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Brain-infiltrating lymphocytes (BILs) were isolated from resected brain tissue from 10

pediatric epilepsy patients who had undergone surgery for Hemimegalencephaly (HME)

(n = 1), Tuberous sclerosis complex (TSC) (n = 2), Focal cortical dysplasia (FCD)

(n = 4), and Rasmussen encephalitis (RE) (n = 3). Peripheral blood mononuclear cells

(PBMCs) were also isolated from blood collected at the time of the surgery. Cells were

immunostained with a panel of 20 antibody markers, and analyzed by mass cytometry.

To identify and quantify the immune cell types in the samples, an unbiased clustering

method was applied to the entire data set. More than 85 percent of the CD45+ cells

isolated from resected RE brain tissue comprised T cells; by contrast NK cells and

myeloid cells constituted 80–95 percent of the CD45+ cells isolated from the TSC and

the FCD brain specimens. Three populations of myeloid cells made up >50 percent of

all of the myeloid cells in all of the samples of which a population of HLA-DR+ CD11b+

CD4− cells comprised the vast majority of myeloid cells in the BIL fractions from the FCD

and TSC cases. CD45RA+ HLA-DR− CD11b+ CD16+ NK cells constituted the major

population of NK cells in the blood from all of the cases. This subset also comprised the

majority of NK cells in BILs from the resected RE and HME brain tissue, whereas NK cells

defined as CD45RA− HLA-DR+ CD11b− CD16− cells comprised 86–96 percent of the

NK cells isolated from the FCD and TSC brain tissue. Thirteen different subsets of CD4

and CD8 αβ T cells and γδ T cells accounted for over 80% of the CD3+ T cells in all of

the BIL and PBMC samples. At least 90 percent of the T cells in the RE BILs, 80 percent

of the T cells in the HME BILs and 40–66 percent in the TSC and FCD BILs comprised
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activated antigen-experienced (CD45RO+ HLA-DR+ CD69+) T cells. We conclude that

even in cases where there is no evidence for an infection or an immune disorder, activated

peripheral immune cells may be present in epileptogenic areas of the brain, possibly in

response to seizure-driven brain inflammation.

Keywords: brain, epilepsy, inflammation, peripheral immune cells, mass cytometry (CyTOF)

INTRODUCTION

It has been estimated that by 15 years of age, approximately one
percent of children will have experienced at least one seizure
(1). For reasons that may not always be understood ∼10% of
children go on to develop medically refractory epilepsy, which
is defined as a failure of two or more antiepileptic drugs to
control seizures, and at least one seizure per month for ≥18
months (2). Recurrent seizures may severely impair a child’s
cognitive development leading to lifelong learning and behavioral
difficulties. For children with drug-resistant epilepsy, surgery
may be the only option to obtain seizure freedom, but will result
in neurological deficits if the zone of resection involves eloquent
cerebral cortex.

Many of the children who are candidates for epilepsy surgery
suffer from rare neurological disorders including Rasmussen
encephalitis (RE), Tuberous Sclerosis Complex (TSC), Focal
Cortical Dysplasia (FCD), and Hemimegalencephaly (HME). RE
patients present with partial (focal) seizures; magnetic resonance
images (MRI) may indicate inflammation and atrophy in the
affected cerebral hemisphere (3). The inflammation may spread
through the affected cerebral hemisphere, but generally does not
cross over to the contralateral hemisphere (4). Histopathological
examination of resected brain tissue and brain biopsies show T
cells in perivascular spaces, leptomeninges, and in small clusters
scattered throughout the affected gray and white matter (5, 6).
Clonally focused T cells have been found in resected RE brain
tissue strongly implicating an antigen driven immune response
in disease etiology (7–10).

In TSC patients, germ line and somatic dominant loss of
function mutations in the genes encoding hamartin (TSC1) or
tuberin (TSC2) can cause the development of benign tumors and,
abnormally differentiated cortical neuronal progenitors that may
cause focal seizures (11). Tuberin and harmatin are components
of a complex that regulates the activity of the protein kinase,
mTOR (12). Similarly, FCD andHME can be caused by activating
somatic mutations in the MTOR gene, and in genes that
regulate mTOR activity (13–15). Histopathological examination
of resected brain tissue and analysis of RNA transcripts has
shown that FCD and TSC lesions may be associated with an
inflammatory reaction (11, 16–19).

