driven by

changes in the underlying gene regulatory networks. Confronted with such complex

scenario, it can be argued that a closer analysis of the structure of such regulatory

networks will shed some light on how gene deregulation led to sustained inflammation in

cancer. Here, we inferred an inflammation-associated gene regulatory network from 641

breast cancer and 78 healthy samples. A modular structure analysis of the regulatory

network was carried out, revealing a hierarchical modular structure. Modules show

significant overrepresentation score p-values for biological processes unveiling a definite

association between inflammatory processes and adaptive immunity. Other modules

are enriched for T-cell activation, differentiation of CD8+ lymphocytes and immune cell

migration, thus reinforcing the aforementioned association. These analyses suggest that

in breast cancer tumors, the balance between antitumor response and immune tolerance

involving CD8+ T cells is tipped in favor of the tumor. One possible mechanism is the

induction of tolerance and anergization of these cells by persistent antigen exposure.

Keywords: inflammation, breast cancer, adaptive immunity, network biology, systems biology

1. INTRODUCTION

Breast cancer is the most frequently diagnosed malignancy in women worldwide (1). Given its
prevalence, a great effort has beenmade to understand the mechanisms that lead to its development
including genetic analysis, mutation status for known oncogenes ad tumor suppresors, expression
status of known associated receptors like ER and ERBB2 (HER2), as well as transcriptomic assays
as exemplified in Cancer Genome Atlas Network (2). Breast cancer tumors appear to be highly
heterogeneous in all these aspects, nevertheless a shared set of characteristics are recognizable
during tumor development, which are widely known as the hallmarks of cancer (3, 4). In this view,
cancerous phenotypes result from a complex of interacting biological processes or pathways that
are subverted in favor of tumor survival, growth and invasion.

Inflammation is necessary to maintain homeostasis. Nontheless, alterations in the course of
inflammatory response can lead to pathological states, specially when it cannot be resolved and
becomes chronic. The effects of inflammation include changes in tissue properties like blood vessel
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permeability, alteration of extra cellular matrix and the initiation
of immune responses that involve recruitment, proliferation
and differentiation of innate as well as adaptive immune cells,
actions that are coordinated in a combinatorial way by cytokine
and chemokine production (5, 6). There is a strikingly similar
scenario when we look at tumors.

The role of inflammation in tumor development is far
from simple. It is known that acute inflammatory response is
an important component in the spontaneous elimination of
tumors (7). Also there are examples in which correlation exists
between chronic inflammation and some types of cancer like
colon, gastric, esophageal, thyroid and breast cancers (8–12).
Although it is recognized that chronic inflammation has a role
in the tumorigenic process, it is not well understood how or
why inflammation is also necessary for tumor maintenance.
In particular, breast cancer tumors show significant infiltrates
of immune system cells (13). Infiltrates can vary in the
amount and specific types of immune cells they contain.
Some evidence points to a relation between mixtures of
immune cells in breast cancer subtypes and patient outcome
in relation to metastasis recurrence and survival time (5, 14).
This suggests that inflammatory response in conjunction with
the immune system plays an important role on breast cancer
maintenance.

Considering the intricate set of relationships that
inflammation and immunity play in a complex phenotype
such as a breast cancer, an integrative approach capable of
capturing at least part of the complexity of biological processes
related to inflammation results appealing. In this context, the
construction of gene regulatory networks via the association
between gene expression levels, offers us a valuable view on how
groups of genes are being collectively coordinated.

The modeling of the gene regulatory structure through the use
of complex networks (15–17) opens up the use of techniques to
interrogate network structure (15), as is the case with network
modularity (18, 19). Resulting modules can then be associated
biological functions (20). To find the modular structure in a
network is a non-closed problem, which has been subject of
intense research in network theory (15, 21). Furthermore, the
applications of finding modular structure in real-world networks
has also been matter of interest in several fields, including social
(22) and biological systems (20, 23).

Previous work from our group has shown how network
modularity structure is associated to biological functionality
in transcription factor networks (20) and distinctive network
structure for each of the major breast cancer molecular subtypes
(24). Furthermore, by means of an automated analysis of
network inference, module detection and enrichment analysis we
have been capable to detect specific processes in breast cancer
molecular subtypes.

In this work, we approach the entangled nature of the
inflammatory process in the maintenance of breast cancer
phenotype through the inference of an inflammation-related
gene regulatory network and their associated genes (their
immediate or first neighbors in network terminology), then
finding the modular structure of the network and associated
biological processes for each module.

We found a hierarchical modular structure in transcriptional
networks associated to inflammatory response, where genes tend
to be connected to others with similar differential expression
patterns: overexpressed genes are more connected between them,
as well as underexpressed ones. Modules of the network are
mainly associated to immune system, extracellular matrix and
cell adhession.

A comprehensive integrative framework allows us to observe
a broader landscape of how inflammation may have influence in
the establishment of pathological phenotypes. At the same time,
this exploratory approach could help to direct research toward
more specific questions about therapeutic options.

