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In the development of vaccines, the ability to initiate both innate and subsequent

adaptive immune responses need to be considered. Live attenuated vaccines achieve

this naturally, while inactivated and sub-unit vaccines generally require additional help

provided through delivery systems and/or adjuvants. Liposomes present an attractive

adjuvant/delivery system for antigens. Here, we review the key aspects of immunity

against Plasmodium parasites, liposome design considerations and their current

application in the development of a malaria vaccine.

Keywords: malaria, Plasmodium, immunity, adjuvant, liposomes, vaccine

INTRODUCTION

Malaria vaccine development has been a focus of research since the 1940s when inoculation with
homologous inactivated sporozoites and/or serum resulted in control of parasitemia amongst
immunized domestic fowls (1, 2). Follow-up studies also showed that monkeys and ducks were
protected against Plasmodium (P) knowlesi and P. lophurae following vaccination with killed,
adjuvanted parasites (3, 4). Additionally, in 1967, it was demonstrated for the first time, that
immunization with irradiated sporozoites protected mice against P. berghei (5). Despite these
early promising findings, an effective vaccine for malaria still eludes scientists with only one
vaccine candidate, RTS, S, receiving a positive scientific opinion from European regulators and it is
currently approved for use in pilot implementation trials in 3–5 epidemiologically distinct locations
in sub-Saharan Africa (6, 7). The complexity of Plasmodium parasites, antigenic polymorphism and
failure to maintain long-lived immune responses calls for continued efforts in the search for novel
vaccines which can effectively prevent P. falciparum and P. vivax infections (8).

A major bottleneck in the development of vaccines against infectious diseases is the failure
to initiate robust innate immune responses and subsequent potentiation and maintenance of
downstream adaptive immune responses. This is achieved naturally with live attenuated vaccines
while inactivated and sub-unit vaccines require delivery systems and/or adjuvants for efficient
presentation to the immune system and additional stimulation to enhance potency (9). To address
this, careful selection of adjuvants and delivery systems needs to be considered early in the vaccine
development process. However, only a handful of adjuvants have been licensed or tested for use in
human vaccines and these are summarized in Table 1.
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TABLE 1 | Clinically tested and licensed vaccine adjuvants (10, 11).

Adjuvant Status of vaccine adjuvant

Aluminum-based salts (Alum) Licensed for tetanus, diphtheria, pneumococcus vaccines (12).

Mf59 (an oil-in-water emulsion consisting of squalene, Tween 80 and span

85)

Licensed for influenza vaccines (13, 14).

AS01: Liposome-based adjuvant comprised of Monophosphoryl Lipid A

(MPLA) and QS-21

Tested in phase III malaria and shingles vaccine trials (15, 16).

AS02: squalene emulsion comprised of MPLA and QS-21 Tested in phase II malaria trials (17).

AS03: An oil-in-water emulsion comprised of squalene, Tween 90 and

α-tocopherol

Licensed for influenza vaccines (18, 19).

AS04: comprised of aluminum hydroxide and MPLA Licensed for Cervarix vaccine against HPV and Fendrix against hepatitis B (20–22).

ISA-51 Montanide: Mineral oil with a Mannide monooleate emulsifier Licensed for Cimavax vaccine against non-small cell lung cancer (NSCLC) (23).

Virosomes: Comprised of influenza virus envelopes reconstituted in

liposomes

Licensed for hepatitis A (Epaxal) (22, 24) and Influenza vaccines (Invivac, Inflexal) (25).

CAF01: Cationic liposomes comprised of dimethyldioctadecylammonium

bromide (DDAB) and trehalose 6,6-dibehenate (TDB)

Tested in phase I HIV and tuberculosis vaccine trials (26, 27).

IC31: TLR9 agonist Tested in phase I tuberculosis vaccine trials (28–30).

Poly I:C: TLR3 agonist comprised of repeating units of double stranded

inosine and cytosine

Tested in phase I/II cancer vaccine trials (31).