In the present study we report on the characterization, bymass
cytometry, of brain-infiltrating lymphocytes (BILs) isolated from
surgical resections of epileptogenic tissue to treat FCD, TSC, and
HME, as well as RE, and of peripheral blood mononuclear cells
(PBMCs) prepared from blood collected at the time of surgery
from the same cases. Immune cell profiling showed that activated
T cells were present in brain tissue from all of the cases examined,
and that the relative abundance of adaptive and innate lymphoid

cells, and myeloid cells markedly differed between the RE and
non-RE cases.

METHODS

Patient Cohort
Under UCLA IRB approval (IRB#18-000154) brain tissue and
blood were collected at surgery as part of UCLA’s Pediatric
Epilepsy Surgery Program. All of the patients or their parents
or legal guardians provided informed consent for the use of the
surgical remnant and blood for research purposes. All specimens
were collected using the same standard operating procedures.
De-identified patient information including age at seizure onset,
age at surgery, gender, and affected cerebral hemisphere was
collected with informed consent (Table S1).

Isolation of Peripheral Blood Lymphocytes
and Brain-Infiltrating Lymphocytes
PBMCs were isolated by density gradient centrifugation using
Ficoll-Paque PLUS (GE Healthcare, Piscataway, NJ). BILs were
isolated from collagenase-treated brain tissue by fractionation
on a step gradient (20). Briefly, brain tissue was diced manually
on ice in dissociation solution (HBSS with 20mM HEPES pH
7.0, 5mM glucose, and 50 U/ml penicillin/streptomycin). Tissue
fragments were incubated with agitation at room temperature
overnight in dissociation solution containing 0.5 mg/ml Type
IV collagenase (Worthington Biochemical Corp., Lakewood, NJ)
and 5% filtered human serum (Mediatech Inc., Manassas, VA).
The dissociated tissue was fractionated on a 30%: 70% Percoll R©

(SigmaAldrich, St. Louis, MO) step gradient in RPMI containing
20mM HEPES. PBMCs and BILs were cryopreserved in 90%
human serum /10% DMSO.

Multiparameter Mass Cytometry
The panel comprised the following markers: CD45 (89Y
or 154Sm), CD196 (141Pr), CD19 (142Nd), CD69 (144Nd),
CD4 (145Nd), CD8 (146Nd), CD25 (149Sm), CD103 (151Eu),
CD45RA (155Gd), CD183 (156Gd), CD56 (163Dy), CD45RO
(164Dy), CD16 (165Ho), TCRγδ (168Er), CD3 (170Er), CD195
(171Yb), HLA-DR (174Yb), CD194 (175Yb), CD127 (176Yb),
and CD11b (209Bi). All metal-tagged antibodies (Abs) were
obtained from Fluidigm (San Francisco, CA) except the CD8 and
TCRγδ antibodies, which were conjugated in-house. PBMCs and
BILs were stained according to Fluidigm’s protocol. In brief, cells
were thawed, and washed in phosphate-buffered saline (PBS);
prior to staining BILs were filtered through a 40µm sieve to
remove any aggregates. Cells were resuspended in 1ml of PBS
and stained for 5min with 1µM Cisplatin. After quenching
the staining with Maxpar R© cell staining buffer (Fluidigm), cells
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were incubated with the cocktail of Abs in 100 µl of Maxpar R©

