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Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic

antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of

transplant rejection and the treatment of autoimmune diseases have been expanding

the last decade. In this perspective, we will summarize the current perspectives of the

clinical application of both tolAPC and Treg, and will address future directions and the

importance of immunomonitoring in clinical studies that will result in progress in the field.
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INTRODUCTION

The number of patients with autoimmune diseases, severe allergies and recipients of organ or
stem cell transplants is increasing worldwide. Currently, many of these patients require lifelong
administration of immunomodulatory drugs, which cause generalized immunosuppression and
hereby only partially alleviate the symptoms but do not cure the disease. Besides these drugs
are inevitably associated with a risk of immediate or late-occurring severe adverse effects
(e.g., life-threatening infections, cancer). Targeting the fundamental cause of autoimmunity,
i.e., loss of tolerance to self-antigens, or inhibiting induction or execution of undesired
immunity in transplantation and allergy will provide the next steps forward to avoid general
immunosuppression. Accumulating knowledge on mechanisms of immune activation and
tolerance has led to the development of tolerance-inducing cellular therapies with regulatory T
cells (Treg) and tolerogenic antigen presenting cells (tolAPC), such as tolerogenic dendritic cells
(tolDC) and regulatory macrophages (Mreg) [as reviewed in (1, 2)], with the specific objective to
restrain unwanted immune reactions long-term.
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The development of cell-based therapies is clinically attractive
for many reasons, not in the least through their potential of
being of low-toxicity, to simultaneously control many different
inflammatory cells and induction of antigen-specific immunity.
Since immunological tolerance is a self-reinforcing state (3),
the therapeutic effects of cell therapy are expected to outlast
the lifespan of the therapeutic cells themselves, opening the
possibility of curative treatments. Production costs for these
tolerogenic cell products range from 10,000 to 40,000 Euro
depending on the therapeutic cell product and production site,
which is relatively low considering that few injections of cells may
be sufficient to induce long-lasting tolerance.

In recognition of the potential of tolerance inducing cell-
based therapies and to join forces in the ongoing efforts in the
field, A FACTT (Action to Focus and Accelerate Cell Based
Tolerance-inducing Therapies (CTT) was initiated through EU
COST Action Funding. Our goal was to initiate a network that
would coordinate European CTT efforts to minimize overlap and
maximize comparison of the diverse approaches across Europe.
Now, looking back at 4 years of very active network interactions,
we have evaluated our combined current stance in the field and
defined avenues to support future directions.

TOLEROGENIC THERAPY WITH ANTIGEN
PRESENTING CELLS IN CLINICAL
PRACTICE

Over the past 20 years extensive experimental research has
been invested in the generation and characterization of tolAPC,
including tolDC and Mreg, with the aim to restore tolerance in
autoimmune diseases (4–10) and transplant rejection (5, 11–14).
To date, clinical trials exploring the safety, feasibility and efficacy
of different types of tolAPC are a reality [reviewed in (1) and
Table 1], and have confirmed so far that tolAPC therapy is safe,
with no relevant side effects, and is well-tolerated by patients.
Hence, to advance tolerogenic therapy with antigen-presenting
cells (APC), we should stand on the shoulders of these pioneers
and address remaining challenges, such as the optimal dose,
injection route, frequency of administration, antigen-specificity,
and the related issue of suitable biomarkers of cell therapy-
induced reduction of general inflammatory state and induction
of tolerance, in the design of the next-generation clinical trials.

Phenotypic and Functional Identification of
in vitro Generated TolAPC
Both tolDC and Mreg can be generated in vitro starting
from CD14+ monocytes and share some phenotypic and
functional characteristics. Indeed, both tolAPC types express low
to intermediate levels of T-cell costimulatory molecules, and
secrete low amounts of pro-inflammatory cytokines, indicative
of a partially matured APC. Similarly, immature DC (iDC)
display minimal expression of costimulatory molecules and little
secretion of inflammatory cytokines, demonstrating potential
optimal requirements for tolerance induction in vivo (23,
24). However, iDC are unstable and may differentiate into
immunogenic DC under inflammatory conditions (25, 26).

This invalidates their putative use as therapeutic products for
tolerance induction. Therefore, different strategies to generate
stable tolAPC have been explored, including treatment with
pharmacological agents or cocktails of immunomodulatory
cytokines, genetic engineering, and exposure to apoptotic cells
(9, 27, 28). Most of these in vitro conditioning regimens aim
at stabilizing a semi-mature state of tolDC, maintaining the
capacity to induce immune hyporesponsiveness of T cells, even
in presence of powerful pro-inflammatory signals.

