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Innate lymphoid cells (ILCs) represent a heterogeneous group of cells lacking genetically

rearranged antigen receptors that derive from common lymphoid progenitors. Five

major groups of ILCs have been defined based on their cytokine production pattern

and developmental transcription factor requirements: namely, natural killer (NK) cells,

ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells. ILC1s, ILC2s, and ILC3s

mirror the corresponding T helper subsets (Th1, Th2, and Th17, respectively) and

produce cytokines involved in defense against pathogens, lymphoid organogenesis,

and tissue remodeling. During the first trimester of pregnancy, decidual tissues contain

high proportion of decidual NK (dNK) cells, representing up to 50% of decidual

lymphocytes, and ILC3s. They release peculiar cytokines and chemokines that contribute

to successful pregnancy. Recent studies revealed that ILCs display a high degree of

plasticity allowing their prompt adaptation to environmental changes. Decidual NK cells

may derive from peripheral blood NK cells migrated when pregnancy establishes or

from in situ differentiation of hematopoietic precursors. Previous studies showed that

human and murine decidua contain dNK cells, tissue resident NK cells, and ILC3s,

all characterized by unique phenotypic and functional properties, most likely induced

by decidual microenvironment to favor the establishment and the maintenance of

pregnancy. Thus, during the early phase of pregnancy, the simultaneous presence of

different ILC subsets further underscores the complexity of the cellular components of

decidual tissues as well as the role of decidual microenvironment in shaping the plasticity

and the function of ILCs.
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INTRODUCTION

ILCs represent an extended family of developmentally related hematopoietic cells that differ from
T and B cells because they do not undergo somatic rearrangements of antigen-specific receptors.
Notably, ILCs mirror the function of T cell subsets and contribute to host innate immune defenses,
lymphoid organogenesis, and tissue remodeling. Based on their transcription factor (TF) profile
ILCs have been recently classified in five groups including: (1) Natural Killer (NK cells); (2) ILC1s;
(3) ILC2s; (4) ILC3s; and (5) Lymphoid Tissue-inducer cells (LTi) (1, 2). All ILCs derive from
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a common lymphoid progenitor (CLP) expressing the inhibitor
of DNA binding 2 (ID2) TF. The CLPs differentiate into
common innate lymphoid precursors (CILPs) that, in turn, can
differentiate into common helper innate lymphoid precursors
(CHILPs) or into NK precursors (NKPs). Moreover, CHILPs can
subsequently give rise to LTi precursors (LTiPs) that differentiate
into LTi cells or to ILC precursors (ILCPs) that give rise to
ILC1s, ILC2s, and ILC3s, while NKPs differentiate toward NK
cells. Notably each differentiation step is driven by specific TF
(Figure 1) (3–5).

NATURAL KILLER CELLS

NK cells display cytolytic activity against virus-infected and
tumor cells and are characterized by the ability to rapidly release
pro-inflammatory cytokines and chemokines involved in early
inflammatory responses (6, 7). NK cell function is regulated
by an array of inhibitory and activating receptors (8–13).
Inhibitory NK receptors include Killer Ig-like Receptors (KIRs)
in humans and Ly49 receptors in mice, that recognize classical
MHC class-I molecules, and the heterodimer CD94/NKG2A
able to interact with non-classical MHC class-I molecules
(13, 14). Activating receptors include NKp46, NKG2D, and
DNAM-1, in both humans and mice, and NKp30 and NKp44
that are expressed only by human NK cells. Other surface
triggering molecules, such as 2B4 and NKp80, mainly function
as co-receptors, enhancing natural cytotoxicity induced by
triggering receptors. The most mature NK cells also express
CD16, the low-affinity receptor for the Fc region of G-type
immunoglobulins (IgG) responsible for antibody-dependent
cell-mediated cytotoxicity (ADCC). In human, two NK cell
subsets can be identified on the basis of CD16 and CD56 surface
expression (15). CD56dim NK cells, co-expressing CD16 and
KIRs, are predominant in peripheral blood (PB), display potent
cytolytic activity and rapidly release IFN-γ, whereas the poorly
cytolytic CD56brightCD16−CD94/NKG2A+KIR− NK cells are
mostly found in tissues and secondary lymphoid organs where
they are responsible for long-lasting production of chemokines
and cytokines (16). Several studies demonstrated that NK cells,
as other immune cells including ILCs, derive from a ID2+