cell staining buffer for 30min at room temperature. The Ab
cocktail for staining PBMCs contained the CD45 Ab conjugated
to Samarium 154 (154Sm) while the BIL Ab cocktail contained
the CD45 Ab tagged with Yttrium 89 (89Y). Following two wash
steps, cells were fixed overnight at 4◦C in Maxpar R© fixation
and permeabilization buffer containing 0.125µM Intercalator-
Ir (Fluidigm). BILs and PBMCs from the same surgery were
combined at this point and washed twice with Maxpar R© cell
staining buffer and a further two times with water. Having
barcoded the BILs and PBMCs with a different metal-conjugated
CD45 Ab it was possible to analyze them as single sample,
thus the larger number of PBMCs served as a carrier for the
smaller number of BILs that were isolated from brain tissue. Cells
were resuspended in 10 percent EQTM Four Element Calibration
Beads (Fluidigm) containing Cerium (140/142Ce), Europium
(151/153Eu), Holmium (165Ho), and Lutetium (175/176Lu).
Samples were acquired on a Helios R© cytometry time of flight
(CyTOF) system (Fluidigm) at an event rate of 300–500 events/s.
Post-acquisition data normalization was done using bead-based
normalization in the CyTOF software. Prior to analysis, data were
gated to eliminate normalization beads, debris, dead cells, and
doublets.

The analysis of FCS files was initially carried out using
Cytobank (21). For each surgery case, the marker expression
on the BILs was resolved by first gating live singlets on
CD45 (89Y). Conversely marker expression on PBMCs was
resolved by first gating on CD45 (154Sm). The data were
then split into two separate FCS files using software tools
in Cytobank (21). To define subsets of immune cells in
each BIL and PBMC population, the entire high dimensional
dataset (comprising 20 FCS files) was converted into a
matrix of pair-wise similarities by implementing the t-based
stochastic neighbor embedding (t-SNE) algorithm, followed
by a density-based clustering method (ClusterX) (22). The
resulting 2-D plots from this procedure were exported to
CorelDraw2017 as portable document format files (Corel
Corporation, Ottawa, Canada). Individual FCS files were
analyzed using FlowJo R© software (FlowJo LLC, Ashland, OR); 2-
D contour plots were exported as scalable vector graphic (svg)
files to CorelDraw2017. The median level of expression of each
marker was used to assign a phenotypic identity to each cluster.
Heat maps were generated using Morpheus software (www.
broadinstitute.org) and exported to CorelDraw2017 as svg files.
Principal component analysis (PCA) was performed using PAST
software (https://palaeo-electronica.org/2001_1/past/issue1_01.
htm).

RESULTS

PBMCs and BILs isolated from 10 pediatric epilepsy cases were
analyzed by CyTOF using a panel of antibodies designed to
identify populations of adaptive lymphoid cells, innate lymphoid
cells, and myeloid cells. Implementing the mass cytometry data
analysis pipeline developed by Chen et al. (21) generated 46
clusters, corresponding to putatively distinct populations of

CD45+ cells (Figure 1). Clusters were classified as T cells, NK
cells, and myeloid cells based on the relative expression of 19
immune cell markers. Immune cell clusters were divided into a
CD3+ (n = 30, median CD3 expression values of 4.648–6.283)
and a CD3− group (n = 16, median expression values of 0.001–
0.81). The CD3+ groupwas subdivided into subsets of CD4, CD8,
and γδ T cells based on the level of expression of these three
phenotypic markers (Figure 2). The CD3− group was further
divided into five NK cell subsets, ten myeloid and one B cell
population based on the expression of CD56 andCD19 (Figure 2;
Table S2).

Visual inspection of the t-SNE plots (Figure 1) showed that
there were clear differences between the BILs from each surgical
case compared with the corresponding PBMCs. On the other
hand, the profiles of BILs from the two TSC (Case IDs 460 and
462) and the four FCD cases (Case IDs 475, 490, 494, and 495)
appeared to be very similar and distinct from the three RE cases
(Case IDs 472, 484, and 497), and dissimilar from the HME (Case
ID 485), which appeared more similar to the RE cases. Principal
components analysis based on the relative abundance of all of the
clusters in each sample (percentages of CD45+ cells) confirmed
this observation, and also showed that the immune cell profiles of
PBMCs from all of the cases were very similar (Figure 3). From
the magnitude of the PCA loading values (Table S3), Clusters 1
and 8 accounted for the largest amount of variance in the first
component, thus, the relative numbers of NK andmyeloid cells in
the BIL fractions appears to explain in largemeasure the observed
difference between the TSC and FCD BILS compared with the RE
and HME BILs. As summarized in Figure 4, CD45+ cells from
the FCD and TSC brain tissue specimens comprised far more NK
cells and myeloid cells than CD45+ RE BILs, which in agreement
with previous studies (5, 6, 20, 23), were predominantly CD8+

αβ T and γδ cells, The HME BILs comprised approximately equal
numbers of T cells, NK cells and myeloid cells.