Importantly, tolAPC inhibit T cell proliferation, albeit
through different immunosuppressive mechanisms depending
on the approach used to generate tolAPC in vitro. Induction
of peripheral T cell anergy and apoptosis (29), attenuation
of effector and memory T cell responses and the generation
and activation of Treg populations (30, 31) result in part
from presentation of low levels of antigen in the absence
of costimulation; these are typical mechanisms attributed to
a variety of tolerogenic subtypes (10, 32, 33). Additionally,
tolerogenic DC may express various inhibitory receptors
such as programmed death-ligand (PD-L)1, PD-L2 (34),
immunoglobulin-like transcripts (ILT) (35), FasL (36, 37), and
TRAIL (38). Secretion of anti-inflammatory cytokines such
as IL-10 (39, 40) and TGF-β (41, 42), as well as reduced
expression of pro-inflammatory cytokines, also may contribute
to tolerance induction. A study comparing tolDC generated
in presence of dexamethasone and rapamycin demonstrated
that while both tolDC subsets were able to impair T cell
proliferation, rapamycin-treated tolDC have a mature phenotype
and are not able to produce IL-10 upon stimulation with LPS,
as opposed to vitamin D3- or dexamethasone-treated tolDC
(27). Whereas, it was demonstrated that rapamycin-treated
tolDC induce Treg (27), vitD3-treated tolDC induce T-cell
hyporesponsiveness and antigen-specific Treg (7, 43). Moreover,
DC-10 induce Tr1 cells (44), while autologous tolDC have a
weak capacity to stimulate allogeneic T cells and suppress T-
cell proliferation and IFN-γ production (45). Mreg have been
shown to convert allogeneic CD4+ T cells to IL-10-producing,
TIGIT+, FoxP3+-induced Treg (46). Variations in the process
to generate tolAPC may initiate regulation through distinctive
mechanisms, making it difficult to compare these different types
of tolAPC. Therefore, efforts have been made to find common
features unique for tolerance-inducing cells (47). For example,
since tolDC conditioned using vitamin D3 and dexamethasone
exhibit high cell surface expression of TLR2 (48) or CD52 (49),
such markers might be considered to assess the quality and
stability of tolDC in future cell-based clinical trial protocols.
In addition, it was demonstrated that the expression of single
immunoglobulin IL-1-related receptor has a role in maintaining
low levels of costimulatory molecules and in regulation of Treg
expansion (50). Others demonstrated that C-lectin receptor
CLEC-2 upregulation by DC is associated with Treg induction
(51). So far, however, gene expression studies comparing different
tolDC and Mreg protocols have not been able to identify
common biomarkers of tolerance induction [reviewed by (52, 53)
and (54)].

The difficulty in comparing characteristics of different clinical
tolAPC suggests the need for a uniform set of metrics for
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their description, including full characterization of (at least)
the immune phenotype and their functional activity (potency).
Hence, a better identification of the characteristics that identify
the tolerance-inducing properties of tolAPC, irrespective of the
conditioning regimen, would be valuable for safe cell therapy
delivery into patients. Joint efforts in translating tolAPC into the
clinic by harmonizing protocols and defining functional quality
parameters have been initiated (1, 55). A Minimum Information
Model on Antigen-presenting cells (MITAP) has been defined
to harmonize reporting on tolAPC therapy to ultimately allow
the uncovering of commonalities between tolAPC and to define
common quality control biomarkers and potency assays for the
various tolAPC products for clinical use (55). Likewise, using
similar immunomonitoring protocols in different clinical trials
could help to better understand the in vivo mechanism of action
of these cells (56).

Antigen Specificity of TolAPC-Based
Immunomodulation
Targeted regulation of antigen-specific T cell responses would
avoid generalized immunosuppression as observed with
immunosuppressive drugs and monoclonal antibodies currently
in use in the clinics and may thus overcome occurrence
of impaired immune-surveillance leading to infections or
development of malignancies. Ex vivo generated tolAPC have
the potential to therapeutically induce, enhance, or restore
antigen-specific tolerance. Indeed, after loading these cells with
exogenous or endogenous antigens, one major advantage is their
capability to act in an antigen-specific manner.