Imiquimod: TLR7/8 agonist Tested in phase II therapeutic vaccine trials against vulval intraepithelial neoplasia (32)

SE/SE-GLA: Squalene emulsion co-formulated with TLR4 agonist GLA Tested in phase I influenza vaccine trials (33–36)

ISCOMS, ISCOMATRIX/ Matrix-MTM: Lipid-based adjuvants formulated

with cholesterol and saponins

Tested in a phase I vaccine trials against HCV, HPV and influenza (33–35, 37)

(NCT02905019)

Recombinant CTB: B subunit of cholera toxin Licensed for the cholera vaccine, Dukoral (38)

First proposed by Gregoriadis and Allison in 1974 as
immunological adjuvants (39), liposomes are a promising
vaccine adjuvant/antigen delivery system. Historically
well-known as drug carriers, liposomes are self-assembling
phospholipid vesicles capable of incorporating and protecting
antigens from degradation, as well as facilitating antigen
delivery to professional antigen presenting cells (APCs) (9, 40–
43). Liposomes generally act by depot formation resulting
in enhanced uptake by APCs and subsequent induction
of the desired immune responses. To date, the extensive
use of liposomes can be attributed to their safety profile,
biocompatibility, biodegradability, versatility, and plasticity and
therefore they present an attractive platform for malaria vaccine
development.

In a natural malaria infection, the acquisition of clinical
immunity is slow, spanning several years of repeated exposure,
and it is not sterile (44). An ideal vaccine capable of inducing
sterile immunity against the different life-cycle stages of malaria
will need to induce a qualitatively and/or quantitatively different
immune response to that induced during natural infection
immunity (45). Since stage-specific immunity to malaria requires
humoral and cell-mediated immune responses, the ideal vaccine-
induced responses should preferably be comprised of both forms
of responses. However, for rational vaccine development, a clear
understanding of the complex nature of immunity to malaria is
required and this in turn may help to inform the selection of an
appropriate adjuvant/delivery system. This review highlights key
aspects of the immune response tomalaria, design considerations
of liposomes, and their current application in malaria vaccine
development.

IMMUNITY TO MALARIA

Plasmodium parasites, the causative agents of malaria, are
obligate intracellular organisms which undergo a complex life-
cycle in the vertebrate host broadly divided into: the mosquito
stage which occurs in the vector; the pre-erythrocytic stage which
occurs in the vertebrate host’s liver; and the erythrocytic stage
which occurs in the blood of the vertebrate host (46). At all life-
cycle stages, the immune responses induced following infection
differ significantly and a clear understanding of these responses
will inform the vaccine development process.

Pre-erythrocytic Stage Immunity to Malaria
The pre-erythrocytic stage of malaria infection is clinically
quiescent, probably due to the low number of sporozoites
inoculated by the mosquito while taking a blood meal. During
this stage, studies in mice have shown that antibodies can control
infection through immobilization of sporozoites by inhibiting
sporozoite motility and subsequent invasion of hepatocytes
(47, 48). Following natural infection, studies demonstrated the
existence of pre-erythrocytic antigen-specific antibodies to P.
falciparum; however, their role remains unclear (49–51). To date,
the best model that has enabled the study of pre-erythrocytic
immune responsemechanisms has utilized irradiated sporozoites
in both humans and animals. Radiation-attenuated sporozoites
retain the capacity to infect hepatocytes but cannot develop into
an erythrocytic infection. Studies in rodent models involving
inoculation of radiation-attenuated sporozoites demonstrated
that antibodies were involved in the enhanced clearance of
sporozoites, reduction in sporozoite motility and inhibition
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of hepatocyte invasion (52, 53). In clinical studies, induction
of antibodies to the circumsporozoite protein (CSP) following
immunization with the P. falciparum sporozoite (PfSPZ) vaccine
has been shown to partially correlate with protection (54–
58). Furthermore, following immunization with RTS, S/AS01,
high CSP-specific antibody titers are induced and are a
surrogatemeasure of protective efficacy for this vaccine candidate
(16, 59–63).

Cell-mediated immunity following inoculation of radiation-
attenuated sporozoites has also been shown to contribute to
vaccine-induced sterilizing immunity to Plasmodium infection
in both mice and humans (54–58, 64–72). Studies in rodent
models, however, indicate that a network of cellular mechanisms
mediates immunity to pre-erythrocytic infection (64–66, 68,
70–72). Initial studies in mice immunized with irradiated
P. yoelii 17XNL sporozoites reported that cytotoxic CD8+

T cells mediated protection against a wild-type challenge of
infectious sporozoites (64, 65). Further studies indicated that IL-
12 from liver antigen presenting cells (APCs) stimulated CD8+

T cells and Natural killer (NK) cells to produce interferon
(IFN)-γ. IFN-γ, in turn, induces the infected hepatocytes
to produce nitric oxide (NO), which subsequently kills the
parasite in the hepatocyte (66, 68, 71). In addition, the
balance between IL-2, IL-10, IL-12, and IFN-γ results in
an inflammatory response that contributes to pre-erythrocytic
immunity (70, 72). In human volunteers, both CD4+ and CD8+

T cell responses against pre-erythrocytic antigens have been
observed following immunization with irradiated sporozoites
(54–58, 67, 69).

