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ß2 integrin receptors consist of an alpha subunit (CD11a-CD11d) and CD18 as

the common beta subunit, and are differentially expressed by leukocytes. ß2

integrins are required for cell-cell interaction, transendothelial migration, uptake of

opsonized pathogens, and cell signaling processes. Functional loss of CD18—termed

leukocyte-adhesion deficiency type 1 (LAD1)—results in an immunocompromised state

characterized by frequent occurrence of severe infections. In immunosuppressed

individuals Aspergillus fumigatus is a frequent cause of invasive pulmonary fungal

infection, and often occurs in patients suffering from LAD1. Here, we asked for the

importance of CD11b/CD18 also termed MAC-1 which is required for phagocytosis

of opsonized A. fumigatus conidia by polymorphonuclear neutrophils (PMN) for control

of pulmonary A. fumigatus infection. We show that CD11b−/− mice infected with

A. fumigatus were unaffected in long term survival, similar to wild type (WT) mice.

However, bronchoalveolar lavage (BAL) performed 1 day after infection revealed a higher

lung infiltration of PMN in case of infected CD11b−/− mice than observed for WT

mice. BAL derived from infected CD11b−/− mice also contained a higher amount of

leukocyte-attracting CCL5 chemokine, but lower amounts of proinflammatory innate

cytokines. In accordance, lung tissue of A. fumigatus infected CD11b−/− mice was

characterized by lower cellular inflammation, and a higher fungal burden. In agreement,

CD11b−/−PMN exerted lower phagocytic activity on serum-opsonized A. fumigatus

conidia than WT PMN in vitro. Our study shows that MAC-1 is required for effective

clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory

microenvironment in infected lung. Enhanced infiltration of CD11b−/− PMN may serve

to compensate impaired PMN function.
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INTRODUCTION

Aspergillus fumigatus is a common saprophytic fungus in
the environment and is usually well controlled in healthy
individuals. However, in patients with immune deficiency e.g.,
due to chemotherapeutic treatment of malignant diseases or
immunosuppressive therapy after allogeneic hematopoietic stem
cell or organ transplantation A. fumigatus causes invasive
pulmonary aspergillosis (IPA) which is highly associated with
relevant morbidity and mortality (1, 2). Despite the clinical
use of potent antifungal drugs for prophylaxis and treatment
of invasive fungal disease IPA still continues to be a highly
relevant health issue in the daily clinical care with regard
to morbidity, mortality, diagnostic challenges, and costs (3).
Polymorphonuclear neutrophils (PMN) play a very important
role in the innate host defense against A. fumigatus by sufficiently
killing outgrowing A. fumigatus conidia and hyphae. The crucial
importance of PMN in this setting is also reflected by the fact
that neutropenia is one major risk factor for the development
of IPA (4). While the size of hyphae may prevent the fungus
from phagocytosis by PMN, hyphal damage is caused by other
PMN effectormechanisms, including the formation of neutrophil
extracellular traps (NET) (5). In this setting, the oxidative PMN
effector functions are essential for survival of IPA (6). In addition,
also monocytes and macrophages substantially contribute to
the regulation of antifungal immune responses (1). The role of
epithelial cells for direct elimination of A. fumigatus conidia has
been discussed controversially (7). Several in vitro studies have
indicated that epithelial cells may internalize and subject conidia
to phagolysosomal degradation (8). In contrast, engulfment of
conidia by bronchail epithelium has not been observed in vivo
so far (9). More recently, eosinophils recruited in response to
inhalative infection with A. fumigatus conidia were reported to
contribute to fungal clearance in lung by soluble factors (10).
Furthermore, eosinophils were demonstrated to generate both
IL-17 and the CD4+ T helper cell type (Th)17 inducing cytokine
IL-23 (11).