A number of in vivo studies demonstrate that antigen
loading of tolAPC is indispensable to reach efficient clinical
responsiveness following tolAPC therapy. For instance, a
beneficial effect of vitamin D3-tolDC loaded with MOG40−55

peptide was demonstrated in experimental autoimmune
encephalomyelitis (EAE), whereas no clear beneficial effect on
the clinical score of EAE mice was found when mice were treated
with vitamin D3- tolDC not loaded with myelin peptides (57, 58).
Similar findings have been demonstrated in other animal models
of autoimmune diseases, including collagen-induced arthritis
and autoimmune thyroiditis (59–61). Altogether, these findings
suggest that selection of the target self-antigen is critical for
disease-specific tolerance induction in vivo. Suitable disease-
associated self-antigens responsible for T cell priming have been
identified for T1D and multiple sclerosis (MS). However, this is
not the case for other autoimmune diseases, such as rheumatoid
arthritis or Crohn’s disease, for which specific disease-associated
antigens are unknown or not tissue specific. Moreover, not all
patients uniformly display the same set of self-antigens for a
given disease. MS, for example, is associated with a range of
self-antigens and auto-antibodies that are differentially expressed
among patients and at different points during the disease (62).
While the targetable autoreactive T cell populations may be
limited to a select number of antigens at the onset of clinical
disease, other “late antigen” or spread epitope autoreactive T
cell populations may drive autoimmunity during progression of
the disease. To overcome this hurdle, some groups have chosen
to load the tolerance-inducing therapeutic cells with a broad

pool of distinct, candidate disease-related peptides (63–65)
(NCT02283671, NCT02618902, and NCT02903537).

In contrast to autoimmunity, transplant rejection is mediated
by an undesired immune response against epitopes that differ
between the transplanted donor graft and the recipient host,
so-called allorecognition (66). Specifically, recipient T cells may
initiate a strong immune response leading to transplant rejection
in the absence of adequate immunosuppression. To avoid
transplant rejection, the induction of tolerance to donor-specific
antigens has been coined as a therapeutic target for decades.
For this, both donor tolAPC and recipient tolAPC loaded with
donor-specific antigens are being considered for development of
cell-based immunotherapeutic protocols in the transplantation
setting (67). However, whereas the clinical use of donor-
derived tolAPC is only feasible in the context of living donor
transplantation and entails a risk of sensitization (including
development of allo-antibodies), the use of autologous, i.e.,
recipient-derived, tolAPC is a less risky approach to begin with.
Indeed, the use of recipient autologous tolAPC is likely to be
more feasible than that of donor-derived tolAPC, since cell
products can be prepared from the peripheral blood of the
recipient before transplantation, stored while the patient is on
the waiting list, and loaded with donor-derived antigens (such as
HLA peptides or donor cell lysates) at the time of transplantation.
In the context of the ONE study, two trials using tolDC and
Mreg are being performed in living-donor kidney transplant
recipients (Table 1).

Route of Administration of TolAPC
Although it is generally accepted that the route of administration
is important for optimal tolAPC effector function, the best route
of tolAPC administration is not known. To date, a variety of
routes of administration have been used (see Table 1), including
intradermal, intraperitoneal (19), intravenous and intra-articular
(17). Different routes of administration may be required to allow
tolDC to reach the relevant draining lymphoid tissue for T cell
encounter or to end up at the site of inflammation. Especially
since tolDC demonstrate a reduced expression of CCR7 and
consequently a reduced (but not absent) ability to migrate in
response to the CCR7 ligand CCL19 (68), the capacity of tolDC to
reach the lymph nodes is a critical concern. While the migration
of DC toward the lymph nodes increases following intradermal
as compared to subcutaneous administration, only 2–4% of
DC migrate to the draining lymph nodes after intradermal
administration, but the situation may be different in patients
with autoimmune diseases where monocyte-derived DC from
MS patients have shown a significantly higher proportion of
CCR7-expressing cells compared to healthy controls (69). Given
these observations, and that in the setting of cancer vaccine
development, DC injected into a lymphatic vessel showed a
prolonged half-life as compared to DC injected intravenously
(70, 71), direct intranodal injection of tolDC is being evaluated
in a clinical setting (see Table 1).

As an alternative to lymph node targeting of tolAPC, tolAPC
may also be introduced directly into the site of inflammation.
Indeed, injection into the affected disease site (i.e., an inflamed
joint) where the tolAPC could suppress auto-reactive effector T
cell responses is logical. In this context, intra-articular injection
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of tolDC differentiated using dexamethasone and vitamin D3