Three populations of myeloid cells (Clusters 1, 7, and 45)
(Figure 2) made up >50 percent of all of the myeloid cells in
all of the samples (Figure 5; Table S4). The Cluster 1 myeloid
population comprised the vast majority of CD11b+ cells in the
BIL fractions from the FCD and TSC cases (Figure 5), whereas
Cluster 7 CD11b+ myeloid cells were more abundant in two of
the three RE BIL fractions (Case IDs 472 and 484), and in all
of the PBMCs (Figure 5). The only other marker that defined
the Cluster 1 population was HLA-DR, thus it was not possible
to assign a definitive phenotype to cells in this population, but
they are likely to be macrophages. Likewise, Cluster 7 cells,
which are CD3− CD4lo could constitute a dendritic cell or
monocyte population, but additional markers are also required
to adequately define this population.

Cluster 3 NK cells are CD56+ CD45RA+ HLA-DR− CD11b+

CD16+ (Figure 2), and constituted the major population of NK
cells in the blood from all of the cases (Figure 5). This subset
also comprised the majority of NK cells that were found in
BILs from the resected RE and HME brain tissue (Figure 5).
By contrast, Cluster 8 NK cells, defined as CD56+ CD45RA−

HLA-DR+ CD11b− CD16− (Figure 2) comprised 86–96 percent
of the NK cells isolated from the FCD and TSC brain tissue
(Figure 5; Table S4). We confirmed the existence of Cluster 3

Frontiers in Immunology | www.frontiersin.org 3 January 2019 | Volume 10 | Article 121

www.broadinstitute.org
www.broadinstitute.org
https://palaeo-electronica.org/2001_1/past/issue1_01.htm
https://palaeo-electronica.org/2001_1/past/issue1_01.htm
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Owens et al. Cellular Immunity in Intractable Pediatric Epilepsy

FIGURE 1 | tSNE plots showing the relative number of different immune cells in BILs and PBMCs from the pediatric epilepsy surgeries. The expression of 20 immune

cell markers was analyzed by CyTOF. To define subsets of CD45+ cells in each BIL and PBMC population, the entire high dimensional dataset (comprising 20 FCS

files) was converted into a matrix of pair-wise similarities by implementing the t-based stochastic neighbor embedding (t-SNE) algorithm, followed by a density-based

clustering method (ClusterX). The clusters were assigned as either T cells, NK cells, myeloid cells, or B cells based on the median expression values of specific

immune cell markers (CD3, CD4, CD8, TCR γδ, CD11b, CD56, and CD19).
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FIGURE 2 | Assignment of immune cell phenotypes. The median expression values of 19 immune cell markers, calculated by the Cytofit software, were used to

assign a phenotype to each cluster of CD45+ cells (Table S2). The data were first separated into CD3+ and CD3− clusters, and the CD3+ populations were further

subdivided into CD4+, CD8+, γδ subsets. The CD3− populations were categorized as myeloid, natural killer cell, or B cell based on the expression of CD56 and

CD19. Heat maps generated from the median expression values included all the markers that were expressed on cells in the CD3+ CD4+, CD3+ CD8+, CD3+ γδ+,

CD3− CD56+, CD3− CD19+/− clusters, respectively. The median expression value of the two different CD45 antibody metal conjugates used to stain the PBMC and

BIL fractions reflects the relative number of PBMCs and BILs in each cluster.

and 8 NK cell populations by manually curating the original
FCS files from FCD case 490 using the FlowJO software package
(Figure S1A).