The family of ß2 integrins consists of four members
and is formed by heterodimerization of an alpha subunit
(CD11a-CD11d) with a common beta subunit (CD18) to
form transmembrane receptors (12). The integrin receptor
CD11b/CD18 (MAC-1) is primarily expressed by leukocytes of
the myeloid lineage including monocytes/macrophages—which
was name-giving (macrophage antigen 1, MAC-1)—but also
by PMN, and conventional dendritic cells (DC). MAC-1 has
been demonstrated to serve firstly as an adhesion receptor
to various ligands including ICAM-1 which is necessary for
transendothelial migration of macrophages and PMN (13).
Secondly, it also operates as a major receptor for complement-
opsonized pathogens, non-opsonized pathogens, and numerous
serum factors (14) as well as a regulator of Fc receptor-
mediated uptake of antibody-opsonized pathogens and immune
complexes (15). Furthermore, MAC-1 serves as a negative
regulator of DC- and macrophage-mediated T cell stimulation
by binding to yet non-identified T cell receptors (16), and as
a modifier of TLR-induced inflammatory signaling (17) and
other signaling pathways (18). In accordance with the overall

importance of ß2 integrins for immune responses, loss-of-
function mutations of the CD18 gene result in the so-called
leukocyte adhesion deficiency type 1 (LAD1) syndrome, a rare
genetically determined disease (19). LAD1 patients suffer from
severe, recurrent infections which require extensive treatment
with anti-infective agents. Several studies have highlighted
defective migration and phagocytosis of PMN as largely causative
for rapid spreading of pathogens in LAD1 patients (20).

Recently, by using neutralizing antibodies MAC-1 dependent
phagocytosis was identified as the relevant killing mechanism of
A. fumigatus conidia by human PMN (21). This finding is in
line with the observation that LAD1 patients often suffer from
A. fumigatus infections. Here, we asked for the specific role of
MAC-1 deficiency with regard to the clinical course in a mouse
model of IPA, and focused on the early phase of infection to assess
the role of MAC-1 for largely PMN-mediated antifungal immune
response.

We show that CD11b−/− mice display unaltered survival
in IPA compared to WT mice. However, in the early
phase of pulmonary infection lungs of CD11b−/−mice show
a higher fungal burden which is associated with lower
amounts of proinflammatory innate mediators like IL-1 in the
bronchoalveolar lavage (BAL). In contrast, we detected elevated
levels of the chemoattractant CCL5 in BALs derived from
infected CD11b−/−mice, and enhanced bronchial infiltration
of PMN. However, CD11b−/−PMN exerted an attenuated
phagocytic uptake of A. fumigatus conidia in vitro which may
explain the higher fungal burden in the lungs of infected
CD11b−/−mice.

MATERIALS AND METHODS

Fungal Strains and Cultivation Conditions
The A. fumigatus strain ATCC 46645 was cultured in Aspergillus
minimal medium (AMM) with 1 % (w/v) glucose as described
(6). Briefly, conidia were incubated on AMM agar plates for 4
days at 37◦C and 5 % CO2. For preparation of spore suspensions,
plates were washed with sterile water containing a small amount
of glass pearls. The obtained spore suspension was filtered twice
through a sterile 40µm nylon mesh and stored in sterile water at
4
◦

C.

Mice
Female C57BL/6J mice and CD11b−/− mice on C57BL/6
background [B6.129S4-Itgamtm1Myd/J; (22)] were obtained
from Jackson Laboratory (Bar Harbor, ME) and were maintained
in the Translational Animal Research Center of the University
Medical Center Mainz under pathogen-free conditions on
a standard diet. All animal procedures were performed in
accordance with the institutional guidelines and approved by
the responsible national authority (National Investigation Office
Rhineland-Pfalz, Approval ID: AZ 23 177-07/G11-1-034).