and loaded with autologous synovial fluid in patients with
rheumatoid arthritis was demonstrated to be safe and feasible.
Hence, despite the fact that tolDC were directly injected at the
site of inflammation, no adverse events were observed in most
patients and hypertrophy, vascularity and synovitis were stable
in all treated cohorts. Moreover, two patients receiving 10 million
cells showed a decrease in synovitis score (17). Similarly, a phase
I randomized clinical study currently evaluates the safety and
efficacy of tolDC injected into the intestinal lesions in patients
with refractory Crohn’s disease (Table 1). In some conditions
such as T1D, direct injection of cells in the inflammatory
site, e.g., pancreas, might not be possible and require tolDC
administration adjacent to the inflammation site. For the
treatment of inflammatory diseases of the brain, the blood–brain
barrier (BBB) may represent a major hurdle. Considering this
potential problem, it was demonstrated that enhancing CCR5
expression in tolDC using mRNA electroporation endowed these
cells with CCR5-driven migratory capacity. This enabled the
cells to migrate to inflammatory sites, even when it required
crossing of functional barriers such as the BBB (72). Similarly,
introducing CCR7 expression in tolDC using the proposed
approach of chemokine receptor mRNA electroporation could
overcome the limited lymphoid homing capacity of tolDC.
Indeed, DC transduced with lentiviral vectors coding for CCR7
and IL-10 genes were able to migrate to the lymph nodes
and spleen, prolonging cardiac allograft survival in mice (73).
However, there are still many unknowns and there is a clear
clinical need to characterize the pharmacodynamics of tolDC
in humans and relate this to clinical efficacy. Advances in cell
imaging techniques, for example magnetic resonance imaging of
19F-labeled cells, have made it possible to address this question
in future studies.

TolAPC Therapy: What Does the Future
Hold?
In vivo Targeting
While our knowledge of tolAPC biology has expanded greatly,
and in vitro generated tolDC and Mreg are currently being used
in various clinical trials (Table 1), clinical-grade manufacturing
of tolAPC is still a time-consuming and expensive process.
It requires cell precursors that need to be isolated from the
patient’s blood, modulated ex vivo and reintroduced into the
patient. Direct antigen delivery to tolAPC in vivo may limit
the workload and costs. Indeed, specific antigen-targeting of
DC-restricted endocytic receptors (DEC-205) with monoclonal
antibodies has been shown to induce antigen-specific T cell
hyporesponsiveness in experimental models (74). Interestingly,
a phase I clinical trial demonstrated that in vivo targeting of
human DC could be achieved by antibodies against DEC205 with
subsequent antigen presentation and robust humoral and cellular
responses (75). In vivo targeting of DC with biomaterials such as
liposomes, microparticles and nanoparticles is also a promising
approach [as reviewed in (76–78)]. This is exemplified by the
fact that liposomes loaded with NFkB inhibitors targeting APC
in situ, suppress the cellular responsiveness to NF-kB and induce

antigen-specific FoxP3+ regulatory T cells in an animal model
of arthritis (79) and that administration of phosphatidylserine-
rich liposomes loaded with disease-specific autoantigens lead
to a beneficial effect in experimental models of T1D and
MS (80, 81). Nevertheless, DC represent a heterogeneous cell
population arising from bone marrow-restricted precursors
identified in humans. While multiple subsets of DC have
been found in the peripheral blood, lymphoid organs and
tissues, most of the hallmark DC markers are promiscuously
expressed making it difficult to unambiguously discriminate
between DC subpopulations and specifically target those DC
subpopulations that induce tolerance. Extensive phenotypic
screening combined with gene expression profiling allows the
identification of tolerance-inducing DC counterparts present
in vivo. For instance, Gregori and co-workers identified a
DC subset expressing HLA-DR+CD14+CD16+ that exhibits
potent tolerogenic activity (44). In targeting only such tolerance-
inducing DC cell type-specific targeting may emerge as another
promising approach in DC-based immunotherapy.

Combination Therapy
Since a variety of often complementary mechanisms are involved
in the maintenance of immune tolerance, a more complex
therapeutic approach using combinations that target different
pathways that contribute to induction and maintenance of
tolerance may be required to fully control autoimmunity.
For instance, combinations of tolAPC with disease-modifying
treatments that reduce the frequency of disease-causing cells,
e.g., alemtuzumab, should be explored as the latter therapy
reduces the disease-causing cells to a number that may
be more effectively controlled by antigen-specific tolerance-
inducing strategies, such as tolDCs. Alternatively, therapies
like fingolimod, an antagonist of sphingosine−1-phosphate
receptor which retains naïve and central memory T cells in
the lymph nodes, are promising as co-medication with tolAPC
as it could increase the number of tolDC-T cell interactions
in the lymph node thereby facilitating Treg priming and
consequently the efficacy of tolDC-based strategies. Also in
the context of solid organ transplantation, tolDC therapy
could be improved by the addition of a complementary
treatment. For instance, the combination of adoptive transfer
of tolDC and CTLA-4 Ig, a fusion protein that blocks B7-
CD28 costimulation, resulted in extended survival of MHC-
mismatched heart allografts in mice (82, 83), while the pancreatic
islet allograft survival improved by combination of autologous
tolDC and CD3 targeting antibodies (84). With the recent
data on the important role of other coinhibitory molecules
for T cell-mediated inflammation such as CD96 the portfolio
of combination therapies might increase in the next years
(85). However, since antigens can easily trigger immunity
instead of tolerance, a primary concern remains the safety
of combining two immune-modulatory vaccination strategies
in autoimmune diseases and in the prevention of transplant
rejection. Although one can envisage that concomitant use of
immunosuppressive therapies might synergistically reduce the
risk to unexpectedly worsen antigen-specific reactions (86),
any novel manipulation of the immune system may involve
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an unpredictable risk. Furthermore, combination therapy may
introduce confounding factors inducing additive, synergistic or
antagonistic effects complicating the evaluation of the precise
mode of action.