Six subpopulations of CD4+ αβ T cells (Clusters 2, 5, 9, 12,
15, and 23), four of CD8+ αβ T cells (Clusters 4, 10, 13, and
14), and three subsets of γδ T cells (Clusters 11, 26, and 42)
accounted for over 80% of the CD3+ T cells in all of the BIL
and PBMC samples, although there were marked differences in
the proportion of the different T cell subsets between the BIL and
PBMC samples (Figure 5; Table S4). Clusters 2, 9 and 23 CD4+

T cells constitute naïve T cell populations (CD45RA+ CD45RO−

CD127int) (Figure 2); different median levels of expression of
CD4 and CD127 appear to account for the generation of two
clusters of naïve conventional T cells (Clusters 2 and 23), whereas
expression of CD56 by Cluster 9 CD45RA+CD45RO−CD4+ T
cells indicates that they may be unconventional NKT cells.

Clusters 5 and 15 define two different subpopulations of
antigen-experienced CCR4+ CD4+ T cells (Figure 2). Based on

the expression of CD25, the interleukin-2 receptor α chain (IL-
2R) and lack of CD127, the interleukin-7 receptor α chain (IL-
7R), Cluster 15 cells appear to be conventional regulatory T
cells (Tregs) (24), and were found almost exclusively in the BIL
fractions (Figure 5). Additional minor populations of CD45RO+

CD25+ CCR4+ CD4T cells (Clusters 21, 22, 30, and 38) found
predominantly in the blood may also be Tregs (Figure 2). Cluster
5 CD4 cells were found in both the brain and blood, and may
be both IL-7 and IL-2 dependent (Figures 2, 5). Cluster 12
defined an activated effector memory population of CD4T cells
(CD45RO+ HLA-DR+ CD69+) (Figure 2) that was found in all
of the BIL fractions (Figure 5). These cells also expressed the
chemokine receptors CXCR3 and CCR5 thus may have trafficked
to the epileptogenic brain area that was resected, possibly due to
local inflammation (25).

Cluster 4 CD8T cells were primarily found in the PBMC
fractions and appear to correspond to an activated unprimed
subtype (CD45RA+ CD127+) since they also expressed the
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FIGURE 3 | Clustering of BILs and PBMCs from pediatric epilepsy surgeries.

The relative number of cells in each cluster in each sample (as a percentage of

the total number of CD45+ cells analyzed in each sample) was used to

implement a principal component analysis (PCA). The first two components

could account for 65.72% of the total variance in the data set. The 2D PCA

plot shows that the BIL fractions are clearly different from the corresponding

PBMCs, and that BILs from the RE and HME cases are distinct from those

from the FCD and TSC cases.

chemokine receptor CXCR3 (26). A CD45RA+ CD45ROlo

subpopulation (Cluster 14) made up most of the remaining
CD8T cells in the blood (Figures 2, 5;Table S4). Cells in Clusters
10 and 13 appear to be activated (CD69+ HLA-DR+) effector
memory subtypes, and were found almost exclusively in the
brain (Figures 2, 5). Based on the marker panel used in this
study, the only difference between these two clusters was the
expression of the resident memory marker CD103. Fewer Cluster
13 CD8+ resident memory T cells (TRM) were found in the
brain compared with Cluster 10 T cells with one exception, Case
ID 484, a RE patient. In agreement with previous work (27),
the majority of the CD8+ T cells isolated from resected brain
tissue from this patient were TRM cells. Likewise, the majority of
γδ T cells isolated from a second RE case (Case ID 472) were
TRM cells (Cluster 26, Figure 5) (27). Cluster 26 and Cluster
42 γδ T cells expressed the activation markers CD69 and HLA-
DR and were almost exclusively found the brain (Figures 2, 5).
These two activated subsets comprised 88–98 percent of the γδ

T cells in the RE BIL fractions, whereas a third subset, Cluster
11, a CCR5+ CXCR3+ effector memory population (CD45RA+

CD45ROint CD127+) contributed up 70 percent of the γδ T
cells in the other cases (Table S4). The Cluster 11 subset also
made up the vast majority of γδ T cells in the blood from
all of the cases (Figure 5). We verified the existence of all of
the major T cell populations defined by the ClusterX clustering
algorithm by manually curating several of the original FCS files
(Figures S1B–D).