Controlled infection immunization (CII) studies, involving
experimental sporozoite inoculation via infectious mosquito
bites with concurrent chemoprophylaxis provides another
model for investigating pre-erythrocytic immunity to malaria.
These studies have shown that a protective polyfunctional
T cell response to pre-erythrocytic antigens predominantly
characterized by the production of IFN-γ, tumor necrosis factor
(TNF), and IL-2 is induced following CII (73–76). Purified
IgG against P. falciparum sporozoites, obtained from CII trial
participants was also shown to inhibit liver stage infection in a
humanized liver-chimeric mouse model (73, 75, 77).

Erythrocytic Stage Immunity to Malaria
During the erythrocytic stage, clinical signs, and symptoms of
malaria manifest as the parasites invade and replicate in RBCs.
Studies in animal models have demonstrated that the innate
immune system is involved in the initial recognition of blood-
stage parasites, promotion of inflammation, inhibition of parasite
growth and potentiation of the adaptive immune response
(78, 79). Plasmodium falciparum pathogen-associated molecular
patterns (PAMPs) such as glycosylphosphatidylinositol (GPI)
anchors (Toll-like receptor 2 [TLR2]), hemozoin (NOD-like
receptor containing pyrin domain 3 [NLRP3] inflammasome),
CpG-containing DNA motifs bound to hemozoin (TLR9) and
AT-rich DNA motifs (unidentified cytosolic receptor) have been
shown to trigger an inflammatory cascade by binding pattern
recognition receptors (PRRs) on the surface of innate immune
cells (79–83). This interaction of PAMPs and PRRs results in the

production of pro-inflammatory cytokines (IL-12 [p70], IFN-γ
and TNF) by APCs, as well as regulatory cytokines (IL-10 and
TGF-β) that have been implicated in immunity and pathogenesis
to blood-stage malaria infection (79, 84, 85).

Several innate immune cells such as dendritic cells (DCs),
macrophages, mast cells, neutrophils, NK cells, natural killer T
(NKT) cells, and γδ T cells have been implicated in this initial
immune response (85–88). Plasmodium parasites have been
shown to modulate DC maturation and function resulting in the
induction of regulatory T cells which in turn modulates CD4+

T cell responses, suppressing protective immune responses while
averting immune-mediated pathology (85). IL-12 production by
DCs has also been implicated in the production of IFN-γ by
NK cells and CD4+ Th1 cells resulting in the control of parasite
growth (85). Understanding the balance between protective
and immunopathologic responses following DC activation and
maturation might have favorable implications in designing
vaccines to prevent severe malaria (85). In vitro, NK cells have
been shown to be an early source of IFN-γ, promoting the
destruction of infected red blood cells by activated macrophages
(79, 89). γδ T cells and monocytes on the other hand have
been associated with elevated levels of TNF, IL- 10, IP-10, IL-6,
macrophage inflammatory protein (MIP)-1β and MIP-1α which
is linked with severe disease (90). Furthermore, downregulation
of γδ T cell responses following repeated exposures to Plasmodia
has also been implicated with better tolerance to clinical malaria
(91, 92). Given their specificity for restricted TCR ligands, γδ T
cells present an attractive target for a vaccine to protect against
severe disease (45, 90).

Antibodies play a role in naturally acquired immunity to
erythrocytic stage malaria, as it has been shown that the passive
transfer of immunoglobulin from immune donors resulted in
the reduction of parasitaemia and clinical disease among semi-
immune recipients from East Africa as well as non-immune
Thai patients (93–95). Antibodies may function by inhibiting
merozoite invasion of RBCs (96), binding to pRBCs and
enhancing clearance by the spleen (97, 98), as well as opsonizing
pRBCs, resulting in phagocytosis by macrophages (99, 100).