Conclusion
Several protocols to generate and administer tolAPC have
been tested in phase I clinical trials with highly encouraging
results from a safety point of view and in terms of adverse
effects (Table 1). Further phase I/II studies are under way in
Crohn’s disease, T1D, rheumatoid arthritis, MS and kidney
transplantation (Table 1). However, for the success of future
tolAPC trials, there is great need to define the optimal vaccination
protocol; to ensure optimal in vivo-acting of the tolAPC, future
trials may require changes in administration route, dose or
could demand repeated tolAPC administration. Furthermore,
the identification of a common set of tolerogenic markers
would enable optimized comparison of tolAPC products and
their tolerance-inducing potential and provide an improved
understanding of how these cells modulate the T cell response
both locally and systemically. It would be of great help to analyze
critical pathways contributing to programming and function of
tolAPC. Ultimately, this may set the stage for new approaches
improving the therapeutic potential of tolAPC for the future.

CD4+ REGULATORY T CELLS (TREG)

CD4+ Treg are recognized as a dominant cell population
responsible for induction and maintenance of immune tolerance.
They may be generated either in the thymus as natural regulatory
T cells (nTreg or tTreg) or in the periphery as induced regulatory
T cells (iTreg). Both subsets can induce tolerance toward auto-
and alloantigens utilizing a variety of mechanisms including
cell-to-cell contacts, secretion of immunosuppressive cytokines
and inhibitory molecules (e.g., adenosine or prostaglandin E),
local depletion of IL-2, or through killing of other cells (87).
Treg actively traffic to inflammatory sites and the suppressive
activity is usually localized without a significant impact on the
general immunity. Since their more precise identification 2–3
decades ago in the mouse, and more recently in the human,
steady advances in understanding Treg biology have eventually
provided sufficient knowledge to culture, manipulate and expand
the cells in vitro under Good Manufacturing Practice (GMP)
conditions for therapeutic purposes. Indeed, Treg have become
a promising cellular drug that can potentially be used to control
disease-causing immune responses.

Treg in Clinical Practice
While the application of Treg for the treatment of autoimmune
diseases is currently under intense investigation, Treg were first
used in the clinic to treat patients with graft vs. host disease
(GvHD) after hematopoietic stem cell transplantation (HSCT)
(88) (Table 2). Results from the clinical trials in GvHD with
polyclonal expanded Treg have suggested that altogether these
cells are safe, but there is some concern about the occurrence of
mild to moderate infections, and it still is unclear whether Treg
treatment could promote cancer (92, 94). The latter problem has

been reported in only one trial to date, however it was concluded
that the tumor was present before the therapy with Treg was
applied (94). The safety and feasibility of adoptive transfer of
ex vivo expanded Treg was further confirmed in T1D patients
(2), which has driven the application of Treg therapy to clinical
trials in other autoimmune conditions such as MS, autoimmune
hepatitis, systemic lupus erythematosus, Crohn’s disease, and
autoimmune uveitis (102) (Table 2). Another clinical trial was
recently published where polyclonal Treg were injected into T1D
patients; results from this trial confirm the safety of this type of
therapy and also show for the first time, by deuterium labeling of
the Treg, that some of the injected Treg can be detected for up to
1 year after infusion (103).

Treg therapy is now being applied as a “tolerogenic” therapy
to reduce dependency on immunosuppressant drugs in patients
receiving solid organ transplants. The idea behind this strategy is
very similar to the application of Treg in autoimmune diseases,
namely to tilt the balance toward Treg dominance over rejection-
causing Teff cells. The first reports using adoptive transfer of
Treg in kidney transplant patients have been recently published
demonstrating the safety of this strategy in the context of solid
organ transplantation (103, 104). Recently, clinical trials are
being completed using different variations of Treg products
(The ONE Study and ThRIL) (Table 2). The ONE Study includes
Phase I clinical trials comparing the safety of different types of
regulatory cells, including polyclonal and donor-reactive Treg in
patients receiving kidney transplants (www.onestudy.org) (20).
The ThRIL trial is a Phase I/IIa dose-escalation clinical trial in
the setting of liver transplantation. Results from the ThRIL and
the various ONE Study trials are currently being prepared for
publication. The impact of Treg on the recipient immune system
will be revealed only when the very detailed immunomonitoring
is completed, which is a major objective of the described clinical
trials (105–107).