2. MATERIALS AND METHODS

2.1. Data Acquisition
A graphical description of the followed pipeline is depicted
in Figure 1. We used a curated database that consists of 719
microarray assays of the platform Affymetrix HGU 133 plus
2 from 641 untreated primary breast cancer samples and 78
healthy mammary tissue samples. The data was obtained from
five separate data series deposited in the Gene Expression
Omnibus https://www.ncbi.nlm.nih.gov/geo/(25), each data
series contais case and control samples (Table 1). Raw data
.CEL files were pre-processed and normalized as described in
https://github.com/CSB-IG/rnw/tree/master/normalization-
preprocessing. The resulting expression matrix was used as
input to perform network inference. Differential expression
(DE) analysis contrasting tumors to healthy mammary tissue
was performed with the normalized expression matrix using
Empirical Bayes statistic from Bioconductor’s library Limma (30)
for the R statistical software.

2.2. Network Inference
Since we are interested in the integration of inflammatory
response with other biological processes in the breast cancer
phenotype, we used a gene regulatory network approach
to obtain groups of associated genes. Although numerous
algorithms and correlation measures can be used to infer
networks based on expression data (31), it can be formally
demonstrated that for datasets with more variables than samples
and inherently noisy data, the best statistical dependency
measure is Shannon’s mutual information (MI) since it is
capable to detect non-linear dependencies and is not affected by
data transformations like normalization (it is reparameterization
invariant) (32–34). A network in this context is a mathematical
object composed of a colection of nodes that represent genes,
and a colection of edges that represent the statistical dependency
between pairs of genes.

We used MI calculations implemented in the ARACNe

algorithm (34) to calculate pairwise statistical dependency for
all gene pairs in the platform (MI threshold set with p ≤

1) which gives us a completely connected graph ( a network
where all possible interactions exist) for the whole-genome. Our
network contains only the top 10,000 most stringent interactions
between genes from the inflammatory response and their first
neighbors, which correspond to 0.005% of possible correlated
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FIGURE 1 | Graphical description of the methods followed in this work. (1) Gene expression datasets from GEO were selected. All datasets contained normal tissue

samples and primary, untreated tumor samples. (2) Datasets were preprocessed, merged and normalized to obtain an expression matrix (Rows correspond to genes

and columns correspond to samples). (3) Tumor samples expression matrix was used to calculate all statistical dependencies with the MI function between pairs of

genes to construct the network. (4) The network was filtered to obtain the top 10,000 interactions ranked by MI value of genes in the inflammatory response process

and first neighbors. (5) The inflammation network was analyzed to detect modules via the Infomap algorithm. (6) The resulting modules were tested for functional

enrichment of Gene Ontology.

gene pairs . The reasoning behind this is that the genes defining
the phenotype must have the strongest statistical dependencies
between them, hence are at the top of the ordered list, and also
in order to minimize the effect of false positives. Since we are
interested in inflammation, to start with a list of genes of interest
can help us to discover other genes associated to them at the
transcriptional level. This however does not guarantee that we
recover all genes in the list but the ones within our imposed
threshold.

The network was curated starting from the complete
graph using a reference gene list of the inflammatory process
obtained from Gene Ontology ( Inflammatory response
process GO:0006954) with the following procedure: First,
we ranked all interactions in descending order (largest
to smallest MI value). Second, we searched for the genes
sharing the strongest interactions with those in the
inflammatory response process. This was done by filtering

those interactions where at least one gene is part of the
inflammatory response. From these interactions we took the
top 10,000 interactions and obtained the names of all the
genes involved which comprises the list of inflammatory
response and associated genes. Third, because we wanted
to recover interactions between inflammation gene first
neighbors, we extracted from the network the top 10,000
interactions between the genes of the list (inflammation and first
neighbors).

2.3. Hierarchical Module Detection
Gene Regulatory Networks, such as those we inferred, contain
associations in the scale of hundreds of genes connected
by thousands of interactions. Nevertheless, the connectivity
patterns are not uniform through the structure of the network.
Highly interconnected groups of genes may be indicative of
coordinated expression associated with biological functions,
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TABLE 1 | GEO identifier and references for the data used here.

GEO ID Series Tumors Controls Description References

GSE42568 104 17 Gene expression profiling of 104 breast cancer and 17 normal breast biopsies. (26)

GSE50567 35 6 Flash-frozen surgical samples obtained during mastectomy from patients without neoadjuvant

chemotherapy

(27)

GSE54002 417 16 Mammary gland cells were captured from clinical tissues of breast cancer patient by Laser

Capture Microdissection

(28)

GSE10810 31 27 Samples were taken from patients before their treatment. (29)

GSE29431 54 12 Primary breast carcinomas to identify a gene expression profile for breast tumors based on

HER2 status.

Not published

Total 641 78

The first column indicates the GEO accession number, the second and third indicate the number of cases/controls. The fourth column is a short description of the samples and the fifth

is the asociated reference.

making relevant the identification of such groups. This approach
has been previously proved by our group in the context of
GRNs on breast cancer subtypes (23). We showed that gene
modules are representative of distinct and meaningful biological
functions.

Thus, in order to find to find connectivity patterns in our
network, here we used Infomap (19), a well-known flow-
based information clustering method to determine the modular
structure of complex networks. Likewise, we use the expanded
version of Infomap to find a finer modular structure over the
two-level modules using the hierarchical version of the map
equation (35).