Cell-mediated immunity against the erythrocytic stage is
primarily mediated by CD4+ T cells, as demonstrated in both
murine and human models. Studies showed that mice depleted
of CD4+ T cells developed very high parasitaemia and were
unable to control the infection compared to mice depleted
of CD8+ T cells, which developed mild parasitaemia that
subsequently resolved; this indicated a clear role of CD4+ T cells
in erythrocytic stage immunity (101, 102). Additionally, adoptive
transfer of CD4+ T cells was shown to confer protection and
control parasitaemia in immunodeficient mice (103). Further
investigation of the role of CD4+ T cells demonstrated that
during the acute phase of infection, there was a significant
upregulation of an IFN-γ-specific CD4+ T cell (Th1) response
followed by an IL-4-specific CD4+ T cell-mediated (Th2)
antibody response during the chronic phase (104). These data
indicate that early activation of Th1 cells enables control of the
infection via effector mechanisms such as macrophages, followed
by a Th2 response which activates B cells to clear the parasite in
the later stages of the infection in mice (105, 106).
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In human studies, the role of CD4+ T cells was demonstrated
when volunteers were infected with low doses of blood-stage P.
falciparum followed by drug cure (107). In this study, volunteers
appeared to be protected against a homologous challenge
infection with immunity associated with an IFN-γ-specific CD4+

T cell response and nitric oxide synthase (NOS) production in
the absence of detectable antibodies (107). However, a follow-
up study suggested that residual drug may have contributed
to the apparent protection (108). Another study showed that
stimulation of T cells obtained from children living in Papua New
Guinea resulted in parasite-specific IFN-γ and TNF responses,
which were associated with protection against clinical episodes
of malaria (109). More recently, studies in African children
showed that CD4+ T cells may play an important modulatory
role in the development of blood-stage immunity (110, 111).
Higher IFN-γ/IL-10+ specific-CD4+ T cell responses were
observed amongst children heavily exposed to malaria compared
to children with low exposure indicating that CD4+ T cells may
play an important immunomodulatory role in the pathogenesis
of childhood malaria (110). Additionally, the induction of IL-10-
producing CD4+ T cells amongst highly exposed children may
interfere with the development of immunity, which may have
implications for vaccine development (111).

T follicular helper cells (Tfh) are a subset of CD4+ T cells,
capable of providing B cell help as well as activating follicular
B-cell responses (112–114). Recent studies in mice showed
that Tfh cells play a critical role in controlling P. chabaudi
blood-stage infection via activation of IL-21 mediated responses
(115). Therefore, since humoral responses are critical to the
erythrocytic stages of Plasmodium, an in-depth understanding of
the activation andmaintenance of Tfh cells during malaria will be
critical in designing blood-stage vaccines (115).

Regulatory T cells (Tregs) are another CD4+ T cell subset
implicated in the maintenance of immune homeostasis and
control of excessive pathogen-driven inflammatory responses
(116, 117). Following Plasmodium infection, uncontrolled
production of pro-inflammatory cytokines is associated with
pathology in both mice and humans (118–121) and anti-
inflammatory cytokines (TGF-β and IL-10) are known to be
critical in the modulation of this inflammatory response (118,
120, 122, 123). The immunomodulatory function of IL-10 and
TGF-β is associated with Tregs whose role in rodent malaria
remains unclear. Some studies have shown that Tregs are
critical in the control of pro-inflammatory responses associated
with pathology (124, 125) while other studies have associated
upregulation of Tregs with detrimental outcomes (124, 126,
127). These discrepancies may have been dependent on the
rodent parasite strains utilized in the study (128). Tregs may
inhibit protective immune responses resulting in enhanced
parasite growth if induced early in infection but may also
limit immune-mediated pathology (45, 128–130). Clinical studies
have shown that acute infection with Plasmodium parasites
resulted in upregulation of Tregs which positively correlated
with augmented parasite load and subsequent disease severity
amongst these individuals (131–134). Given this background,
a vaccine capable of inducing Tregs with the ability to protect
against the immunopathology associated with malaria infection

would be desirable if parasite persistence is required for the
maintenance of protective immune responses. However, since
Tregs are known to inhibit protective immune responses,
treatment with antimalaria drugs at the time of vaccination
may be necessary to “normalize” the pre-existing immune
response and ensure induction of the appropriate vaccine-
specific responses (45).