Altogether, from the outcomes of the completed clinical
trials so far, it can be concluded that adoptive transfer of Treg
is safe and technically feasible (Table 2). Therefore, increasing
efforts are currently focusing on clinical trials to test their
therapeutic efficacy. Importantly, several lessons have been
learned from recent experiences with Treg to improve future
trial designs. For example, the clinical state of the patients has
been shown to influence the function and properties of Treg,
and therefore can condition the success of ex vivo cell product
expansion (108). Furthermore, the specific expansion protocol
can affect Treg function and specificity, and can improve tissue
targeting and suppression capacity (108). Finally, the immune
modulatory therapies received by patients at the time of Treg
adoptive transfer can positively or negatively impact therapeutic
outcome (109, 110).

Treg Therapy: What Does the Future Hold?
Antigen-Specificity of Treg Therapy
Studies in preclinical models using murine Treg have
demonstrated that specificity for either the auto or allo
(transplantation) -antigens may offer an advantage for Treg
function compared to polyclonal Treg (111). Adoptively
transferred allospecific murine Treg generated by using either
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donor-derived APC or TCR transduction promote indefinite
heart allograft survival, even in completely mismatched mouse
strains (111). This strategy was subsequently applied to human
Treg in a humanized mouse model, where Treg were generated
in the presence of donor APC /DCs or B cells) and shown to be
superior to polyclonal Treg in protecting from human skin graft
rejection (112). More recently, by conferring specificity using
a chimeric antigen receptor (CAR), human Treg transduced
with a lentivirus encoding for HLA-A2-CAR were superior
to polyclonal Treg in protecting HLA-A2+ human skin grafts
(113–115). CAR constructs are now being developed to increase
Treg stability and function.

Based on promising results with antigen-specific Treg
in pre-clinical models, the use of alloantigen-specific Treg
generated by culturing recipient Treg with donor-specific
cells, either using activated donor-derived B cells (112) or
donor-derived DCs is being tested in clinical trials (Table 2).
Compared to the transplantation field where the antigens are
known, generation of antigen-specific Treg in autoimmunity is
more challenging because the inciting antigens are often not
known (see also paragraph Antigen Specificity of tolAPC-Based
Immunomodulation). New data suggest that regulatory and
effector cell subsets are driven by different epitopes (116, 117). In
addition, the auto-antigen triggering the autoimmune condition
can change during disease progression due to epitope spreading
and antigen-specific Treg may thus need to be tuned toward
specific stages of disease.

Combination Therapy
Since adoptive transfer with Treg alone, particularly with a one-
time infusion, may not be sufficient to control the immune
response, combined or successive therapies are being tested.
One approach is based on evidence that low doses of IL-2 can
preferentially increase the endogenous pool of Treg; so far, low-
dose IL-2 treatment has been safe in inflammatory conditions
such as GvHD after HSCT (118). In a preclinical model it was
demonstrated that IL-2/anti-IL-2 complexes not only promote
Treg proliferation, they increase Treg survival and function
while synergizing with calcineurin inhibitors to prolong graft
survival (119). Recently, in a murine model of transplantation
it was shown that by combining donor-specific Treg with the
IL-2/anti-IL-2 complexes, a synergistic effect in extending skin
transplant survival is observed (Ratnasothy et al., unpublished
data). These results pave the way for the first clinical trial in liver
transplant patients to combine Treg and low-dose IL-2 therapy
(NCT02949492). More caution is being exercised regarding
similar trials using low-dose IL-2 in autoimmune diseases,
since in contrast to HSCT or solid organ transplantation,
autoimmune patients are not lymphopenic and are likely to
produce IL-2 themselves (98). However, in some conditions
such as systemic lupus erythematosus an intrinsic defect in
Tregs contributes to disease progression and here low-dose IL-2
therapy was shown to correct the defect (120, 121). Furthermore,
in T1D settings low dose IL-2 treatment is currently being
investigated (NCT02411253).

The positive effects of rapamycin on Treg in vitro or in a
transplant setting (122–124) could not be effectively translated to

the in vivo treatment of autoimmune syndromes. For example,
while rapamycin administered to T1D patients preferentially
increased Treg levels, pancreas function deteriorated due to
islet toxicity (125). Nonetheless, the complex and specific
pathogenesis of autoimmune syndromes may provide hints
toward the design of new combined therapies. Tandemly
targeting different effector mechanisms involved in particular
syndromes with Treg therapy may improve outcomes. For
example, an ongoing trial in early phase of T1D (EudraCT:
2014-004319-35) supports the idea of a synergistic approach by
combining Treg administration with B cell depletion.