hematopoietic precursor cell through the sequential acquisition
of receptors and functions that allow the identification of distinct
stages of development. Induction of NK cell commitment and
further development require the expression of specific TFs as
well as the exposure to a peculiar cytokine milieu. The TFs that
drive NK cell differentiation are thymocyte selection-associated
high mobility group box (TOX) and nuclear factor, interleukin
3 regulated (NFIL3, also known as E4BP4) (17). Achievement
of later maturational stages also requires Eomesodermin
(Eomes) and T-box transcription factor (Tbet) expression,
which promotes the expression of cytolytic machinery and
IFN-γ, respectively. Regarding the cytokine requirement, IL-15
is critical not only for the development of NK cells but also
for their survival proliferation and function (2, 4, 5, 18). It is
now clear that NK cell development not only occurs in the
bone marrow (BM) but also in other peripheral lymphoid and

non-lymphoid organs. Indeed, ex vivo maturational stages
of NK cell differentiations have been identified in some
tissues (e.g., thymus, tonsil, liver, and decidua) based
on surface markers expression. In this context, NK cells
have been extensively characterized in human and mouse
decidual tissues.

During the first trimester of pregnancy, NK cells reach 40–
70% of total lymphocytes present in the decidua, representing
the main lymphoid population and display unique phenotypic
and functional features (19–23). Human decidua NK (dNK)
cells are characterized by CD56brightCD16−KIR+CD9+CD49a+

phenotype, are poorly cytolytic and produce low amount of IFN-
γ, as compared to PB-NK cells (24, 25) (Figure 2). Conversely,
they secrete cytokines and chemokines e.g., VEGF, SDF-1, and IP-
10 that promote neo-angiogenesis, tissue remodeling, immune
modulation, and placentation (26–29). Moreover, dNK cells
induce regulatory T cells (Tregs) that play a major role in
the inhibition of maternal immune response and in tolerance
induction (30, 31). In a recent paper, single-cell RNA sequencing
of cells isolated from decidua and from the corresponding
PB during the first trimester of pregnancy demonstrated
the existence of three different NK cell subsets. These dNK
subsets display a characteristic immunomodulatory profile and
can specifically interact with other cells present in decidual
microenvironment. The resulting cross-talk appears to play an
important role in the control of successful pregnancy (32). It is
of note that the microenvironment of different tumors displays
an immunosuppressive milieu similar to that of decidua (33).
Thus, a type of microenvironment playing a functional role in
physiological condition, may instead favor tumor growth by
suppressing the anti-tumor immune response. In particular, it has
been shown that different types of cells present in the decidual
microenvironment could exert a potent immunosuppressive
activity inhibiting the function of NK cells (34–37). During
murine gestation, metastatic spread is enhanced regardless of the
tumor type and the decrease of NK cell activity is responsible of
the observed increase in tumormetastases (33). It has been shown
that human dNK cells express both inhibitory and activating
KIRs specific for HLA-C molecules that are present at the
trophoblast cell surface during the first trimester of pregnancy
(30). Interactions occurring between KIRs and HLA-Cmolecules
on trophoblast appear to play a relevant role in the induction
of fetus-maternal tolerance (38, 39). In addition to KIRs, other
receptors involved in the maintenance of pregnancy may be
expressed by dNK cells. Of particular interest is NKG2C that
upon binding to its corresponding ligand HLA-E, mediates the
activation of NK cell function (23). In this context, the expression
of NKG2C by dNK cells may play a key role in the control of
cytomegalovirus (CMV) intrauterine infection during pregnancy
(40). Notably, the frequency of NKG2C+ dNK cells increases
during repeated pregnancies as compared to the first pregnancy.
NKG2C+ dNK cell subset displays unique transcriptome and
receptor profile and may sustain both vascularization and
placentation during pregnancy (41). Recent studies provided
evidence that NKG2C+ NK cells can specifically discriminate
among different peptides bound to HLA-E. In particular, HLA-
E-bound peptides derived from the leader sequence of HLA-G
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FIGURE 1 | Representative ILC development and cytokine production. Common lymphoid progenitors (CLPs) differentiate into common innate lymphoid precursors