The role of CD8+ T cells in defense against blood-stage
parasites remains unclear due to the fact that mature RBCs do not
express MHC class I molecules. However, in vitro studies have
shown that both P. falciparum and P. vivax are able to invade
erythroblasts—immature erythrocytes that possess a nucleus
and express MHC class I molecules (135, 136). Additionally,
studies in mice demonstrated that blood-stage parasite antigens
were cross-presented by CD8-α+ DCs, inducing parasite-specific
CD8+ T cell responses capable of lysing APCs (137). These
findings indicated the possible relevance of CD8+ T cells in
erythrocytic immunity to Plasmodium. Indeed, additional studies
in mice demonstrated that parasitized erythroblasts activated
CD8+ T cells in an antigen-specific manner (138). This contact-
dependent Fas—Fas Ligand (FasL) interaction of CD8+ T
cells with the parasitized erythroblasts results in the exposure
of phosphatidylserine (PS) on the erythroblast surface (139).
Cells displaying PS on their surface are rapidly phagocytosed
by macrophages. Thus, CD8+ T cells in conjunction with
macrophages are able to mediate immunity to a blood-stage
malaria infection in mice (139). Earlier studies in a P. yoelii
infection model demonstrated that professional APCs might
cross-present parasite-derived peptides on MHC class I to CD8+

T cells leading to cytotoxicity through the production of IFN-γ,
perforin and granzyme B (140). Furthermore, parasite-specific
CD8+ T cells have also been shown to clear infected reticulocytes,
which express MHC class I molecules, via the secretion of IFN-γ
and expression of granzyme B (141).

These data highlighted in the studies above provide an insight
into the complex nature of immune responses elicited following
infection with malaria parasites. Understanding the balance
between protective immunity and immunopathology is critical
for the development of an ideal vaccine capable of inducing both
humoral and cell-mediated immune responses against different
life-cycle stages of the malaria parasite. To achieve this balance,
careful selection of antigen delivery systems and adjuvants during
the vaccine development process is paramount and the pliability
of liposome-based platforms can be utilized for this purpose.

DESIGN CONSIDERATIONS OF
LIPOSOMAL VACCINE FORMULATIONS

Based on their design, liposome vaccine formulations
can be tailored to achieve desired immune responses and
adjuvant properties by modification of vesicle physicochemical
factors (summarized in Figure 1), such as lipid composition,
charge, PEGylation, antigen encapsulation, and addition of
immunomodulators (9, 40–43).

The choice of phospholipid has been shown to enhance
the adjuvanticity of liposomes. Long chain lipids tend to form
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FIGURE 1 | Major liposome physicochemical characteristics that can be modified to direct immune responses elicited following vaccination (9).

rigid ordered bilayer structures while those with shorter tails
tend to form fluid and disordered vesicles (9). Immunization of
animals with liposomes formulated with long chain lipids such as
dimethyldioctadecylammonium bromide (DDAB) and distearyol
derivative of L-α-phosphatidyl choline (DSPC) resulted in
stronger antigen-specific antibody responses when compared to
animals that received liposomes formulated with shorter chain
lipids (142). Additionally, the stability of the lipid bilayer can
be enhanced further with the addition of cholesterol within the
liposome formulation resulting in improved antibody responses
compared to formulations without cholesterol (143–145).

Positively charged (cationic) liposomes formulated with
saturated acyl chain lipids (with a quaternary ammonium head
group) have been shown to promote the binding of antigen at
the site of injection stimulating interaction with APCs to elicit
a robust Th1 cytokine response (146). In contrast, highly fluid
unsaturated acyl chain liposomes that are rapidly cleared from
the injection site result in lower activation of APCs as measured
by the decreased expression of DC co-stimulatory molecules
CD40 and CD86 (146). Additionally, cationic liposomes have
been shown to promote retention of higher levels of antigen at
the injection site, resulting in a depot-effect allowing continuous
attraction of APCs and subsequent induction of robust cell-
mediated immune responses comprised of IFN-γ, IL-2, TNF, and
IL-17 (147). On the other hand, negatively charged (anionic) and
neutral liposomes were rapidly cleared from the injection site
resulting in lower activation of APCs and lower Th1 as well as
Th17 cytokine responses (9, 147, 148).