New Technical Advancements
It is now accepted that the optimal way to manufacture
Treg for clinical use requires an efficient ex vivo expansion
rate while maintaining purity and suppression potency before
GMP product release. Two main Treg isolation strategies are
currently being used in clinical trials to purify the starting
Treg, immunomagnetic selection and flow cytometry cell sorting.
The magnetic platform (CliniMACS CD4+CD25+ selection)
provides a highly automated GMP-grade approach which is
easy to standardize across centers. However, the resultant Treg
product does generally contain a minor population of CD127+

cells that could jeopardize product purity after expansion.
Addition of rapamycin to the culture media has helped to
maintain Treg purity and function, without reducing the
expansion rate too much (126). The second method, which
uses a flow cytometry approach, results in a highly pure Treg
population due to CD127+ cell depletion ability. However,
this cell-sorting strategy entails more complex protocols and
challenges to maintain GMP grade. With the appearance of
new GMP-compatible cell sorters (Tyto MacQuant, Miltenyi or
Influx, BD Biosciences), this sorting approach is likely to become
the preferential Treg isolation method.

Although cell-sorting of Treg increases their initial purity,
a search for an optimally stable final Treg products is critical
therapeutically. It is well known that prolonged in vitro culture
results in epigenetic changes in Treg—methylation of TSDR
region of foxp3 gene—which in-turn reduces suppressive ability
(127). The use of anti-methylation agents in cultures to prevent
epigenetic changes has failed due to culture viability issues. The
addition of rapamycin to the expansion culture, as used in both
The ONE Study and ThRIL, was proposed as a remedy to such
changes as the drug preferentially expands Treg both in vitro
and in vivo (122). However, proper choice of media, addition
of autologous serum, limited time frame for the expansion and
temperature decreases during in vitro culture to ≈33

◦

C, all
impact the suppressive capacity of final Treg products (128–130).

Conclusion
Treg therapies are currently undergoing intense testing. An
interest in therapeutic Treg preparations has resulted in
several ongoing clinical trials in the transplantation setting,
in autoimmune diseases, but now also in conditions such as
beta thalassemia major and amyotrophic lateral sclerosis (101)
(Table 2). We await new testing in the setting of hypersensitivity
and cardiovascular disease (102), and anticipate that Treg therapy
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will be considered for any condition where there is evidence for
an immune regulation imbalance.

TIMING OF TOLERANCE-INDUCING CELL
THERAPY

Timing of tolerance-inducing cell therapy in relation to the
transplant or in the course of autoimmune disease development
needs specific consideration. Clinical trials using Treg for GvHD
indicate that Treg should be injected as early as possible,
preferentially before disease onset (89, 91, 131). Early treatment
is particularly important to achieve a high ratio between Treg
and detrimental effector T cells, and thus prevent development
of acute rejection or GvHD. In both HSCT and solid organ
transplantation, tolerance-inducing cells are therefore mainly
given around, just before or shortly after, the transplantation
(see Tables 1, 2). Although early treatment is likely more
effective, this approach encounters limitations such as increased
immunosuppression doses and anti-CD25 treatment, which can
interfere with the activity of infused cells. Thus, Tregs have also
been infused at later time points e.g., 6 months after kidney
transplantation in patients with biopsies showing evidence of
inflammatory infiltrates to treat ongoing chronic rejection (103).
It must also be considered that disease diagnosis timing is
a factor in this respect. Although it is likely best to give
the tolerance-inducing cell treatment as early as possible in
disease development, it is currently not feasible in treating
autoimmunity since a majority of autoimmune diseases start
long before clinical symptoms and diagnosis, this brings in the
added factor that the functional capacity of the attacked organ
may already be irreparably damaged by the ongoing autoimmune
process. Future insight into autoimmune disease development
and early biomarkers will hopefully allow for earlier treatment
with tolerance-inducing cell products.

REGULATIONS

The perspectives of tolerance-inducing cellular therapy depend
also on recently introduced regulations. The majority of tested
preparations in Europe are now classified as drugs under
the 1394/2007 EU directive on advanced therapy medicinal
products (ATMP). This significantly changes the legal path
for their registration requirements, for manufacturing license
and marketing authorization. While the idea of an ATMP in
Europe is relatively nascent, and it is continuously evolving
through public consultations with interested parties, cellular
drugs have a distinct central paneuropean path for registration.
While the Committee for Advanced Therapies (CAT) steers this
process in Europe to optimize safety for patients, it would be
useful to introduce wider rules allowing for introduction of the
cells as a routine treatment. To accelerate the whole process,
acknowledgment of flexible new types of manufacturing cGMP
equipment and reagents could open the way to more widespread
ATMP use. Furthermore, measures to reduce manufacturing
costs would lessen this major limitation to new trials. When
considering cell therapy, scientists, physicians and regulators

must keep inmind that ATMPmust be affordable for patients and
society. Interestingly, scientists are largely responsible for current
guidelines, and should revisit those recommendations based on
factors such as cost (55, 132).