(CILPs) that can further give rise to common helper innate lymphoid precursors (CHILPs) or into NK precursors (NKPs). CHILPs give rise to LTi precursors (LTiPs) that

differentiate into LTi cells or to ILC precursors (ILCPs) that differentiate into ILC1s, ILC2s, and ILC3s, while NKPs differentiate toward NK cells. Specific transcription

factors (TFs) required step are indicated.

have been shown to induce an expansion of “adaptive” NK cells
characterized by a high proliferative capacity and cytotoxicity
(42, 43). Since HLA-G is mainly expressed by trophoblast cells it
is possible to speculate that NKG2C and HLA-E binding to HLA-
G peptides may play a relevant, still poorly explored, role in the
maintenance of pregnancy.

The actual origin of dNK cells is not fully defined. Previous
studies provided evidences that human decidual tissue contains
CD34+ hematopoietic cell precursors expressing IL-15/IL-2
receptor β-chain, IL-7 receptor α-chain and mRNA encoding
for E4BP4 and ID2 TF. Upon culture they could undergo
in vitro differentiation into mature NK cells that display a
phenotypical and functional profile similar to that of dNK cells.
These observations strongly suggest that dCD34+ cells display a
commitment to the NK cell lineage. Indeed, their differentiation
occurs either in the presence of suitable growth factors or even
upon co-culture with decidua-derived stromal cells strongly
suggesting that dNK cells may derive from CD34+ precursors
already present in the decidua (44). It has also been proposed
that, since decidual microenvironment produces large amounts
of attractant chemokines, dNK cells can also be recruited from
periphery into decidual tissues when pregnancy establishes (45,
46). In particular, PB-NK cells migrating into decidua acquire
both phenotypic and functional features typical of dNK cells
thanks to the factors present in the local microenvironment
(45, 47, 48). Notably, hematopoietic precursors are also found
in decidua and uterus of pregnant mice. These precursors are

committed to the NK cell lineage and undergo differentiation
to NK cells in decidua and uterus during early pregnancy. In
addition to precursors a large proportions of immature NK cells
are found in decidua and uterus. These cells undergo rapid in situ
proliferation/maturation. Immature murine dNK cells display
low cytolytic activity and IFN-γ production. Moreover, dNK
cells express high levels of Ly49 receptors, usually expressed by
PB-NK cells. This resemble the expression of KIRs by human
dNK cells (49). Moreover, it has been shown in mice that PB-
NK cells display limited homing capacity to decidua and uterus,
thus indicating that the recruitment from PB can only marginally
contribute to the accumulation of NK cells in decidua and uterus.
Thus, it is conceivable that the decidual microenvironment
plays a key role in stimulating and supporting such rapid and
unique NK cell differentiation (49). These observations allowed
to identify decidua and uterus as novel sites for PB-NK cell
differentiation as previously described for other peripheral sites
(50). On the other hand, a recent study provided evidence that in
mice the primary source of NK cells during pregnancy are tissue
resident (tr) NK cells displaying a high proliferative capacity (51).
Phenotypic and functional analysis of decidua and uterus-NK
cells provided evidence of a previously unexpected high plasticity
of NK cells. Indeed, the local microenvironment was found to
shape the NK cell features during development and contribute
to the acquisition of regulatory, rather than pro-inflammatory,
function. These important correlations between mouse and
human dNK cells may offer suitable tools for understanding the
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FIGURE 2 | NK/ILC subsets present in human and murine decidua during the early phase of pregnancy. In the figure are indicated the surface markers and the

transcription factors (TFs) expressed by the different human and murine NK/ILCs subsets. Lineageneg (CD3−, CD19−, CD14−, CD123−, CD34−).

immune-regulation at the maternal-fetal interface and possibly,
to clarify the pathogenesis of pregnancy-related diseases.