The inclusion of polyethylene glycol (PEG), known as
PEGylation, has been extensively used for the stabilization of
liposomes (149). PEGylation has been shown to mask the charge,

due to the hydrophilic chains of PEG extending out from the
surface of the liposomes subsequently reducing the electrostatic
retention of antigen to the surface of these vesicles (150, 151).
Additionally, PEGylation influences lipid packaging reducing
the number of bilayers and resulting in reduced vesicle size
(151). This modification of liposome size and antigen adsorption
properties by PEG was shown to reduce depot formation,
resulting in reduced IgG2b antibody and Th1 (IFN-γ) cytokine
responses as well as an elevated Th2 (IL-5) cytokine response
compared to non- PEGylated liposome formulations (150, 151).

The particle size of liposomes has also been shown to impact
adjuvanticity and direct the development of the resulting cell-
mediated immune response (42). Studies have shown that the
immune response induced following administration of small-
sized liposome vesicles (10–100 nm) was skewed toward Th2
whilst larger vesicles (400–2,500 nm) induced a Th1 response
characterized by augmented IFN-γ and IgG2a production (152).
The differences in the profiles of the induced immune response
of large vs. small vesicles could be due to differences in
antigen processing and trafficking to lymph nodes. Large-sized
vesicles (560 nm) were shown to bemore efficiently phagocytosed
and processed by macrophages compared to smaller vesicles
(155 nm) (153). Additionally, trafficking of liposome particles
to lymph nodes has been shown to be size dependent,
with small-sized vesicles (20–200 nm) freely draining to and
specifically targeting lymph node-resident cells, while large-sized
vesicles (500–2,000 nm) require dendritic cells for trafficking
from the injection site to lymph nodes (154). More recently,
immunization using a formulation containing large-sized
cationic liposomes (∼500 nm) resulted in enhanced splenocyte
proliferative responses and reduced IL-10 production compared
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to small sized liposomes (∼100 nm) (155). Interestingly, smaller
unilamellar liposomes (70 nm) were reported to stimulate higher
IgG titers than larger unilamellar (400 nm) but not large
submicron size multilamellar liposomes in mice (156). The
potency of multilamellar liposomes can be explained by more
efficient antigen protection against degradation in their multiple
lipid bilayers.

Liposomes can be modified to incorporate additional
lipophilic immunomodulators within or attached to the lipid
bilayer to enhance adjuvanticity. Such immunomodulators are
crucial in the activation of the cells of the innate immune
system via PRRs which recognize PAMPs on the surface of
pathogens, subsequently activating the adaptive immune system.
The activation of innate immune cells such as dendritic cells and
macrophages requires the use of Toll-like receptor (TLR) and
NOD-like receptor (NLR) type PRRs to direct a robust immune
response (157). Therefore, the use of synthetic PRR agonists has
been predicted to be critical in the formulation of liposome-based
vaccine adjuvants (9, 158).

Liposome formulations can be customized by incorporating
PRR agonists that mediate activation and maturation of
APCs which in turn facilitates the uptake and processing of
liposome-associated antigens resulting in potent cell-mediated
immune responses (9). The most widely used PRR agonist
monophosphoryl lipid A (MPLA), a TLR-4 agonist, has been
used in licensed vaccine formulations Fendrix (hepatitis B) (159)
and Cervarix (human papillomavirus) (160). A synthetic analog
of MPLA, 3′-O-desacyl-4′-monophosphoryl lipid A formulated
with Quillaja saponaria Molina, fraction 21 (QS-21) saponin is
included in the liposome-based GSK Adjuvant System 01 (AS01)
and has been tested in human studies for the malaria vaccine
RTS, S (Mosquirix) (16), as well as a shingles sub-unit vaccine
HZ/su which demonstrated over 90% efficacy amongst elderly
persons (15). Similarly, liposomes can be tagged with sugars
such as mannose to target them to lectin-like molecules on
APCs to facilitate phagocytic uptake thereby promoting MHC
class II involvement and, via cross presentation, MHC class I.
This targeting of liposomes to different uptake pathways may
aid in directing the resulting immune response toward a mixed
Th1/Th2 response (9, 161).