The donut plots in Figure 6 summarize the proportion of
CD69+ HLA-DR+ T cells found in each of the BIL fractions from

the 10 surgery cases. At least 90 percent of the T cells isolated
from the RE cases and 80 percent of the T cells from the HME
case were activated. Even though T cells made up only a small
fraction of the CD45+ cells isolated from the TSC and FCD cases,
40–66 percent of the T cells were also activated at the time of
surgery.

The absence of CD8+ TRM cells in the BIL fraction from
RE case ID 497 suggested that the disease may not have
progressed as far in this patient compared with the other two
RE cases in the study cohort (Cases IDs 472 and 484). A
[18F]-deoxyglucose positron emission tomography (FDG-PET)
brain scan of the patient made before the surgery showed
hypometabolism extending over the entire affected hemisphere,
with no definitive areas of atrophy. In the other two RE cases,
areas of atrophy were clearly visible (Figure 7). Case ID 497 was
the youngest of the three RE patients at the time of seizure onset
and underwent surgery after the shortest time following onset of
seizures (Table S1).

DISCUSSION

We have used CyTOF to gain a better understanding of the
involvement of peripheral immune cells in intractable epilepsy in
children. We implemented an unsupervised clustering method
to resolve the resulting high dimensional data into the main
subtypes of adaptive and innate lymphoid cells present in
resected epileptogenic brain tissue. Our small cohort study, and
other recent work (28) implicate cellular immunity not only in
RE, but in intractable epilepsy in children where an infection or
immune disorder is not suspected. With the caveat that we only
analyzed a limited number of surgery cases, we found a clear
difference in the relative number of innate vs. adaptive peripheral
immune cells in fractions of CD45+ cells isolated from resected
TSC and FCD brain tissue compared with involved RE brain
tissue. The FCD and TSC BIL fractions were dominated by a
single subset of NK cells (Cluster 8) and a population of myeloid
cells (Cluster 1) that are likely to be macrophages, possibly
classically activated pro-inflammatory M1 macrophages. Adding
CD38 and CD163 antibodies to the staining panel will allow us
to distinguish between M1 and M2 macrophages, respectively
(29, 30). In an animal seizure model, infiltrating monocytes were
shown to exacerbate neuronal damage (31), indicating that the
abundant myeloid population that we found in the FCD and TSC
BIL fractions may be pathologically relevant.

Most NK cells in the blood express a low level of CD56
(CD56dim) and are CD16+, thus can engage in antibody-
dependent cell-mediated cytotoxicity by binding antibody-
coated target cells via the low affinity Fcγ receptor III (CD16)
(32). Fewer circulating NK cells express a high level of CD56
(CD56bright); these cells generally lack CD16, but can produce
pro-or anti-inflammatory cytokines (32). CD56bright NK cells
are considered to be more immature than CD56dim NK cells
in that they mostly do not express killer cell immunoglobulin-
like receptors (KIRs) (33). Unlike CD56dim NK cells they express
CD62L (L-selectin) and CD197 (CCR7), cell surface molecules
that facilitate homing to secondary lymph nodes (32). CD56dim
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FIGURE 4 | Immune cell profiles of BILs. Donut plots show the relative number of lymphoid cells, myeloid cells and B cells in the BIL fractions isolated from resected

brain tissue. Lymphoid cells are divided into CD4, CD8, and γδ T cells and NK cells. Each chart corresponds to one of the surgery cases, and are arranged according

to the clinical diagnosis (TSC: 460, 462; FCD: 475, 490, 494, 495; HME: 485; RE: 472, 484, 497). The data are presented as percentages of the number of CD45+

cells in each BIL fraction.