Using the hierarchical map equation it possible to exploit the
fact that the modules in a network are themselves organized
into submodules and sub-submodules which can reveal a richer
multilevel organization. This approach has been successfully
applied as well in the case of GNRs associated with Her2+ cancer
subtype (36).

2.4. Functional Analysis
The number of genes contained in each module can
amount to several hundred. Additionally, we have to
deal with the fact that individual genes can be annotated
for more than one function or pathway. To obtain
biological insights from gene sets like these, we use
statistical over representation analysis to reduce such large
sets of individual gene names to identifiable biological
functions (37).

We tested or network modules and submodules for
enrichment in Gene Ontology (GO) (38) Biological processes.
We used GO because it offers a comprehensive annotation
of molecules over a wide range of processes thus serving as a
valuable first approach. Overrepresentation was calculated with
WEBGESTALT (39). Statistical significance threshold was set at
p ≤ 0.05 after Benjamini & Hochberg FDR correction. For each
module, we performed Over-Representation Analysis (ORA)
based on FDR-corrected hypergeometric test over a category
of genes whose functions are annotated in the Gene Ontology
Consortium database GO (38) with the R package HTSanalyzeR
(40), choosing a significance p ≤ 1× 10−5 .

3. RESULTS

3.1. Inflammation-Related Network Has a
Characteristic Expression Pattern for Each
Module
The Inflammation-associated Gene Regulatory Network
(IGRN) contains the top 10,000 interactions ordered by
MI value; this IGRN has 942 genes with three connected
components that contain more than 10 genes (Figures 2A–C
and Supplementary File 1). Information about the DE status for
each node was mapped to the network. This revealed a definite
composition of DE genes for each component.

The largest component contains 787 out of the 942 genes
in the network. We explored the module structure of this
component, which revealed a hierarchical structure of 4 first
level and 28 second level modules or submodules (Table 2 and
Supplementary File 2). Modules and submodules were labeled
based on the highest page-ranked gene (Figure 3A). Hereon,
modules and submodules are indicated with a subscript after the
name of its highest ranked gene i.e. CCR5m and CD2sm.

When we observe the DE status in individual submodules, it
becomes evident how it tends to display characteristic patterns
for each submodule. For instance, submodules such as LDB2sm
are integrated by genes with a tendency to underexpression,
and IFI44Lsm integrated by genes tending to overexpression
(Figure 3B). In the case of EXOC3L2sm and ZFPM1sm, all genes
have a DE status of no change respect to normal mammary
tissue. However, other submodules such as SPARCsm andCCR5sm
show a mixed DE profile. Coordinated over and underexpression
gene sets may account for modulation of opposing or conflicting
pathways.

Now, based on the module detection method, a novel feature
revealed is the information flow between the aforementioned
modules, a measure of how much information is shared between
them, which in turn is proportional to the number of inter-
module edges, which is the number of links between genes
belonging to different modules. The major contribution to
this flow is by gene pairs with similar expression patterns:
overexpressed genes join two different modules, and
concomitantly underexpressed genes are responsible for
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FIGURE 2 | Network obtained from the MI highest interactions between inflammatory process genes and their first neighbors. The network consists of 942 genes and

10,000 interactions (edges). Node color represent the differential expression status compared to healthy mammary tissue. Red: Overexpressed, Blue:

Underexpressed, White or pale color means no differential expression (−1 ≥ LogFch ≤ 1). This network consists of many connected components of which three of

them (A–C) consists of more than 10 genes. Indicated with (D) are small components of less than 10 genes. By observing the way nodes aggregate in the largest

component (A), it is evident that the network has an internal modular structure where differential expression levels seem to cluster with similar differential expression

trends. We further explored how this network is organized and which known biological processes are being regulated.

the union between underexpressed modules. Interestingly
enough, those modules with non-differentially expressed genes
are connected between them (Figure 3).

The modular expression pattern of the IGRN suggests a
coordinated activity of genes whose products (proteins) may be
involved in the activation or inactivation of processes. It is not
clear –although it may be possible– whether clusters of genes that
are not differentially expressed could be related to processes of
maintenance of mammary tissue, independent of the disease. The
fact that genes included in the modules have a similar expression
pattern concurs with the idea that network modules are not only
a topological feature of the network, but also reflect a functional
role in the definition of phenotypes (20, 23).

3.2. Network Modules Are
Function-Specific
Modules are disjoint sets of nodes at the same hierarchical
level. We performed overrepresentaion analysis for these gene
sets, taking Gene Ontology:Biological Processes as the reference
database. Statistically significant enrichment was found, but not
for all modules and submodules.

Top enrichment scores for the CCR5m include immune
response, innate immune response, cytokine-mediated
signaling pathway, adaptive immune response, also included is
inflammatory response (Figure 4). SPARCm top enrichments
include extracellular matrix organization, cell adhesion,
extracellular matrix disassembly, collagen catabolic process
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TABLE 2 | Modules and submodules in the largest component of the network.

