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One host defense function of C-reactive protein (CRP) is to protect against Streptococcus

pneumoniae infection as shown by experiments employing murine models of

pneumococcal infection. The protective effect of CRP is due to reduction in bacteremia.

There is a distinct relationship between the structure of CRP and its anti-pneumococcal

function. CRP is functional in both native and non-native pentameric structural

conformations. In the native conformation, CRP binds to pneumococci through the

phosphocholine molecules present on the C-polysaccharide of the pneumococcus and

the anti-pneumococcal function probably involves the known ability of ligand-complexed

CRP to activate the complement system. In the native structure-function relationship,

CRP is protective only when given to mice within a few hours of the administration of

pneumococci. The non-native pentameric conformation of CRP is created when CRP

is exposed to conditions mimicking inflammatory microenvironments, such as acidic

pH and redox conditions. In the non-native conformation, CRP binds to immobilized

complement inhibitor factor H in addition to being able to bind to phosphocholine.

Recent data using CRP mutants suggest that the factor H-binding function of non-native

CRP is beneficial: in the non-native structure-function relationship, CRP can be given

to mice any time after the administration of pneumococci irrespective of whether

the pneumococci became complement-resistant or not. In conclusion, while native

CRP is protective only against early stage infection, non-native CRP is protective

against both early stage and late stage infections. Because non-native CRP displays

phosphocholine-independent anti-pneumococcal activity, it is quite possible that CRP

functions as a general anti-bacterial molecule.

Keywords: C-reactive protein, factor H, phosphocholine, pneumococcal C-polysaccharide, Streptococcus

pneumoniae

INTRODUCTION

C-reactive protein (CRP) is a multifunctional molecule of the innate immune system in humans (1–
4). CRP is a cyclic pentameric protein comprised of five identical non-covalently attached subunits.
Each subunit has an intra-disulfide bond and the molecular weight of each subunit is ∼23 kDa
(5, 6). A phosphocholine (PCh)-binding site is located on the same face of each subunit in the
homopentamer. The amino acids Phe66, Thr76, and Glu81 in CRP are critical for the formation of
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the PCh-binding site (7–9). Once CRP is complexed with a
substance with exposed PCh group, the complex activates the
complement system through the classical pathway (10–12).

Streptococcus pneumoniae are gram positive bacteria that
asymptomatically colonize the upper respiratory tract (1, 13–
15). It is the most common bacterium that causes community-
acquired pneumonia and is also a significant cause of septicemia
and meningitis (1, 13–15). Systemic pneumococcal infection
raises the level of CRP in serum by up to several hundred-fold in
humans as a part of the acute phase response (16–18). CRP binds
to pneumococci through Ca2+-dependent interaction with PCh
residues present on the pneumococcal cell wall C-polysaccharide
(PnC) (19, 20). In mice, however, CRP is only a minor acute
phase protein; therefore, mice have been useful in investigating
the functions of human CRP in vivo (21).

In murine models of pneumococcal infection, passively
administered human CRP has been shown to be protective
against lethal pneumococcal infection, that is, CRP decreases
bacteremia and enhances survival of infected mice (1, 22–
26). CRP-deficient mice are more susceptible to pneumococcal
infection than are wild type mice, which indicates that the trace
level of endogenous mouse CRP is capable of exerting anti-
pneumococcal functions (27). Mice transgenic for human CRP
are also protected against infection with S. pneumoniae (28).
The mechanism of anti-pneumococcal action of CRP in mice,
however, is unknown.

Current research on defining the mechanism of anti-
pneumococcal actions of CRP benefited from a key finding
made several decades ago using passive administration of
purified human CRP into mice (29). CRP was protective when
injected into mice 6 h before to 2 h after the administration of
pneumococci. CRP was not protective when mice received CRP
24 h after infection, suggesting that CRP is protective during
early stage infection but not in late stage infection. For early
stage protection, it is believed that the mechanism of action of
CRP involves the capability of CRP to bind to pneumococci
through PCh groups present on their surfaces and subsequent
activation of the classical complement pathway by pathogen-
bound CRP. Obviously, this mechanism does not operate for
late stage infection. A PCh-independent mechanism for anti-
pneumococcal function of CRP has been proposed along with
an explanation for the inability of CRP to be protective against
late stage infection (1, 24–26). In this article, we review PCh-
dependent, PCh-independent, and other proposed mechanisms
for the anti-pneumococcal function of CRP during both early
stage infection (when CRP and pneumococci are administered
into mice 30min apart) and late stage infection (when CRP and
pneumococci are administered into mice 24 h apart).