FIGURE 5 | Heat maps showing the subsets of T cells, NK and myeloid cells that account for the majority of lymphoid and myeloid cells in each BILs and PBMC

fraction. The heat maps show the relative abundance of each cluster as a percentage of the total number of CD4 αβ T cells, CD8 αβ T cells, γδ T cells, NK cells or

myeloid cells, respectively in each BIL and PBMC fraction (Table S4).

NK cells express KIRs and CD57 and are considered to be
intrinsically more cytotoxic (32, 33). The most abundant NK
cells that we found in the blood of all of the patients in
our study cohort presumably correspond to CD56dimCD16+

NK cells (Cluster 3). This subset also comprised the majority
of NK cells present in the BIL fractions from the RE and
HME patients (Figure 5). Adding CD62L, CD197, and CD57

to the marker panel will clarify the phenotype of Cluster 3 NK
cells.

By comparison to the NK cells in the PBMC fractions, the
majority of NK cells found in the FCD and TSC BIL fractions
expressed a lower level of CD56 suggesting that they correspond
to a CD56dim subset (Cluster 8) (Figure 2, Figure S1A). Unlike
canonical CD56dim NK cells, Cluster 8 cells did not express
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FIGURE 6 | The proportion of activated T cells in the BIL fractions. Donut plots show the relative number of CD69+ HLA-DR+ CD4, CD8, and γδ T cells as

percentage of the CD3+ cells in each BIL fraction. Each chart corresponds to one of the surgery cases, and are arranged according to the clinical diagnosis (TSC:

460, 462; FCD: 475, 490, 494, 495; HME: 485; RE: 472, 484, 497). The different activated subsets are color coded; the gray area denotes the percentage of T cells

that did not express activation markers.

FIGURE 7 | [18F]-deoxyglucose positron emission tomography (FDG-PET) identified areas of atrophy in RE cases 472 and 484 (red arrows). In RE case 497 there

were no obvious signs of atrophy in the affected hemisphere, rather decreased glucose metabolism over the entire hemisphere was apparent.

CD16, however populations of CD56dim NK cells expressing
little or no CD16 have been previously described (34). Lack
of CD16 may be due to the fact that the Cluster 8 NK
cells were highly activated; it has been reported that the Fcγ
receptor III is proteolytically cleaved in degranulating CD56dim

NK cells (35). In contrast to Cluster 3 NK cells, Cluster 8
NK cells also expressed HLA-DR (Figure 2, Figure S1A), which
suggests that they may be adaptive NK cells (32, 33). A third
population of NK cells (Cluster 33), only found in appreciable
numbers in BILs from the HME case (Case ID 485) expressed
CD69 along with CCR5, CXCR3, and CD103 suggesting that

this cluster may correspond to an activated resident subset
(32).

BIL fractions from the RE cases were predominantly CD8 αβ

and γδ effector memory and resident memory T cells with fewer
effector memory CD4T cells, confirming previous work (20, 27).
We and others have shown that T cells found in RE brain are
clonally focused (7–10), which strongly implicates an antigen-
driven adaptive immune response in the etiology of RE, and is
consonant with the idea that RE is an autoimmune disease (36).
Finding TRM CD8 αβ and γδ T cells in affected RE brain tissue
indicates that an earlier immune response had occurred that left
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a resident memory population in place. Compared with RE cases
472 and 484 however, no TRM cells were present in the BILs
isolated from RE case 497, suggesting that this case may represent
an early stage of the disease. In support of this idea, brain atrophy,
a feature of late phases of the disease (4), was not evident in an
FDG-PET brain scan of RE case 497, but was in RE cases 472 and
484 (Figure 7).

In pathological specimens from FCD and TSC surgeries
scattered T cells have been previously observed (16, 17), and in
our study we found activated CD4, CD8, and γδ T cells in the BIL
fractions from the FCD and TSC cases (Figure 6). Determining
the clonal diversity of these T cells by sequencing Vβ chain third
complementarity determining regions may indicate whether they
are unspecific bystanders or presage an adaptive response against
self-antigens. Binding of self-peptides would however depend
on the MHC alleles carried by the individual (37–39). The
proportion of activated T cells in the single HME case (Case ID
485), which exceeded the number of NK cells (Figure 4), may
indicate that an autoimmune response had already occurred in
this very young patient who suffered from severe seizures. Future
recall assays in which T cells isolated from resected brain tissue
are cocultured with autologous neurons and glia differentiated
from patient-derived induced pluripotent stems cells will directly
answer whether the T cells are autoreactive.