Module Submodule Number of genes

CCR5m 376

CCR5sm 176

CD2sm 87

IGCL2sm 39

IFI44Lsm 31

PSMB9sm 21

CXCL10sm 9

HLA− DRAsm 5

ABI3sm 2

CARD16sm 2

FTLsm 2

TRIM22sm 2

SPARCm 230

SPARCsm 152

LDB2sm 41

ABCA8sm 8

TMEM204sm 8

SPARCL1sm 7

CNRIP1sm 6

VIMsm 4

CARD6sm 2

DZIP1sm 2

ZFPM1m 173

ZFPM1sm 71

EXOC3L2sm 58

JSRP1sm 22

GUCA2Asm 13

LILRB3sm 4

ATXNL2sm 2

CGB2sm 2

ZNF683sm 1

ACSL4m 8

Bold values in the number of genes column are the total gene number for the module and

correspond to the sum of the gene numbers in al its submodules.

and angiogenesis. Since the inflammatory response process
was enriched only in the CCR5m we focused on the biological
processes and pathways of its submodules.

Seven out of eleven CCR5m submodules showed a statistically
significant enrichment for GO Biological processes. Some of
these enrichments were shared between submodules, with the
largest category overlap between CCR5sm and CD2sm (Figure 4).
These two submodules have numerous connections and are the
two largest in terms of of gene and interaction counts (Figure 2).

3.3. CCR5 Submodule Is Responsible for
Inflammatory Cell Recruitment
The largest submodule with 176 genes, is enriched for
inflammatory response and other adaptive immune response
processes. Genes coding for proteins involved in T lymphocyte
signaling such as CD45, CD4 and CD28 which serve as
coreceptors necessary for T cell activation. LYN, BTK, PIK3CD

and VAV1 participate in the B cell signaling pathway, as well
as in the Fcγ and Fcǫ signaling pathways through which
receptor mediated endocytosis can be activated allowing antigen
presenting cells to capture antigens bound to antibodymolecules.

Said submodule contains genes for the receptors Fcγ
RIIA and Fcǫ RIγ that participate in receptor mediated
endocytosis signaling and recognize IgG and IgE class antibodies,
respectively. Alternatively to the FcR pathways, phagocytic cells
can produce molecules of the complement system that aid
in the phagocytic process. C1q is a 18-mer integrated in a
1:1:1 proportion by the products of C1QA, C1QB and C1QC
genes included in this submodule. Although components of the
Complement System are produced in the liver, C1q is produced
extrahepatically by macrophages and dendritic cells. Apart from
its role in the classical complement pathway, C1q can bind to
calreticulin exposed in membranes of apoptotic cells (41) and
to antibodies that permeate and bind to intracellular antigens
(42). This alternative functions give C1q an important role during
apoptotic cell clearance by phagocytic cells (43) and even relates
to autoimmunity development in certain contexts (44).

To induce effector function in CD4+ T cells it is necessary
that antigens be presented by professional antigen presenting
cells (APC) through MHC class II molecules. To achieve
this, externally acquired antigens need to be processed in the
phagosome andmounted inMHC-II molecules prior to exposure
in the membrane of the APC. This submodule contains the
gene HLA-DMB, responsible for the exchange of the clip peptide
with antigen in MHC class II and shares numerous edges
with the HLA − DRAsm. This submodule also contains NCF1,
NCF2, NCF4, and CYBB, whose products are members of the
NADPH oxidase complex isoform NOX2. NOX2 catalyzes the
production of reactive oxygen species and proton consumption
in phagosomes but is also responsible for a slower acidification
of the endosomes, maintaining a higher pH which delays
protein degradation by phagosomal proteases (45). Slow protein
degradation in endosomes is associated with antigen cross-
presentation by MHC class I molecules (46), which allows
APCs to activate CD8+ T cells who normally attack infected
or transformed cells through presentation of internally-only
produced antigens.

Genes of the signal transduction process include chemokine
receptors and chemokines involved in immune cell recruitment.
CCR5 and its ligands CCL4 (also known as Macrophage
inflammatory protein-1β), CCL5 (also known as RANTES), and
XCL2, are invloved in T cell and monocyte recruitment. CXCR3
ligands CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC)
are part of the neighboring submodules CD2sm and CXCL10sm.
These cytokines are involved in leukocyte (CTLs, NKTs and
macrophages) migration. CXCL10 and CXCL11 are also reported
to be induced in response to interferon gamma (IFNγ ) (47, 48)
and are potent attractants for NK andactivated T Cells (49).

The molecules coordinated in this submodule suggest the
coregulation of genes that elicit inflammatory cell recruitment
mediated by cytokines, phagocytosis, antigen processing and
presentation. These functions are at the beginning of adaptive
immune response, and complemented by characteristic processes
of effector immune cells, particularly cytotoxic CD8+ cells. This
result will be discussed in the following section.

Frontiers in Immunology | www.frontiersin.org 6 January 2019 | Volume 10 | Article 56

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Velazquez-Caldelas et al. Inflammation and Adaptive Immunity in Breast Cancer

FIGURE 3 | Modular structure of the largest component of the network. Twenty one submodules were identified. (A) infomap visualization. Nodes correspond to each

detected module. Darkest colors and largest circles show those modules with more genes; link widths correspond to the flow between modules, proportional to the

inter-module edges. Node labels refer to genes with highest page rank in the module. (B) inter-module edges preferentially link genes with similar expression patterns.

Modules are visualized by differential expression. Red links are inter-module edges linking two overexpressed genes, blue links are analogous but regarding

underexpressed genes, gray links show intra-module edges and inter-module edges between no-differentially expressed elements.