Mouse Model of Invasive Aspergillosis (IA)
Mice were anesthetized and challenged with 1× 107 A. fumigatus
conidia intratracheally as further described (23). In brief, a
22G indwelling venous catheter (B. Braun AG, Melsungen,
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Germany) was inserted into the trachea and 100 µl sterile water
or corresponding fungal suspension was administered through
the catheter. To enhance dispersion in the lungs, mice were
ventilated mechanically with 250 breaths/min, 300 µl/breath for
2min using an animal respirator (MiniVent, Hugo Sachs, March-
Hugstetten, Germany) as described (6). Severity of systemic
infection was daily examined by the evaluation of weight, activity,
posture, skin, and fur appearance as described by Prüfer and
coworkers, and overall survival was monitored for up to 14 days.
Mice with severe symptoms determined by clinical scores were
immediately euthanized as required by the institutional animal
ethics guide lines. Where indicated, PMN depletion was induced
by i.p. injection of anti-Gr-1 antibody (150 µg, clone RB6-8C5)
binding Ly6G+ PMN and Ly6C+ myeloid cells 1 day before
infection.

In vivo Ungal Killing
To characterize the fungal clearance of the lungs in vivo, some
mice were sacrificed 24 h after infection. Lungs were removed,
mechanically homogenized and serial dilutions were plated on
Sabouraud-4 % Glucose agar (Carl Roth, Karlsruhe, Germany).
After 24 and 48 h at 37◦C and 5% CO2, colony-forming units
(CFU) were counted.

Histopathologic Analysis
Mice were euthanized 24 h after infection. Afterwards, mouse
lungs were filled with 10% formalin via the trachea. Paraffin
embedded blocks were prepared, sections (5µm) were taken and
stained with H&E to assess inflammatory responses. For analysis
of inflammation H&E-stained tissue sections were examined by
microscopy in a blinded fashion for peribronchial, perivascular
and tissue inflammation, using a scoring system (0–4) on
5 randomly selected areas on each slide (24) with a BX40
microscope equipped with a CCD camera (Olympus, Hamburg,
Germany).

Flow Cytometric Analysis
Mice were sacrificed 24 h after infection. Blood samples were
collected by retro-orbital incision and lungs were flushed
with 1ml PBS. Cells in the blood and bronchoalveolar lavage
fluid (BALF) were analyzed by flow cytometry or an animal
blood counter (Vet abc hematology analyzer, scil animal
care, Viernheim, Germany), respectively. For analyses by flow
cytometry, cells were washed in staining buffer (PBS/2% FCS),
and Fc receptors were blocked by incubation with rat anti-
mouse CD16/CD32 antibody (clone 2.4G2) for 15min at
room temperature. Then, cells were incubated with FITC-
conjugated anti-Ly6C (HK1.4), and anti-MHCII (M5/114.15.2),
Alexa Fluor 488-conjugated anti-MHCI (AF6-88.5.5.3), PE-Cy-
7-labeled anti-CD11c (N418), anti-CD62L (MEL-14), anti-CD86
(GL-1), and anti-CD115 (AFS98), APC-conjugated anti-CD11c
(N418), anti-CD68 (FA-11), and anti-MHCII (M5/114.15.2),
and Pacific Blue-conjugated anti-F4/80 (BM8), and anti-Ly6G
(1A8). Corresponding isotype control antibodies were used. All
antibodies were obtained from Biolegend (San Diego, CA) or
Thermo Fisher/eBioscience. Samples were analyzed using a flow
cytometer (LSR II, BectonDickinson, Heidelberg, Germany), and

data were processed using FlowJo software V8.8.7 (Tree Star
Inc., Ashland, OR, USA). The general gating strategy is shown
in Figure S1.

Cytospin Analysis
For detection of lung infiltrating PMN, 150 µl of BALF (see
above) were transferred via cytospin (3,500 rpm for 5min;
Cytospin 3, Thermo Fisher) onto microscope slides, treated
with the Diff Quick Staining Set (Microptic, Barcelona, Spain),
air-dried, and fixed as recommended. Samples were analyzed
using a BX50WI microscope, equipped with a CCD camera
(Olympus, Hamburg, Germany). PMN were identified based on
their characteristic segmented nuclei.

Cytokine Detection
Amounts of cytokines in BAL and blood samples were quantified
by Cytometric bead array using the mouse CBA flex sets
following the manufacturer’s instructions (BD Bioscience, San
Jose, CA).