The immune cell profiles of peripheral blood from all of the
cases comprised both naïve and antigen experienced T cells. γδ

T cells that were CD127+, CD45RO+, CXCR3+, and CCR5+

comprised the majority of γδ T cells in all of the PBMC samples,
as well as in the FCD and TSC BILs (Cluster 11; Figures 2, 5,
Figure S1D). They likely express Vδ2/Vγ9 TCR receptors (40)
since Vδ2/Vγ9 γδT cellsmake up a large fraction of circulating γδ

T cells (41). Expression of CXCR3 and CCR5 would allow these
γδ T cells to access sites of inflammation (26). CXCR3 expression
by naïve CD45RA+ CD8T cells (Cluster 4; Figure 2, Figure S1C)
indicates that they are activated (42), and that development
into effector T cells may be enhanced (43, 44). Whether the
presence of these T cell subsets in the blood is directly related
to inflammation in the brain remains to be determined. In
future work we plan to compare the immune cell profiles of
blood collected at the time of surgery and after recovery from
surgery. Removal of epileptogenic brain tissue, the potential
source of inflammation may change the relative frequency of
specific circulating T cell subsets. Such subsets could potentially
be used as biomarkers to assess the extent brain inflammation in
children presenting with intractable epilepsy.

The distribution of the two most abundant CCR4+ CD4T
cell subsets (Clusters 5 and 15) differed between the blood
and brain. Cluster 15 cells were almost exclusively found in
BIL fractions, and appear to be activated effector memory-
like Tregs (CD25+ CD45RO+CD69+HLA-DR+) (Figures 2,
5, Figure S1B). Tregs are also defined by expression of the
transcription factor FOXP3 (24); adding this intracellular marker
to the CyTOF panel will confirm the identity of these CD4T
cells. In a cohort of pediatric epilepsy surgery patients, a negative
correlation between seizure frequency and the relative number
of Tregs in resected epileptogenic brain was recently reported

(28). In our study cohort, the relative number of Cluster 15
Tregs cells ranged from 2.61 to 31.53 percent of CD4T cells in
the BIL fractions (Table S4). However, the limited number of
self-reports of seizure activity available do not allow us to draw
any conclusions about the number of seizures and the percent
Tregs in our patient cohort. Cluster 5 CD45RO+CCR4+ CD4T
cells (Figure 2, Figure S1B), which express both IL-2Rs and IL-
7Rs, were found in both BIL and PBMC fractions, and may
correspond to a subset of CD4T cells that express CD25 and
CD127 and low levels of FOXP3, and are not suppressive in vitro
(24). Adding the FOXP3 Ab to the marker panel may help clarify
the identity of this subset of CD4T cells.

Extensive animal studies have shown that inflammation in
the brain is both a cause and a consequence of seizure activity
(45). Attention has focused on the innate response of brain
resident microglia and astrocytes to seizures and on the pro-
inflammatory molecules produced by these cells as drivers of
epileptogenesis (46–48). In seizure models, chemokines and
cytokines produced by activated microglia and astrocytes can
cause blood brain barrier leakage, and can attract peripheral
lymphoid and myeloid cells to the brain (31, 49–51). Our data
suggest that this could be happening in children with chronic
pharmacoresistant seizures. Intractable epilepsy might be viewed
as a “sterile” infection in which T cells and other immune cells
traffic to epileptogenic areas of the cerebral cortex in response
to local seizure-driven inflammation. Activated T cells and NK
cells for example could permanently alter brain circuitry by
directly or indirectly damaging neurons (52–55). Adjunctive
treatments that block the recruitment of pro-inflammatory
peripheral lymphoid and myeloid cells to the brain (56–61) may
therefore be therapeutically beneficial.
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