3.4. CD2 Submodule Contains Genes
Characteristic of CD8+ T Cells
This submodule contains 87 genes, and shares most of its GO
enriched processes with the CCR5sm. CD2sm is highly connected
to the CCR5sm sharing 831 edges. Here are expressed cytokines
CXCL9, a chemotactic cytokine for lymphocytes recognized by
CXCR3 and CCL8 also known as monocyte chemoattractant
protein 2 (MCP-2), recognized by CCR5 which serves as a

chemoattractant to monocytes, which later can differentiate to
phagocytic cells , and to attract lymphocytes, including T cells.

In this module we observe genes for the components of the T
cell receptor, including the α, β and ζ chains as well as the CD3
γ , δ and ǫ chains, which amounts for the entire functional TCR
assembly. Coexpressed genes for co-stimulatorymolecules CD8A

and ICOS are also found.CD2sm contains IFNG, perforin (PRF1),
and granzymes A, B, K, and H (GZMA, GZMB, GZMK, GZMH)
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FIGURE 4 | Heatmap of GO Biological process enrichments for CCR5m submodules. In this representation, each column corresponds to a detected module

according to the network structure. Each row is the enriched biological process in the aforementioned modules. The color code represents the enrichment p-value:

red color takes account for the most significant values. In this picture can be observed that, despite CCR5sm, each module has a set of unique enriched processes,

which could be related to the specificity of functions by each submodule.

genes and EOMES. IFNG is the only member of the interferon
family that is found in the network and is a mediator in antiviral,
antimicrobial and antitumoral responses, while perforin and
granzymes are molecules responsible for the effector cytotoxic
function of CD8+ and NK cells. EOMES codes for a transcription
factor paralogue of T-bet that is induced in CD8+ T cells and has
been associated to the expression of IFNG, perforin and granzime
B in this cells (50).

For CD8+ T lymphocytes, antigens must be presented in
MHC-I molecules. MHC-I presented antigens generally come
from cytosolic degradation of proteins in the cytosol by the
proteasome. Normal cells present endogenous peptides this way,
but CD8+ T cells need to be activated by APCs that present
externally acquired antigens processed in a distinct compartment
called the phagosome. These external antigens can reach MHC-

I molecules, a process known as cross-presentation (51). In

an inflammatory environment, stimulation with interferon
gamma induces the expression of alternative components of the

proteasome modifying the way proteins are cleaved and thus
altering the repertoire of presented peptides (52).

As we mentioned in the previous section, in this submodule
we observe a funtional relationship with CCR5sm. This is

backed by the fact that CCR5sm triggers the adaptive immune
response, meanwhile CD2sm is related to effector functions,
mainly involved in CD8+ cells response, which could imply a
temporal relationship between both submodules, starting with
CCR5sm.

3.5. PSMB9 Submodule Is Associated to
MHC Class I Antigen Presentation
This submodule contains TAP1 and TAP2 , along with PSMB8
and PSMB9 genes. These are functionally related to antigen
processing and presentation via MHC class I. Antigens presented
by MHC class I are mainly peptides that result from protein
degradation in the cytosol by the proteasome. When cells
are stimulated by cytokines like IFNG, genes of alternative
components of the proteasome PSMB8, PSMB9 and PSMB10
are induced and its protein products replace components of the
catalytic center of the proteasome to form what is known as the
immunoproteasome (52).

The immunoproteasome has a distinct pattern of protein
cleavage and the resulting peptides are more efficiently
transported by TAP to the inside of the ER and more efficiently
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loaded in to MHC class I molecules. This allows the presentation
of a distinct repertoire of antigens to CD8+ T lymphocytes and
is important for the recognition and elimination of infected or
transformed cells via the Cytotoxic T Lymphocyte (CTL) induced
cell death in which perforin and granzyme play effector roles.

Previously (23), we observed in a basal breast cancer network
a module formed by PSMB9, TAP1, and UBE26 genes among
others. Said module was the only one with a significant
enrichment in processes related to apoptosis. It is worth
mentioning that in this case (undifferentiated breast cancer), we
are able to observe a similar pattern with a network obtained
from the unique connectivity pattern of inflammation-related
genes and their neighbor genes. This result may suggest that
the inflammatory process could be involved in the apoptotic
response more closely than it has been reported (53).

3.6. HLA-DRA Submodule Is Related to
MHC Class II Antigen Presentation
This submodule contains genes such as HLA-DRA, HLA-DRB,
HLA-DQA, HLA-DQB, and HLA-DMA, which are known
members of the MHC class II, and whose products are crucial
in the presentation of antigens acquired in an extracellular
fashion (Figures 3A, 4). MHC class II genes are expressed in
professional APCs and are necessary to elicit antigen-specific
responses mediated by CD4+ T cells. Genes in the MHC class
II complex are induced in monocytes after IFNγ signaling that
activates transcription factor CIITA (54).

3.7. IFI44L Submodule Is Related to
Antiviral Responses and Is the Most
Significantly Enriched
This submodule contains genes induced by interferon signaling.
The protein products of many of these genes are known for
their participation in antiviral responses. For example, OAS3
catalyzes the formation of 2′-5′ oligomers from ATP leading
to the activation of RNAse 2 which degrades endogenous
and viral RNAs. IFIH1 and IFIT1 are are cytoplasmic sensors
of viral RNAs. PARP14 which is also coexpressed in this
submodule is related to downregulation of IFNγ induced
cytokines and enhances the transcription of STAT6-dependent
genes (Figure 4).