Fungal Uptake by PMN
PMNwere purified from C57BL/6 bone marrow by magnetic cell
sorting (MACS) using biotin-labeled Ly6G specific antibodies
and streptavidin-conjugated beads (Miltenyi, Bergisch Gladbach,
Germany) according to the manufacturer’s protocol. The
cell purity (CD11b+Ly6G+) exceeded 90% as assessed by
flow cytometry. PMN (106 cells/ml) were incubated in
Iscove’s medium (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 5% (v/v) FCS, 2mM l-glutamine,
50µM ß-mercaptoethanol and 1mM Na-pyruvate (SERVA
Electrophoresis, Heidelberg, Germany) in 96-well plates
(Greiner Bio One, Frickenhausen, Germany) with PE-fluorescent
A. fumigatus conidia (25) germinated for 20 h at the indicated
ratios in parallel at 4◦C and 37◦C to differentiate mere adhesion
(4◦C) from energy-dependent uptake (37◦C). After 1 h the mean
fluorescence intensity (MFI) was determined by flow cytometry.
The general gating strategy is shown in Figure S5.

Statistical Analysis
Statistical analysis was done with GraphPad Prism (version
5.0a for MacOS X; GraphPad Software, San Diego, CA, USA).
Comparison of two different parameters was done using paired
Student’s t-test, and using one-way ANOVA when comparing
more than two groups. For all analyses, p < 0.05 was considered
as statistically significant.

RESULTS

CD11b−/− Mice Show Unaltered Survival of
IPA but Increased Fungal Load and
Decreased Pulmonary Inflammation
To assess the relevance of MAC-1 for clearance of pulmonary
infection with A. fumigatus, we observed the course of disease
in wild type (WT) and CD11b−/− mice. WT mice are well
known to sufficiently clear IPA infection largely by activated
PMN (6). In a group of animals an anti-GR-1 antibody was
applied prior to infection with A. fumigatus (d0) to deplete
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FIGURE 1 | Invasive aspergillosis is not lethal for CD11b−/− mice but lungs

are characterized by attenuated inflammation, and higher fungal burden in an

early phase after infection. Wild type (WT) and CD11b−/−mice were infected

i.t. with A. fumigatus (each 107 conidia/mouse) in 2 independent experiments.

(A) The course of survival was daily monitored for 2 weeks and is presented in

a Kaplan-Meier survival curve. In parallel settings in some mice PMN were

depleted by injection of anti-GR1 antibody one day before infection. Data show

the cumulative results of two independent experiments with a total of 7 (WT) or

8 (CD11b−/−) mice/group, and each 6 mice/PMN-depleted group). (B,C) 24 h

after infection, mice were euthanized. (B) Paraffin sections of prepared lung

sections were stained with H&E, and peribronchial and perivascular

inflammation was scored. Data denote the mean ± SEM of 8 samples

analyzed per group. (C) Serial dilutions of lungs homogenates were plated on

agar plates for 2d, and CFU were counted. Data show the single data points,

and the according mean ± SEM of 8 mice/group. (B,C) Statistically significant

differences between groups are indicated (*p < 0.05, **p < 0.01).

primarily PMN as an internal control for success of infection in
parallel settings. As depicted in Figure 1A, all non-depleted mice
survived infection monitored over 2 weeks although the clinical
signs were more aggravated in the first days after inoculation in
case of CD11b−/−mice (not shown). As expected, PMN-depleted
mice showed lowered survival underlining the essential role of
PMN to limit spreading ofA. fumigatus for survival of IPA. PMN-
depleted CD11b−/− mice displayed a somewhat lower tendency
to survive as compared with WT mice.

Next, we focused on the course of the early innate mainly
PMN-driven immune response toward A. fumigatus infection.
For this, BAL fluid (BALF) and lungs of infected mice were
analyzed in more detail. Despite unaltered long-term survival
of A. fumigatus infected CD11b−/−mice, lung homogenates
obtained 24 h after infection showed an enhanced fungal burden

as compared to lungs from WT mice (Figure 1B). In contrast,
lung tissue from infected CD11b−/−mice displayed impaired
pulmonary inflammation as assessed by Hematoxilin&Eosin
(H&E) staining (Figure 1C). Furthermore, the number of
mucus-producing cells in bronchi of A. fumigatus infected
CD11b−/−mice was decreased compared to cells in bronchi of
WT mice (Figure S2).