PCh-DEPENDENT ANTI-PNEUMOCOCCAL

FUNCTION OF CRP

In vivo experiments employing a CRP mutant incapable of
binding to PCh, PnC, and whole pneumococci provided

Abbreviations: CRP, C-reactive protein; FHR, factor H-related protein; LPS,
lipopolysaccharide; mCRP, monomeric CRP; PCh, phosphocholine; PnC,
pneumococcal C-polysaccharide.

results indicating that CRP-mediated protection of mice against
infection is independent of binding of CRP to PCh; the CRP
mutant was as effective as wild-type CRP in protecting mice
against early stage infection (26). The PCh-binding mechanism,
however, does contribute to the protection of mice during
the early stage of infection (25, 26). The PCh-dependent
mechanism contributes to the initial and immediate clearance
of pneumococci as has been shown employing a variety of
murine models of infection (26, 27). Overall, the combined
data suggest that both PCh-dependent and PCh-independent
mechanisms operate in the protection of mice against early stages
of infection, although the PCh-dependent mechanism is not
necessary (25, 26).

Indirect evidence has been presented to show the importance
of the PCh-binding property of CRP and subsequent
complement activation by CRP-complexes in protection
from infection. It has been shown that CRP binds to gram
negative bacterial lipopolysaccharide (LPS) if the LPS is modified
by adding a few PCh residues to it. The binding of CRP to PCh-
modified LPS increases based on the number of PCh residues
added and subsequently affects the resistance of the organism to
the killing effects of serum (30). Also, the pneumococcal surface
protein PspA, which is a choline-binding protein, is known
to bind to PCh. PspA thus competes and inhibits the binding
of CRP to PCh on pneumococci and decreases complement
activation (31). Similarly, pneumococci growing as a biofilm are
avirulent due to a decrease in PnC production although with
an increase in PCh expression, interference from pneumococcal
surface protein PspC, reduced binding of C1q to CRP-PCh
complexes, and subsequent failure to activate complement
(32, 33). Biofilm formation in S. pneumoniae is an effective
means of evading complement attack (33).

One study suggested that the property of CRP to activate the
classical pathway of complement in human serum is irrelevant
for the protective function of CRP in mice infected with S.
pneumoniae, because human CRP does not activate murine
complement via the classical pathway (23). Since complement-
deficient mice do not show CRP-mediated protection to
pneumococcal infection (34), it is possible that CRP-complexes
are able to activate murine complement system via a pathway
other than the classical pathway (1, 23). It has been proposed that
human CRP-complexes are able to activate the lectin pathway
in murine serum and are able to activate both the classical and
lectin pathways in human serum (23). CRP has been shown
to interact with both L-ficolin and M-ficolin and activate the
lectin pathway of complement (35–39). The interaction between
CRP and L-ficolin increases 100-fold under the conditions of
slight acidosis and reduced calcium levels, and it has also been
shown that the cross-talk between CRP and L-ficolin mediates
killing of Pseudomonas aeruginosa in plasma (37). L-ficolin also
recognizes PCh on pneumococcal strains and triggers activation
of the lectin complement pathway (40). Lectin-like oxidized
LDL receptor, LOX-1, can also recognize CRP and is involved
in CRP-dependent complement activation (41, 42). CRP is a
major hemolymph protein in the horseshoe crab Carcinoscorpius
rotundicauda. When CRP is in the hemolymph, it binds to a
range of bacteria through galactose-binding protein and ficolin.
Accordingly, it has been proposed that CRP does not act
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alone but collaborates with other plasma lectins to form stable
pathogen recognition complexes when targeting a wide range of
bacteria for destruction (35).

PCh-INDEPENDENT

ANTI-PNEUMOCOCCAL FUNCTION OF

CRP

Factor H, a regulator of complement activation, has been
implicated in resistance of pneumococci to complement attack
(43, 44). Factor H protects from complement attack by inhibiting
the activation of the alternative pathway on host cells and
on those pathogenic surfaces which are capable of recruiting
factor H from the plasma. On the host cells, factor H binds
to polyanionic structures and glycoproteins found on the cell
surface (45). On S. pneumoniae, factor H binds to a surface
protein called Hic (factor H-binding inhibitor of complement)
which is a variant of PspC (46, 47). Thus, pneumococci use
factor H to evade complement-mediated killing. The recruitment
of factor H by pneumococci might be the reason why CRP
does not protect mice from pneumococcal infections during late
stage infection.