3.8. IGLC2 Submodule Contains Genes for
Antibody Production
This submodule consists of immunoglobulin chain genes,
including heavy and light chains with variable and constant
regions. Among the immunoglobulin isotype defining chains,
this submodule contains the IGHA1, IGHG1, and IGHM heavy
chains characteristic of IgA, IgG, and IgM antibodies. IGH1A is
overexpressed, which is suggestive of IgG production, although it
needs to be demonstrated at the level of protein presence in the
tissue. In contrast to what is shown in CD2sm where the T cell
receptor components are coregulated, genes of the components
of the B cell receptor are not present except for the IGHM chain
(Figure 3).

3.9. CXCL10 Submodule Takes Part in
Lymphocyte Recruitment
This submodule contains genes that code cytokines CXCL10
and CXCL11 which are CXCR3 ligands involved in lymphocyte
migration as chemoattractants and are induced by IFNγ

signaling (49). CCL2 and CCL8, known as MCP1 andMCP2 also
are chemoattractants for leukocytes. The coordinated expression
of these genes suggests an active inflammatory process where
leukocytes are recruited to the tumor.

3.10. Association Between Inflammation
and Adaptive Immunity
In order to quantitatively evaluate the association between
inflammation and adaptive response, we performed a pathway
deregulation analysis of our data by implementing the ‘Pathifier”
algorithm (55) to identify sets of samples significantly
deregulated (this is, samples with a pathway deregulation
score, PDS > 0.4) in the inflammation and adaptive response
related pathways.

From these analyses we found that out of our 641 tumor
samples, a total of 395 (61.6%) were significantly deregulated
in both, inflammation and adaptive response, whereas 210
(32.7%) were strongly deregulated in adaptive immunity but
not in inflammation. Also 22 (3.4%) tumor samples resulted in
deregulated inflammation without significant adaptive immunity
changes and just 14 tumors (2.18%) were not significantly
affected in adaptive immunity nor in inflammation.

It is noticeable that most tumors in our study are significantly
affected in their adaptive immune responses (94.3%). This
group includes most of the inflammation affected tumors (395
out of 417, or 94.7%). In contrast there are very few tumors
without significant adaptive immune deregulation (36 out of 641
or 5.6% overall). Also scarce resulted tumors with notorious
inflammation but with no significant adaptive immunity changes
(22 out of 417 or 5.3%).

In order to further validate the aforementioned results, we
have performed a similar analysis on an independent dataset
including RNASeq data from the TCGA collaboration in breast
cancer. The proportions are as follows. Out of 993 tumor
samples, 973 samples (97.99% were strongly deregulated in
both inflammation and adaptive response. Only 12 samples
resulted significantly deregulated in inflammation with no
noticeable deregulation in adaptive immunity (1.21%) and just
8 samples with affected adaptive immunity and no significant
inflammation (0.81%). No sample among the 993 TCGA tumors
was found without significant deregulation of both processes.
Indeed, these figures support our claims of an important
role of adaptive immunity in the breast cancer phenotypes
(Supplementary Files 3, 4).

3.11. Key Genes in the Association
Between Inflammation and Adaptive
Immunity
Inflammation is a highly complex process, intrinsically including
immunosuppressive feed-back signaling to activated T cells.
For instance, expression of IL-10 and PD-L1 genes by
activated myeloid cells is supposed to inhibit adaptive T cell
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response, whereas that of Il-12, for instance, should improve
it. Similarly, adaptive immune response comprises a variety of
immunosuppressive events, eventually elicited by T cell subsets
expressing specific markers, e.g. FOXP3 for regulatory T cells.
These events may be strongly associated to other relevant
molecules in the inflammatory context, such as interferon gamma
or Granzyme B.

To answer the previous questions, we have performed
a generalized linear model (a form of logistic multivariate
regression) for the association (membership) of the four groups
of samples with the following results:

• FOXP3 expression is significantly associated (p-value = 0.0133,
postive association) to adaptive immune response in breast
tumors.

• FOXP3 and GZMB expression are significantly associated
(p-value = 2.57 E-5 for FOXP3 and 8.14E-11 for GZMB,
both postive associations) to ‘adaptive immune response plus
inflammation” in breast tumors.

• The group with ‘no adaptive immune response nor
inflammation” showed a discrete (although significant)
negative association with FOXP3 expresion (p-value = 0.027).

• Interestingly, in all tumors FOXP3 expression is highly
significant, positively associated to GZMB expression levels
(p-value = 2.0E-16)

Adaptive immune response strongly depends on the B cell
response. The association of the expression of genes related to B
cell activation/Ig production and those involved in inflammation
and T cell adaptive response is matter of interest. Being
both adaptive immunity and inflammation extremely complex
processes, comprising the concerted expression of hundreds of
genes, we decided to evaluate that relationship by performing
unsupervised learning (clustering) in the genesets associated to
these processes in the four defined groups of tumor samples
previously mentioned. The results are presented in the form
of gene signatures displayed as clustered expression heatmaps
(Supplementary File 5).