In accordance with diminished cellular lung inflammation,
BALF derived from infected CD11b−/− mice contained lower
levels of three different proinflammatory cytokines (TNF-α, IL-
1α, IL-1β) compared to BALF from WT mice while levels of
other cytokines and chemokines (IL-5, IL-6, IL-10, GM-CSF,
CXCL1, CCL2) were comparable (Figure 2). In contrast, BALF
obtained from CD11b−/−mice showed higher levels of the
chemokine CCL5 known as a relevant chemoattractant in innate
and adaptive immune cells.

Pulmonary PMN Infiltrates Are Increased in
CD11b−/− Mice Upon IPA
In correlation with elevated CCL5 levels in BALF of infected
CD11b−/−mice, we observed markedly higher numbers of
PMN in the BALF of infected CD11b−/−mice compared
to corresponding WT mice samples, whereas we observed
no marked differences concerning other types of leukocytes
(Figure 3A). Ly6G+ PMN derived from BALF expressed MHCI
at comparable levels in both groups (Figure 3B). Interestingly,
BALF-derived CD11b−/−Ly6G+ PMN expressed the mouse DC
marker CD11c at moderate extent (Figures 3B,C). Infection-
induced de novo expression of CD11c was reported for PMN in
different mouse infectious disease models and was found to be
associated with elevated expression of MHCII, CD86 and CD62L
(26). However, lung-infiltrating Ly6G+ PMN of both genotypes
expressed none of these receptors (Figure 3B).

Numbers of PMN, lymphocytes, and monocytes in the
peripheral blood of A. fumigatus infected mice did not differ
in a genotype-dependent manner (Figure S3A). Moreover, we
observed no differences in the frequencies of cell lineage and
activation marker expressing leukocytes in peripheral blood
(Figure S3B, upper panel) and spleen (Figure S3B, lower panel).
Ly6G+ PMN in peripheral blood and spleen were MHCI+.
Moreover, some PMN fractions expressed CD62L in a genotype-
independent manner (Figure S3C). In contrast to lung-derived
PMNobtained from infected CD11b−/−mice (see Figure 3B), we
observed no CD11c expression in PMN isolated from spleen and
peripheral blood. A fraction of splenic Ly6G+ PMN expressed
MHCII and CD86 not related to the genotype while Ly6G+

PMN in blood were deficient for these activation markers. In
contrast to our analysis of BALF (see Figure 2), levels of IL-1 and
chemokines in peripheral blood were largely comparable between
A. fumigatus infected WT and CD11b−/−mice (Figure S4).

Phagocytic Activity of CD11b−/−PMN Is
Less Effective
CD11b−/− PMN were able to infiltrate A. fumigatus infected
lungs, but were less capable to limit fungal spreading. As
phagocytosis is the major effector mechanism of PMN to
clear A. fumigatus conidia, we analyzed purified bone marrow
derived Ly6G+ PMN to assess potential genotype-dependent
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FIGURE 2 | The BAL fluid of A. fumigatus infected CD11b−/− mice contains lower levels of proinflammatory cytokines. WT and CD11b−/− mice were infected i.t.

with A. fumigatus as described in Figure 1. On the next day, mice were euthanized, and cytokines in BAL fluid were analyzed. Data denote the mean ± SEM of 4–8

samples analyzed per group. Statistically significant differences between groups are indicated (*p < 0.05, ***p < 0.001).

differences in phagocytic capacity. Therefore, isolated PMN
were incubated with fluorescent A. fumigatus conidia and were
analyzed afterwards by flow cytometry. As depicted in Figure 4,
only low fractions of PMN bound conidia at 4◦C in a genotype-
independent manner. However, as reflected by the parallel
setting at 37◦C to monitor energy-dependent internalization,
CD11b−/−PMN showed lower phagocytic activity than WT
PMN, indicating an impaired capability to clear A. fumigatus.
Nevertheless, CD11b−/−mice were characterized by similar
long term survival after IPA induction as WT mice (see
Figure 1A).