The route of administration of particulate antigen delivery
systems such as liposomes has been shown to affect the type
and magnitude of immune response induced. Interestingly
liposomes can be even administered orally; however, they need
to be extensively modified to improve their stability in the
gastrointestinal tract and their mucosa adhesive properties
(162). In a cross-sectional study in mice, the intramuscular,
intradermal and intralymphatic routes of administration were
associated with intermediate to high induction of IgG2a and
IFN-γ cytokine production while the subcutaneous route was
associated with low elicitation of IgG2a and IFN-γ cytokine
production (163). These data indicate that the route of
administration is critical in the generation of the desired
immune response and should be considered while interpreting
immunological data following immunization with liposome-
based vaccine formulations. Together, it is evident that the
versatility and plasticity of liposomes facilitates the tailoring of

the desired immune responses, as well as enhanced adjuvanticity
and this can be exploited for the development of a malaria
vaccine.

UTILITY OF LIPOSOMES IN MALARIA
VACCINE DEVELOPMENT

Liposomes are increasingly becoming used in a number of
malaria vaccine candidates targeting the different life-cycle
stages. The use of liposomes in the development of sporozoite-
stage malaria vaccines dates back to the mid-1980s where
tetrapeptide antigens (asparagine-alanine-asparagine-proline)
derived from the repetitive region of the circumsporozoite
(CS) protein of P. falciparum sporozoites were conjugated to
carrier proteins and were incorporated into liposomes. These
studies demonstrated that liposomes containing carrier protein-
conjugated peptide induced a potent humoral immune response
which was further enhanced when lipid A was incorporated
in the liposome formulation (164–169). The aforementioned
studies laid the foundation for the development of RTS, S, the
only vaccine against malaria that has received approval for use
in pilot implementation trials in sub-Saharan Africa (7). The
RTS, S vaccine construct is made of the central repeat region
(amino acids 210-398) (R) and the C-terminal region containing
the T-cell epitopes of CSP (T), fused to hepatitis B surface
antigen (HBsAg) (S), co-expressed in Saccharomyces cerevisiae
yeast and self-assembled with unfused HBsAg antigen (170, 171).
These hybrid virus-like particles (VLPs) were co-formulated
with GSK’s proprietary liposome-based adjuvant system, AS01,
which contains potent immunostimulants, MPLA and QS-21
that was selected over AS02, an oil-in-water emulsion adjuvant
following evidence of enhanced antigen-specific antibody and
CD4+ T-cell responses as well as improved efficacy in large-scale
clinical studies (61, 172–175). The level of and mechanism of
immunity induced by RTS, S in endemic settings are topics of
much research. Over 4 years of follow up, the level of protection
ranged from 18 to 36%, depending on the age of the child and
whether the child received 3 or 4 doses of vaccine. Protection
was clearly greater in the early months after vaccination, but
waned rapidly after that and there was a ‘negative efficacy’
during the 5th year in some children (176). This is a sub-
optimal response and as such the mechanism of immunity
came under great scrutiny. Evidence suggests that the level of
antibody to the CS protein and serum levels of IFN-γ post
vaccination both correlate with protection (177, 178). A major
concern, has been the rapid diminution of antibody levels over
time, in the face of parasite exposure. The problem is not that
RTS,S is not immunogenic. The adjuvant system is one of the
most potent there is for human use and is used elsewhere with
great effect. It has made Shingrix a highly successful vaccine
where even in the elderly there is 90% efficacy. Also, the
problem is not with boosting per se, as each dose of RTS,S
is accompanied by a rapid rise in antibody titer. In our view,
the main problem is that even though RTS,S has a powerful
adjuvant system, it is still not powerful enough. Titres wane
after vaccination and natural infection will not boost. The main
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reasons for this appear to be: (i) antigenic polymorphism; and
(ii) that the dose of sporozoites that individuals are exposed
to (and which express the CS protein) are simply too low to
boost or maintain antibody levels. T cell epitopes present on
the CS protein which are incorporated into the vaccine are
polymorphic (179), and this polymorphism does contribute to
the low efficacy (180). The T-cell epitopes are known to be
non-cross-reactive (181). An additional factor may relate to
liposome design per se. Indeed, efforts are currently underway
to remodel RTS, S such that each HBsAg particle expresses
CSP thereby increasing the concentration of parasite antigens
(182). Here, CSP-HBsAg fusion proteins were co-expressed
in Pichia pastoris yeast which in the presence of a tightly
regulated inducible alcohol oxidase (AOX1) promoter allows
production of a higher density of hybrid VLPs (182, 183). This
vaccine construct, co-formulated with Matrix-M TM, a saponin-
based liposomal adjuvant is now undergoing clinical testing
NCT029050191.