GROUP 1 ILC

In addition to NK cells, ILC1s are another important source of
IFNγ in peripheral tissues. However, ILC1s are more proficient
in the production of TNF-α and, different from NK cells,
they mainly reside within peripheral organs (52, 53). Whether
ILC1s have also cytotoxic capabilities is currently unclear. While
expressing very low levels of granzymes and perforin, they
can induce TRAIL-mediated target cell killing. In addition,
thanks to their ability to produce IFN-γ, ILC1s provide innate
defenses against intracellular bacteria and protozoa (54, 55).
The development of ILC1 depends on Tbet but not on
Eomes, necessary for the development of mature NK cells.
Although ILC1s express markers in common with NK cells
and ILC3s (NK1.1 in mice and NKp44 and NKp46 in humans
and mice, respectively), they can be identified thanks to the
expression of CD127, CD49a, and TRAIL both in humans and
mice. In humans, two subsets of ILC1 are described in the
intestine: (1) NCR−Tbet+IFN-γ+ cells and (2) NKp44+CD103+

intraepithelial ILC1s (iILC1s) (56, 57). In particular, the first
subset is characterized by high expression of CD127 and CD161
but lacks CD56, CD94, granzyme B and perforin (typical of

mature NK cells). It express Tbet but not Eomes and reside in the
lamina propria. The iILC1s share features in common with NK
cells including the expression of CD56, the lack of CD127 and
the localization in tonsils and in the intraepithelial space in the
intestine. These cells are CD103+ and NKp44+ and express CD9
and CD49a, typical markers of dNK cells. Since CD103+ cells are
Eomes+ and perforin+, it is possible that they represent a subset
of NK cells rather than ILC1s.

In mice, Tbet+Eomes+ NK cells and Tbet+Eomes− ILC1s
represent two distinct lineages of differentiation, with Eomes+

NK cells originating from the BM and Tbet+ Eomes− cells
developing in peripheral organs (58). CD3−NK1.1+ cells
characterized by Eomeslow/neg expression have been described in
murine peripheral organs. In the liver, Eomeslow cells are found
to be trNK cells characterized by a CD3−NK1.1+CD49a+DX5−