DISCUSSION

The overall importance of ß2 integrin family members for
immunological functions is highlighted by the severe immuno-
compromised state of LAD1 patients (19). PMN are the first
line of defense in the lung to prevent spreading of inhaled
pathogens (27), and were demonstrated to require MAC-1
both for transendothelial migration (13) and phagocytosis of
opsonized pathogens (5). Due to the frequent observation of IPA
in LAD1 patients and the importance ofMAC-1 for PMN effector
functions, our aim was to investigate the specific role of MAC-
1 in the early innate immune response to IPA which is largely
mediated by PMN (6).

We found that survival of A. fumigatus infected
CD11b−/−mice is not impaired after induction of IPA which

suggests that MAC-1 despite its pronounced immunological
functions is not critical for long term control of IPA. However,
in the early phase of infection when spreading of A. fumigatus
is mainly controlled by PMN (27) but also eosinophil (10, 11)
effector mechanisms, several differences were observed
in BALF and lungs derived from A. fumigatus infected
CD11b−/−and WT mice. After the first 24 h, lungs derived from
CD11b−/−mice showed enhanced fungal burden and lower
bronchial inflammation despite higher numbers of PMN but
not eosinophils in BALF derived from CD11b−/−mice. PMN
are activated by various danger signals and upon contact with
pathogens they contribute to the inflammatory response in
infected tissue by secreting a variety of innate proinflammatory
cytokines (28). PMN derived from BALF of A. fumigatus
infected CD11b−/−mice produced lower levels of innate
proinflammatory mediators like IL-1α, IL-1β, and TNF-α. In
agreement, cellular inflammation in lung was attenuated as
well. Accordingly, pulmonary fungal burden was increased. The
diminished cellular inflammation as well as higher pulmonary
pathogen burden despite elevated PMN infiltration was
previously also demonstrated for CD11b−/−mice infected with
S. pneumoniae (29).

In agreement with enhanced pulmonary fungal burden
of A. fumigatus infected CD11b−/−mice we observed
impaired phagocytic activity of CD11b−/−PMN toward
opsonized A. fumigatus conidia compared to WT PMN. This
observation is in line with the recent finding that MAC-
1 is required in human PMN to kill A. fumigatus conidia
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FIGURE 3 | CD11b−/−mice infected with A. fumigatus are characterized by elevated lung infiltration of PMN. WT and CD11b−/− mice were infected i.t. with A.

fumigatus as described in Figure 1. One day after infection, mice were euthanized, and PMN were detected in BAL fluid. (A) 150 µl BAL fluid were cytospined, and

stained with Diff Quick Staining Set® (Microptic). Left: Pictures were taken at 10x magnification, and stained PMN were counted. Magnification bar: 50µm. Right:

Quantification of PMN in BAL fluid. Date denote the mean mean ± SEM of 4 samples/group. (B) The immunophenotype of PMN in BAL fluid was assessed by flow

cytometry. Histograms show the expression of surface markers of Ly6G+ cells and are representative of 4 samples per group. (C) Quantification of CD11c

expression by Ly6G+ PMN in BAL fluid. Data denote the relative mean fluorescence intensities (MFI) ± SEM of 4 samples/group, normalized in each experiment on

the MFI of WT Ly6G+ PMN. (A,C) Statistically significant differences between groups are indicated (**p < 0.01, ***p < 0.001).

by phagocytic uptake (21). As demonstrated by others,
non-fungal pathogens like S. pyogenes are also efficiently
bound via MAC-1 when opsonized by activated serum
complement. Furthermore, cross-linking of MAC-1 results
in NADPH oxygenate-dependent oxidative burst which is
required by PMN for sufficient intracellular killing e.g., of
A. fumigatus (30, 31) inducing apoptosis-like cell death
in fungal conidia (32). Moreover, MAC-1 is necessary for
Fc receptor-mediated phagocytic uptake of pathogens by
neutrophils as shown for mouse CD11b−/−PMN and human
PMN in CD11b blocking studies (33). Most recently, 2-(w-
carboxyethyl)pyrrole which is generated due to the oxidative
burst of activated PMN was demonstrated to modify MAC-1
ligands like fibrin resulting in enhanced affinity to MAC-1

on macrophages and a stimulation of macrophage migratory
activity (34).