4. DISCUSSION

4.1. Co-regulated Processes Suggest a
Type I Inflammatory Microenvironment
An inflammatory reaction is elicited in response of alterations in
the tissue, recognized in the form of danger signals. An initial
production of signaling molecules is followed by the recruitment
of immune cells which in turn integrate signals and produce new
molecules to adjust the response. This is indeed what our results
suggest (see Figure 5). Our findings are also consistent with the
presence of a type I immune response in breast cancer. Type I
responses are characterized by the production of IFNγ and the
recruitment of cytotoxic T lymphocytes, which includes CD8+ T
lymphocytes (56). This type of response is associated to virus or
intracellular parasites, as well as transformed cancerous cells and
culminates in the elimination of targeted cells.

Our dataset included samples from patients with developing
tumors that received no neoadjuvant treatment. In this context,

where type I inflammatory response is associated to good
prognosis and tumor elimination, it seems paradoxical that a
favorable immune response has been related to tumor growth.

4.2. Inflammation and the Shaping of the
Microenvironment
The cellular composition of breast cancer tissue includes
cancerous cells as well as immune cell infiltrates. Among the
latter, our subnetwork suggests the presence of phagocytic and
antigen-presenting cells ( i. e. by the presence of MHC class II
in HLA − DRAsm and Fc receptors in CCR5sm) and T CD8 and
CD4 cells ( TCR components CD3D, CD3E, CD3G, TRAC, TRB-
C1, TRB-C2, and CD8α correceptor in CD2sm, as well as CD4
and CD28 correceptors in CXCR5sm ). These are indicative of
antigen-specific immune responses.

Naïve T lymphocytes that have escaped deletion by central
tolerance mechanisms do not readily migrate to tissues. Instead,
they first circulate and home to lymph nodes where they
are exposed to antigens previously captured and presented
by professional antigen presenting cells (57). If an antigen is
recognized by the TCR the cell goes through changes in gene
expression, proliferates and becomes an activated lymphocyte
(58) (Figure 5). This process is called priming. Primed cells
are able to enter inflammed tissues and exert their effector
functions when they encounter their specific antigen. In some
circumstances effector functions can be minimized or suppressed
in the presence of antigen, what is known as peripheral tolerance.

Tolerance to self-antigens is necessary to avoid autoimmune
tissue destruction, while tolerance to antigens derived from
food and microbiome components keeps inflammation at bay.
However, in the context of infections and cancer, tolerance may
be part of the contributing factors of the pathology of chronic
disease.

The effector function of CD8+ T cells is to kill cells
infected with intracellular parasites (virus or bacteria such as
mycoplasma) or transformed cells. This is achieved by means of
membrane disruption and activation of the apoptosis extrinsic
pathway. The latter is done by directed vesicle secretion of
perforin and granzymes (PRF1, GZMA, GZMB, GZMH, GZMK
in CD2sm) over the target cell. In order to achieve this, an
activated CD8+ cell must recognize its antigen presented in
MHC class I molecules expressed in the surface of the target
cell (59). Given that CD8+ cells respond to antigens produced
an processed inside presenting cells, priming of naïve CD8+ by
APCs must be made by cross presentation of externally acquired
antigens (57).

In a CD8+ antitumoral reponse, antigens can be acquired in
the tumor by phagocytic cells, then transported to secondary
lymphoid organs and cross presented to prime CD8+ T cells
after which activated CD8+ cells migrate to inflammation sites
and ideally kill cells that present the antigen. The activation of
CD8+ cells results in a pattern of clonal expansion, followed
by clonal reduction and survival of memory cells, all this
in consonance with the apperance, presentation and eventual
clearance of the antigen. However, if antigen is persistently
presented and it is recognized with high affinity, clonal reduction

Frontiers in Immunology | www.frontiersin.org 10 January 2019 | Volume 10 | Article 56

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Velazquez-Caldelas et al. Inflammation and Adaptive Immunity in Breast Cancer

FIGURE 5 | Modules in the network are enriched in processes of complementary biological functions. CCR5sm contains genes involved in antigen acquisition via

receptor mediated phagocytosis, endosome components, as well as a number of chemokines that mediate immune cell recruitment. PSMB9sm contains genes of

components of the immunoproteasome and MHC-I molecules involved in the presentation of internally produced antigens. The immunoproteasome is induced by

IFNγ signaling and is associated with a response to intracellular infections and transformation in tumor cells. HLA− DRAsm contains MHC-II genes involved in antigen

presentation to CD4+ T lymphocytes. Other modules like IFI44Lsm also contain interferon-induced genes annotated with antiviral functions. CD2sm has genes

involved in T lymphocyte function, including T cell receptor components and co-receptor molecule CD8A as well as other genes related to T cell cytotoxic function like

perforin and granzymes. Inside tumors, antitumor mechanisms coexist with tolerance mechanisms which impair tumor immune destruction. Our results suggest an

active process of tolerance where cytotoxic CD8+ lymphocytes turn to anergic/memory cells that no longer fight the tumor. This is supported by the coregulation of

CD8A and IL7R genes in CD2sm but not of CD8B. Other modules like IGLC2sm contain genes of immunoglobulin chains, including constant and variable chains that

may be indicative of the presence of B lymphocyte infiltrates.

and effector function are altered (60). Chronic exposure to
antigen is associated to downregulation of TCR and CD8
signaling components, and the expression of anergy-specific
genes (i.e. Itch, Cbl-b and GRAIL) (60).