phenotype (53). However, the absence of Eomes expression,
together with the presence of Tbet, rather suggests their
belonging to the ILC1s (54). Notably, while in the liver
the expression of CD49a is confined to Eomes− cells, in
decidua and uterus also a large proportion of Eomes+ cells
are CD49a+, supporting the concept that CD49a expression
alone does not allow discrimination between Eomes+NK cells
and Eomes−ILC1 (58) (Figure 2). Previous studies in mice have
shown that decidua and uterus NK cells express high levels
of Eomes. Although NK1.1+Eomes− ILC1s increased during
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pregnancy and specifically expanded in second pregnancies,
Eomes+NK cells continued to represent the majority of uterine
and decidual CD3−NK1.1+ cells. Importantly, both Eomes+ and
Eomes− subsets expressed Tbet. Moreover, based on CD49a,
DX5 and Eomes expression, uterus and decidual cells could
be further subdivided into different subsets, namely ILC1s
(Eomes−CD49a+DX5−IFNγlowTNFhigh), common NK (cNK)
cells (Eomes+CD49a−DX5+IFN-γhighTNFlow), and two peculiar
subsets of NK cells (Eomes+CD49a+DX5−IFNγ+TNF+ and
Eomes+CD49a+DX5+IFN-γ+TNF+) that share phenotypic and
functional features with cNK cells and the formerly described
tissue resident NK (trNK) cells (53). A very recent study provided
the first whole-genome transcriptome profile of the different ILC
subsets present in decidua and uterus of mice during pregnancy.
These results highlight the marked differences existing between
the uterine resident CD49a+ trNK cells and the ILC1s (59).
The abundance of Eomes+ cells in uterus and decidua suggests
that they may derive from hematopoietic precursors of BM
origin. However, as described above, dNK cells may also derive
from accumulation of circulating immature cNK cells that upon
exposure to tissue microenvironment acquire typical features
of uterine NK cells including CD49a expression. Similarly, to
mice, in human decidua, Eomes+ cells can be divided in three
different subsets on the basis of NKp44 and CD103 expression.
The CD103+ cells represent the major source of IFN-γ among
dNK cells and may play a relevant role in the early inflammatory
phase of pregnancy. Altogether, these studies indicate that the
majority of ILCs present both in human and murine decidua
are Eomes+ NK cells. Moreover, only in mice it is possible
to identify also Eomes− ILC1s (60–62). Notably, the decidual
microenvironment may shape the conversion of a peculiar
subset of ILC one into another. For example, in mice, TGF-β
can induce the conversion of CD49a−CD49b+Eomes+NK cells
into CD49a+CD49b−Eomeslow ILC1. Since this conversion may
occur also in tumor microenvironment it may represent a further
mechanism of tumor escape as ILC1 are characterized by reduced
capacities to control tumor growth (63).

GROUP 2 ILC

ILC2s have been originally identified in mice, they depend on
GATA binding protein-3 (GATA3) TF for their development
(64), and release IL-5, IL-9, IL-13, and small amounts of IL-4 in
response to IL-25 and IL-33 stimulation. This cell subset plays
an important role in the immune response against helminthic
infections and is involved in allergic immune responses. In mice
ILC2s are detectable in several tissues, including lymph nodes,
fat-associated lymphoid clusters, spleen, liver, intestine, and
airways while in humans are mainly found in lung and intestine
(2). Studies in mice, demonstrated that ILC2s derive from an
ID2+ precursor present in the BM and that their development
is driven by RORα TF. ILC2s can be identified thanks to the
expression of CRTH2, CD127, and CD25. They also express
ICOS, which promotes ILC2 survival and cytokine production
(65). They share with NK cells, ILC1s and ILC3s the expression
of a number of activating and inhibitory receptors such as CD161,

NKp30, KLRG1, and PD1 that can regulate their activation and
function (66, 67).

The presence of ILC2s in decidual tissues is debated and
may depend on the gestation phase. They are detectable
in the uterine wall but not in decidua and endometrium
both in humans and in mice. ILC2s have been detected in
the uterus of both virgin and pregnant mice as well as in
myometrium (Myo) and in mesometrial lymphoid aggregates
(MLAp) (61, 62). Nfil3 TF is strictly required for the development
and the expansion of uterine ILC2s in mice; indeed, in the
uterus of virgin and pregnant Nfil−/− mice ILC2s are not
present. Importantly, thanks to their ability to release IL-
5 in response to IL-25 and IL-33, ILC2s are involved in
the control of the eosinophil homeostasis that, in turn, may
play a role in the remodeling of uterine mucosa (68, 69). A
study in humans provided evidence that ILC2s are abundant
during preterm and term gestation at the fetal-maternal
interface (70).