In several studies engagement of MAC-1 by pathogens
as mimicked by cross-linking antibodies was shown to
exert proinflammatory effects in PMN due to activation
of members of the NF-κB transcription factor family,
yielding elevated production of proinflammatory cytokines
like TNF-α (35, 36). Therefore, the reduced activity of
CD11b−/− PMN to phagocytose A. fumigatus conidia
and the impaired induction of an inflammatory milieu in
lungs of A. fumigatus infected CD11b−/− mice may be a
consequence of attenuated PMN activation. Interestingly,
other modes of CD11b activation as mediated by the more
recently developed pharmacological activator leukadherin
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FIGURE 4 | Phagocytosis of fungal conidia is less effective in CD11b−/−

PMN. PMN were purified from C57BL/6 bone marrow by magnetic cell sorting

(MACS) using Ly6G-specific antibodies. PMN were co-incubated with

PE-fluorescent A. fumigatus conidia at 37◦C at ratios of 1:1 and 1:3,

respectively. Simultaneous co-incubation at 4◦C served as a negative control.

After 1 h the frequency of PE-positive PMN was determined by flow cytometry.

Data represent the mean ± SEM of 3 samples analyzed per group. Statistically

significant differences between groups are indicated (***p < 0.001).

1 were demonstrated to yield anti-inflammatory effects
in myeloid cells which may be exploited for treatment of
autoimmune diseases associated with hyperactive MAC-1
(37).

As mentioned above, BALF derived from CD11b−/− mice
contained higher numbers of PMN compared to BALF obtained
from infected WT mice. This finding was unexpected as ß2
integrins were reported to be necessary to mediate firm adhesion
of PMN to vessel endothelium as a prerequisite for PMN
migration into extravascular space (38). However, by using
lethally irradiated mice reconstituted with fetal liver cells from
WT and CD18−/−mice Mizgerd and coworkers demonstrated
that the requirement of CD18 for PMN infiltration depends
on the type of pathogen used for infection (39). In case of
intratracheal instillation of mice with Escherichia coli, LPS, or
Pseudomonas aeruginosa only limited pulmonary infiltration
of CD18−/−PMN was observed, while pulmonary infection
with S. pneumonia caused PMN infiltration into the lungs
in a CD18-independent manner. Comparable to that, LAD1
patients suffering from pneumonia were reported to display
strong pulmonary PMN infiltration (40). Similar to our findings,
CD11b−/−mice infected with S. pneumoniae also showed higher
numbers of pulmonary PMN after 24h compared to infectedWT
mice (29), underlining that CD18 and even more specifically
MAC-1 are not essential for PMN migration. Some studies
have reported that LFA-1 may play a dominant role for
transendothelial migration of PMN as evidenced in LFA-1
deficent mice (41). In addition, by applying blocking antibodies
MAC-1 and LFA-1 were demonstrated to confer chemotaxis
of PMN in a ligand-specific manner (42). While MAC-1 was
required for migration toward fLMP (N-Formyl-Met-Leu-Phe),
LFA-1 was required for IL-8 directed migration. Altogether, these

studies confirm that MAC-1 expression is not essential for PMN
migration per se.