CRP does not bind to factor H under normal physiological
conditions (48–52). Denaturation conditions for CRP enable
CRP to bind to factor H (4, 48–51). For example, immobilization
of CRP on to a surface enables CRP to bind to factor H (4, 53, 54).
Monomeric CRP (mCRP) also binds to factor H, in a Ca2+-
independent manner (55). The Y384H polymorphism of factor H
affects binding affinity for mCRP. CRP binds to factor H-Tyr384

more strongly compared to factor H-His384 which is the risk
allele (56–60). PCh does not compete with factor H for binding
to CRP (52). It has been suggested that when CRP immobilizes
itself on S. pneumoniae, it limits excessive complement activation
by recruiting factor H (61, 62). CRP has also been shown to
modulate lectin pathway-dependent cytolysis by recruiting factor
H (63, 64).WhenCRP binds to dead cells it does not recruit factor
H (55). mCRP also binds to factor H-related proteins (FHR)
FHR1 and FHR5 and to factor H like protein 1 (FHL-1) which
inhibit subsequent recruitment of factor H (65–68). CRP has also
been shown to recruit factor H on other cell types, for example,
CRP recruits factor H after binding to collectin CL-P1 on the
surface of placental cells (69, 70). Otherwise, the interaction of
CRP with CL-P1 activates the classical complement pathway. The
interaction of CL-P1 with factor H might be the key to prevent
self-attack due to complement activation induced by the CL-P1
and CRP interaction (69, 70).

Based on results obtained from the experiments performed
under defined conditions—native pentameric CRP does not bind
to factor H while mCRP binds to factor H—it was hypothesized
that a non-native pentameric CRP may also be able to bind to
factor H (48). Indeed, the native pentameric structure of CRP
could be modified in vitro to generate non-native pentameric
CRP capable of binding to factor H (2, 48–50). Since non-
native CRP and Hic can bind to factor H simultaneously,
it is possible that non-native CRP can bind to factor H-
coated pneumococci, cover the factor H-Hic complex formed on

bacteria and therefore eliminate the repressive effect of factor
H on complement activation (71–73). Recently, a CRP mutant
capable of binding to immobilized factor H was evaluated for
its ability to protect against late stage pneumococcal infection.
The CRP mutant protected mice against infection regardless
of the time of administration into mice (71–73). These data
lead to the proposal that the PCh-independent mechanism first
involves a structural change in CRP which is then followed by
the interaction between structurally altered CRP and factor H-
bound pneumococci. Once factor H on pneumococci is bound to
structurally altered CRP, such pneumococci may not be resistant
to complement attack any longer (1, 71–73).

Besides, factor H, S. pneumoniae have also been shown
to recruit another complement inhibitor, C4b-binding protein
(C4BP) via Hic that also recruits factor H (74, 75). Pneumococci
also use another cell surface protein, enolase, to recruit C4BP
(75). By recruiting C4BP, pneumococci are able to evade
complement attack. We hypothesize that non-native CRP may
also be protective against those pathogens which recruit C4BP
for complement evasion: non-native CRP could bind to factor
H/C4BP-coated pneumococci, and then the complex formed
by CRP, factor H/C4BP, and Hic could activate the lectin
pathway of complement and trigger killing of the pneumococci.
The possibility cannot be ruled out that the PCh-independent
mechanism may involve the binding of non-native CRP to
pneumococcal surface proteins, as CRP has been shown
to interact with several choline-binding proteins found on
pneumococci in a Ca2+-independent manner (76).

CRP AS AN ANTI-BACTERIAL MOLECULE

CRP binds to several pathogenic serotypes of S. pneumoniae
(77–79) and binds more avidly to those strains which contain
PCh in both cell wall and capsular polysaccharides, such as type
27 (80). CRP, like lectins, also reacts with polysaccharides that
do not contain PCh, such as depyruvylated type-IV capsular
polysaccharide prepared from type 27, in the presence of calcium,
and probably the reaction is due to N-acetylgalactosamine
in the polysaccharide (81–84). CRP appears to have opsonin
properties; it causes agglutination and lysis of gram positive
bacteria Staphylococcus aureus, Bacillus subtilis, Streptococcus
pyogenes, and Streptococcus agalactiae (77, 78).