GROUP 3 ILC

ILC3s represent a heterogeneous cell subset particularly
abundant in mucosal tissues where they contribute to
defenses against pathogens and to epithelial tissue homeostasis
(1, 2, 71, 72). ILC3s are originally identified in the fetus and
defined as LTi as they play a key role in driving lymphoid
organogenesis. This capacity is partially related to the expression
of lymphotoxin-alpha (LT-α) and LT-β that promote interactions
with LTβ receptor (LTβ-R) expressing stromal cells. Upon
engagement of LTβ-R, stromal cells upregulate adhesion
molecules and secret chemokines that collectively promote
the formation of lymph node anlagen (34, 73). Notably, cells
with similar phenotypic characteristics have been identified
also in adult secondary lymphoid organs and are defined as
LTi-like cells. In the adult two subsets of ILC3s have recently
been identified in mucosal tissues. They can be distinguished
by the expression, or lack of NKp46 in mice and NKp44 in
humans. ILC3s share common phenotypic features with both
LTi-like cells and NK cells and express the RORγt TF, required
for their differentiation and function. ILC3s, thanks to the
ability to release IL-17 and IL-22, may contribute to host
defenses by recruiting neutrophils and inducing the production
of antimicrobial peptides (2, 4, 74, 75). Moreover, they are
thought to induce tissue remodeling after acute inflammation
(76). Although fetal LTi cells and adult ILC3s were previously
considered to belong to the same ILC group, recent evidences
revealed that they derive from two different precursors,
namely, LTiP and ILCP, respectively, and follow separate
developmental pathways.

Studies in mice demonstrated that, similarly to ILC2s, also
ILC3s are present in virgin and pregnant uterus, in particular,
in pregnant mice, they were enriched in Myo and MLAp but
not in decidual tissues. During pregnancy, ILC3 numbers were
higher than in virgin mice. Notably, the development of ILC3s
was not dependent on the Nfil3 TF. However, in Nfil3−/− mice
ILC3 numbers were lower than in wild-type mice (61, 62).
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In humans, ILC3s have been identified in decidual and
endometrial tissues and include both NCR+ and NCR− cell
subsets (Figure 2). Decidual ILC3s express the hallmark of
the ILC3 lineage, i.e., RORγt TF, CD127, CD117, IL-23R, and
IL-1R. Human decidual NKp44+ILC3s not only produce IL-
22, but are also the main source of IL-8 and GM-CSF while
NCR−ILC3s mainly produce IL-17 and TNF-α (77, 78). These
data are in line with those obtained in mice (49, 60). It is of
note that a successful pregnancy requires an early inflammatory
phase, necessary for implantation, while, at later stages a
regulatory/immunosuppressive phase is needed to prevent
fetal rejection (79). Since ILC3s release cytokines/chemokines
involved in neutrophil recruitment/activation, neo-angiogenesis,
tissue remodeling and placentation, they may actually play
a key role not only in the early inflammatory phase but
also in the induction of a tolerogenic status. Indeed, ILC3-
derived IL-8 and GM-CSF are crucial for the recruitment
of peripheral neutrophils into decidual tissues and for their
activation and function. In turn, recruited neutrophils are
necessary in the early inflammatory phase for a successful
implantation. Thereafter, decidual neutrophils produce HB-
EGF and IL1RA favoring the induction of tolerance (80).
Moreover, decidual ILC3s interact with decidual stromal
cells inducing the up-regulation of adhesion molecules on
these cells. Notably, data on the role of ILC3s during
pregnancy contributed to clarify the general involvement of
these cells in tissues remodeling, inflammation and neo-
angiogenesis. Regarding pregnancy, their effect on trophoblast
invasion and placentation indicate that non-only dNK, but
also ILC3s play a relevant role in the early phases of
pregnancy (34, 35, 77).

CONCLUSIONS

In this review, we recapitulate current knowledge on the presence
and the role of NK cells and different ILCs in decidual tissues.
Altogether, data highlight the complexity of uterine and decidual
NK and ILC subsets. Such complexity, particularly during the
first trimester of pregnancy, may reflect the effect of peculiar
decidual microenvironment in shaping the features of both NK
and ILC subsets. Although further analysis is clearly required to
define their involvement in the establishment andmaintenance of
pregnancy, it is possible to speculate that a deficit of a peculiar NK
or ILC subset or their altered function may result in pregnancy
failure consequent to uncontrolled infection or deficient tissue
and vessels formation.
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