MAC-1 not only contributes to migration and pathogen
binding/phagocytosis by myeloid cells including PMN, but
was also attributed to modulate PMN apoptosis. Coxon and
coworkers reported that CD11b−/− PMN isolated from the
peritoneum after injection of thioglycollate were characterized
by lower apoptosis than their WT counterparts (22). However,
the contribution of MAC-1 signaling to apoptosis of activated
PMN was discussed controversially. Zhang et al. reported that
phagocytosis of pathogens by PMN promoted apoptosis of
the latter which was associated with the induction of reactive
oxygen species, and was enhanced by TNF-α (43). In contrast,
CD11b−/− PMN were not observed to undergo phagocytosis-
induced apoptosis. Similar findings were reported for human
PMN (44). On the contrary, Yan and coworkers showed that
antibody-mediated blockade of ß2 integrins on human PMN
elevated apoptosis after their activation by TNF-α or microbial
stimuli (45). Further studies are necessary to elucidate the exact
role of MAC-1 on PMN viability in case of IPA.

BALF obtained from infected CD11b−/− mice contained
higher levels of the chemokine CCL5 which is known to interact
with the chemokine receptors CCR1, CCR3, CCR5, and CCR11,
and thereby attracts many leukocyte populations (46). Early
in the course of inhalative inflammation, CCL5 is generated
by various activated cell types, including airway epithelial cells
(47), airway smooth muscle cells (48), and lung fibroblasts
(49). Moreover, A. fumigatus was reported to induce CCL5
in platelets (50), and activated PMN were demonstrated to
produce CCL5 when incubated with Toxoplasma gondii (51).
Therefore, further studies are required to elucidate which cell
types are responsible for elevated CCL5 production in the lungs
of A. fumigatus infected CD11b−/−mice. Mouse PMN express
the CCL5-binding receptors CCR1 and CCR3 (52). Therefore,
increased CCL5 levels in lungs of infected CD11b−/−mice may
contribute to elevated PMN infiltration. Besides its leukocyte-
attracting potency, CCL5 was demonstrated to contribute to
the persistence of A. fumigatus-induced murine chronic allergic
asthma (53). Interestingly, in this murine asthma model, airway
hyperresponsiveness (AHR) was impaired in CCR5−/−mice.
Moreover, diminished AHR was associated with attenuated
peribronchial T cell and eosinophil infitration, and airway
remodeling.

Our study focused on the role of CD11b during early innate
responses toward inhalative infection with A. fumigatus which
are primarily mediated by PMN (28), and as demonstrated more
recently, also by eosinophils (10, 11). Additionally, PMN were
shown to contribute to infiltration of CD11b+ conventional
DC to lungs and mediastinal lymph nodes in IPA by activating
CD11b+ DC in a cell-cell contact dependent manner via DC-
SIGN (54). This C-type lectin receptor is expressed by DC and
macrophages and mediates phagocytic uptake of A. fumigatus
conidia (55). Moreover, DC and PMN were demonstrated to
interact via DC-SIGN and MAC-1 (56). Therefore, MAC-1 on
PMN may contribute to the activation of infiltrating DC in case
of lung infections. In IA, activated DC produce IL-12 and IL-
23 which induces Th1 (57) and Th17 (58) immunity. Moreover,
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IL-23 stimulates PMNs IL-17 production, and IL-17 induced ROS
production by PMN (59), which contributes to fungal killing (5).
Furthermore, infiltrating eosinophils constitute another source of
IL-23 and IL-17 (11).

In conclusion, our study demonstrates, that CD11b deficiency
on myeloid cells affects the early course of IPA. This may be
due to the importance of MAC-1 for PMN effector functions,
and their interplay with DC and other leukocytes (28). MAC-1
was demonstrated to contribute to eosinophil migration (60) and
activation-dependent degranulation (61). Hence, we cannot rule
out that this cell population may be affected by loss of MAC-1
which in turn may contribute to impaired fungal killing. Further
work is also necessary to elucidate the long term course of IPA
in CD11b−/− mice with regard to the interplay of PMN with
DC, the efficacy of adaptive immune responses, and the potential
pulmonary overexpression of CCL5. Besides in patients with
LAD1 syndrome, further evidence is needed to clarify whether
our findings are relevant in other immunocompromised patients
suffering from opportunistic infections.
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