The anti-bacterial action of CRP is not limited to gram positive
bacteria only. CRP also protects mice from the early stages
of infection with Salmonella enterica serovar Typhimurium,
which is a gram negative bacterium and to which CRP does
not bind in vitro (85). But CRP has been shown to bind to
S. enterica in the presence of serum (35). CRP also binds to
Haemophilus influenzae (86). H. influenzae undergoes phase
variation in expression of the PCh on the cell surface-exposed
outer core of the LPS. PCh-positive variants are more sensitive
to the bactericidal activity of human serum which requires
the binding of serum CRP to whole bacteria with subsequent
activation of complement (86–88). The ability of H. influenzae
to vary PCh expression to zero may relate to its ability to
cause invasive infection by evading attack by CRP (86). Mouse
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models of H. influenzae infection have not been established yet
to determine whether CRP protects against infection with H.
influenzae (27). CRP also binds to Neisseriae spp. in a Ca2+-
dependent manner (89–91). PCh is present on the LPS of
several species of commensal Neisseriae and, like H. influenzae,
Neisseriae also undergo phase variation in expression of the PCh
on their LPS (91). Mouse protection experiments have not been
performed for Neisseriae either, employing native or non-native
pentameric CRP.

Some experiments suggest a role of CRP in protecting
animals against lethal toxicity of LPS, although the subject has
been controversial (92–96). In the hemolymph of horseshoe
crab, Carcinoscorpius rotundicauda, CRP was identified as the
major LPS-binding protein in infections with Pseudomonas
aeruginosa (97). CRP bound to all bacteria tested in the
horseshoe crab hemolymph (35). The binding of CRP to
LPS is indirect; a third molecule called galactose-binding
protein (GBP) participates in bridging CRP and LPS (98).
Upon binding to LPS, GBP interacts with CRP to form
a pathogen-recognition complex, which helps to eliminate
invading microbes (35, 98). Combined data raise the possibility
that CRP functions as a general anti-bacterial molecule; CRP
may require a change in its pentameric conformation and
also seek help from other serum proteins to form pathogen-
recognition complexes.

CRP AS AN ANTI-INFLAMMATORY

MOLECULE

Native pentameric CRP can dissociate into mCRP via an
intermediate non-native pentameric structure (50, 99–101). All
three forms, native pentameric, non-native pentameric, and
mCRP display different ligand recognition functions in vitro
(2, 102–104). Under conditions of low pH, reduced calcium
levels and oxidation-reduction, CRP is converted to a non-
native conformation but remains pentameric (48–50, 105–
107). When non-native CRP binds to a non-PCh ligand, it
denatures further to mCRP. Similarly, when CRP binds to
cell membranes, liposomes, and cell-derived microvesicles, it
undergoes a structural change which involves spatial separation
of the monomers from each other without disrupting the
pentameric symmetry to form a transitional state CRP (108). The
mechanism by which CRP recognizes membrane lipids and binds
in a Ca2+-independent manner depends on the combination
of protein form, lipid composition, and membrane shape (109,
110). Surface-immobilization of CRP generates a preservable
intermediate with dual antigenicity expression of both CRP and
mCRP. The intermediate exhibits modified bioactivities, such
as a high affinity with solution-phase proteins (107). It has

been shown that mCRP but not CRP is the major isoform
present in local inflammatory lesions (111). Since mCRP is
insoluble, it is considered a tissue-bound form of CRP. Thus,
an intermediate stage of CRP structure seems to be responsible
for anti-inflammatory host defense functions of CRP in vivo.
Structural changes in vivo may be converting CRP into an
anti-inflammatory molecule assuming that the ultimate pro-
inflammatory by-product, mCRP, is continuously being removed.
An intrinsically disordered region of amino acid residues 35–47
in CRP is responsible for mediating the interactions of mCRP
with diverse ligands (112), and possibly also responsible for
mediating the interactions of non-native pentameric CRP with
diverse ligands (48–50).

CONCLUSIONS

While native CRP is protective only against early stage infection,
non-native pentameric CRP is protective against both early stage
and late stage infections in murine models of pneumococcal
infection. Because non-native pentameric CRP displays PCh-
independent anti-pneumococcal activity, it is quite possible
that CRP functions as a general anti-bacterial molecule. Thus,
pentameric CRP is an anti-inflammatory molecule.

A long-term goal could be to focus on the discovery and
design of small-molecule compounds to target CRP, a compound
that can change the structure of endogenous CRP so that the
structurally altered CRP is capable of binding to factor H-bound
pneumococci. A recent study showed that injections of sub-
inhibitory concentrations of antibiotics enhanced the binding of
CRP to three antibiotic-resistant S. pneumoniae strains in serum
and enhanced antibody-dependent complement activation (113).
Based on these findings, another goal could be to investigate
the effects of combinations of non-native pentameric CRP with
various antibiotics in pre-clinical studies.
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