Redmod and Sherman (60) proposed a model that explains
how chronic antigen exposure can lead to persistence of anergic
T CD8+ cells. In this model, strong signaling through the
TCR eliminates many of the activated cells either throug
IL7Rα receptor downregulation or a decrease in antiapoptotic
molecules. Meanwhile, strong TCR signaling in the surviving

cells produces an increase in free calcium levels triggering anergy
and a reduction in the Ras-ERK proapoptotic signaling.

In our network CD8A and IL7R genes are coregulated in
the CD2sm. IL7Rα and CD8αα are associated to the survival
and development of memory CD8+ T cells (61, 62). This is
particularly intriguing, given that our expression matrix contains
both CD8A and CD8B genes for the CD8α and CD8β subunits
of the CD8 correceptor, but only CD8A is included in the
network. This may point out to purely CD8αα signaling, which is
hypothesized to exert a weaker TCR signaling response. Anergic
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CD8 T cells need to be exposed to antigen to maintain anergy,
and when antigen is removed, cells recover its response capacity.

For the construction of this network, interactions and genes
were obtained from a background that included the whole
genome (gene set defined by the HGU133 plus2 platform) and
the strength and ranking of the statistical dependencies between
gene pairs was not known a priori. Only 76 out of a total of 942
genes in the network are annotated as part of the inflammatory
response process, which represents 8% of the network gene count.
Meanwhile 694 genes in the network are annotated as part of
the immune response process, that is 74% of the genes in the
network.

The whole network was constructed taking into account all
inflammation-associated genes, the modular and submodular
structure of this network groups specific functional processes
for particular modules (Figure 4). This could reflect the
compartmentalization of immune response, activating sets of
genes depending on the type of response that should be triggered.
In these terms, general modules could be active as a first response
under cellular damage or an external influence. For example,
CCR5 and SPARCmodules are associated to two different general
cell processes: immunity (CCR5) and extracellular remodeling
(SPARC). Our interpretation here is that modules partially reflect
cell types present in the tumor microenvironment and that are
sampled as part of the biopsy. This is specially suggested in
the CD2sm where a number of genes characteristic of CD8+ T
lymphocytes are grouped together.

Immune response is a keystone in cancer behavior. The
fact that several immune-related processes are divided into
coexpressed compartments could optimize the immune response
depending on the specific type of stimulus. A clear example of the
aforementioned is the distinction between MHC class I and II in
two separated and barely communicated submodules: PSMB9sm
is associated to MHC class I and HLA − DRAsm takes account
for MHC class II. Along with this, IFI44Lsm is associated to viral
response (Figure 4). This effect has been previously observed by
our group (23, 63, 64). Again, the topology of modules in the
network is strongly associated to specific and separated functions.

Concomitantly, the interconnection between submodules
inside the modules could be associated to fluxes of information
between processes or cooperativity between modules. This is
the case of CCR5sm and CD2sm. In Figures 3A,B it is possible
to observe that the strongest link between submodules occurs
in this pair. Furthermore, the number of common enriched
processes between modules is the highest. Processes related
to T-cell activation and adaptive immune response are shared
between these two submodules, indicating possible cooperation
mechanisms under the need to stimulate T-cell activity.

Interestingly enough, ZFPM1 module, despite the fact that
it contains 173 genes does not result statistically enriched for
any biological process at our chosen significance threshold. This
results remarkable since the belonging genes are not differentially
expressed (white genes clustered in left side of Figure 2). These
genes may not be part of the global response that cell performs
under an external stimulus.

The results obtained from our network of inflammation-
associated genes suggest that in primary, untreated breast cancer

tumors, the balance between antitumor response and immune
tolerance involving CD8+ T cells is tipped in favor of the
tumor. A possible mechanism being the induction of tolerance
and anergization of these cells by persistent antigen exposure.
This hypothesis is supported by the presence of modules in the
network with genes that enrich processes and pathways related to
antigen acquisition, processing and presentation, as well as genes
characteristic of CD8+ T effector cells.

5. SUMMARY

In breast cancer, several kind of efforts must be achieved in order
to understand the complex interplay between factors shaping
cancerous phenotypes. In this sense, the modular analysis of the
network structure observed here, provides us with an alternative
framework of the aforementioned interplay between specific
modules that take account of particular biological processes that
are activated in response to external stimuli. Furthermore, the
observed results highlight the compartmentalized structure of
co-regulated genes that may act and behave together in a well-
defined time and space.

The global genetic regulatory program observed in the
form of a gene network may provide insights to understand
the complex mechanisms behind relevant processes for cancer
development such as inflammation and the adaptive immune
response. To disentangle the association between these two
events by using an information theoretical approach have
allowed us to analyze at an extremely detailed level such
regulatory programs. Said efforts will surely increase our
knowledge on the complexity of this dismal disease and provide
important tools for a personalized medicine (65) aimed to
produce better diagnostic, prognostic and therapeutics for breast
cancer.
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