In the development of transmission-blocking vaccines, gel
core liposomes encapsulating Pfs25, an antigen expressed
on zygotes and ookinetes of P. falciparum and a leading
transmission-blocking vaccine (TBV) candidate, have been tested
in mouse models (184). Gel core liposomes are a stabilized
form of liposomes bearing a core of biocompatible polymer
inside the lipid vesicle which serves to prevent the rapid release
of antigen content from liposomes (184, 185). Following 2
intramuscular injections with gel core liposomes, Pfs25-specific
antibody responses were observed in immunized mice, and
these were maintained for up to 8 weeks. Additionally, strong
Th1 cytokine (IL-2 and IFN-γ) responses were elicited and
these responses were augmented when the gel core liposomes
were formulated with CpG oligodeoxynucleotide (CpG-ODN)
(184, 185).

A cationic adjuvant liposome formulation (CAF01)
consisting of DDAB, synthetic mycobacterial cordfactor as
an immunomodulator, and merozoite surface protein 1 (MSP1)
antigen derived from P. yoelii genomic DNA, PyMSP1, has been
tested in pre-clinical studies as a blood-stage malaria vaccine
(186). Compared to the Alum adjuvanted vaccine formulation,
immunization with CAF01- Py-MSP-1 resulted in significantly
higher antibody and IFN-γ cytokine responses. Furthermore,
following challenge, immunization with CAF01- PyMSP1
resulted in significant control of parasite growth (186).

Tyagi et al. (187), utilized a liposome-mediated transdermal
immunization approach to deliver P. falciparum merozoite
surface protein-1 (PfMSP-1) antigens through intact skin to
antigen presenting cells in the skin (187). Similar to observations
following immunization with CAF01- PyMSP1(186), durable
and stronger parasite-specific humoral responses were
observed up to 10 weeks post-immunization. Additionally,
robust cell-mediated responses critical in immunity against
blood-stage malaria parasites were induced following
transdermal administration of elastic liposomes loaded
with PfMSP-1 antigens when compared to Alum based

1A Safety and Efficacy Study of R21 +/- ChAd63/MVA ME-TRAP. https://

ClinicalTrials.gov/show/NCT02905019.

vaccine formulations (187). Collectively, these data underscore
the substantial superiority of liposome-based formulations
over aluminum-based vaccine adjuvant formulations in
the induction of parasite-specific immune responses to
malaria.

More recently, our group formulated liposomes with
mannosylated lipid core peptides (MLCPs) as targeting ligands
for the delivery of whole blood-stage parasite antigens to
professional antigen presenting cells (188). Immunization
with these mannosylated liposome formulations resulted
in the induction of significant CD8+ T cell responses;
immunized mice demonstrated better control of parasitemia
as well as extended survival following challenge, when
compared with control mice, availing an alternative
delivery system for inactivated whole parasite antigens
(188). Together, the studies above indicate that liposomes
are being considerably used in malaria vaccine development
for targeting all of the different life-cycle stages and their
pliability can be further explored to develop a multi-stage
vaccine.

CONCLUDING REMARKS

The quest for a vaccine against malaria continues despite the
partial success with RTS, S/AS01, which showed modest efficacy
in phase III clinical trials (16). Given the complex network of
immune responses elicited following infection with Plasmodium
parasites, an ideal vaccine should aim to induce the appropriate
life-cycle stage-specific-antibody and cell-mediated responses
capable of protecting against disease and immunopathology.
The versatility of liposomes can be exploited to achieve an
optimal formulation via the use of charged lipids to promote
antigen retention at the injection site (depot-effect) (186),
inclusion of targeting ligands to promote uptake by professional
APCs (188), to control their stability, release of antigen,
enhance antigen protection, and include immunomodulators
(40, 43). Additionally, as the poor efficacy of most malaria
vaccines evaluated thus far in field trials has been attributed
to antigenic polymorphism, the use of whole parasite antigens
(188) in liposome formulations needs to be explored further
in malaria vaccine development. In summary, the modification
of vesicle physicochemical properties may be further exploited
to design an optimal liposome formulation with a high level
of efficacy required for complete eradication of malaria by
2030 (8).
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