IMMUNOMONITORING OF
TOLERANCE-INDUCING CELLULAR
THERAPIES

Tackling Immunomonitoring in Tolerogenic
Therapies
Since cell-based therapies are becoming more common, it
is important to reliably monitor the immune system for
both desired and undesired immunological effects. Rigorous
immunomonitoring will therefore provide information about
the safety of these treatments, ideally at early time points
after CTT administration. In addition it will give insight in
the therapy-related mechanisms of tolerance-induction and
maintenance and may aid in patient-tailoring of therapy.
To accurately measure the effects, especially across different
trials, it will require introduction of harmonized and validated
immunomonitoring assays.

There are a number of possible assays that can determine
cell therapy effects in humans. For instance, measurement of
circulating cytokines, C-reactive protein or changes in antibody
titer can determine immune status. Similarly, measuring CD4+

T cell responses after viral-antigen stimulation is possible by
flow cytometry via CD40L expression or cytokine production
in a functional assay; these assays could potentially identify
non-specific immunosuppressive effects (133). Although the
completed clinical trials have shown so far that cell-based
tolerogenic therapies are safe and do not cause serious
undesirable immune responses (96, 99, 103, 104), the extent
to which these treatments achieve therapeutic efficacy remains
largely undetermined. Current cell-based tolerogenic trials in
autoimmunity and transplantation include clinical outcome
measures such as C-peptide response, insulin consumption
or reduction of immunosuppressive doses. However, clinical
endpoints may not necessary reflect the efficacy of cell-based
therapies, since the tolerogenic effect of the transferred cells
may not directly lead to immediate changes in systemic
parameters such as inflammation, potentially underestimating a
longer term effect. It is therefore important that future clinical
trials incorporate suitable monitoring methods to assess the
immunomodulatory effects of cellular therapies.

General vs. Specific Monitoring Assays
To assess therapeutic effectiveness, different methods have been
proposed to identify tolerogenic responses. The assessment of
in vitro autoreactive or donor-specific T cells responses prior
to and after treatment could provide a precise evaluation of
therapeutic efficacy. Antigen-specific assays allow discrimination
between targeted tolerance to the induction of general immune
suppression and loss of responses to pathogens. In addition,
these methods provide an efficacy readout for antigen-specific
therapies such as tolerogenic APC loaded with antigens or the
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generation of donor-specific Treg. The identification of antigen-
specific immune responses by ELISPOT (134) or through
flow cytometry detection of CD40L upregulation (135) have
shown promising results in predicting kidney and liver allograft
rejection, suggesting potential applicability for the evaluation
of tolerogenic therapies. Monitoring targets will be different
depending on the main immune population involved in the
disease (e.g., CD4, CD8T cells or antibodies). Unfortunately,
the antigens mediating the immune responses in autoimmunity
are not always available or identified (as discussed in paragraph
Antigen Specificity of tolAPC-Based Immunomodulation); HLA
antigens in the case of transplantation are known and can
be used, or stimulation with donor or donor-matched cells is
possible. Though less specific, identification of phenotypic or
functional changes by flow cytometry on the total pool of cells
targeted (e.g., Treg) by the tolerogenic treatment may reveal
therapeutic effectiveness. Indeed, the acquisition of tolerance in
animal models and in the clinic is associated with an increased
number of regulatory cells and decreased pro-inflammatory
function of innate and adaptive immune cells (5, 136, 137).
Therefore, flow cytometry analysis to delineate the distribution
and activation status of different cell types, or in vitro assays
to evaluate the suppressive and inflammatory function of
circulating cells can provide a non-specific approach to assess the
development of tolerogenic properties (138). Other non-specific
strategies such as gene expression profiling of circulating immune
cells or tissue biopsies can add to the functional assessment of
immune responses. Furthermore, there is a growing body of
work focusing on the validation of transcriptional signatures to
predict transplantation tolerance in liver and kidney transplant
recipients (139–141), which may prove to be a valuable tool in
assessing the efficacy of tolerogenic therapies.

Tracking of Cellular Product
The evaluation of homeostatic characteristics of infused cells
such as survival, stability or tissue migration, constitutes another
monitoring objective to assess therapeutic efficacy. Being able
to track infused cells will help to determine the best site for
administration/application of tolerogenic cell products. While
simple phenotypic detection (flow cytometry) of the transferred
cell subset after treatment suggests the presence of infused
cells, it does not distinguish transferred from endogenous
cells. Therefore, current techniques for tracking infused cells
depend on direct cell labeling strategies, such as indium
labeling or deuterium introduction during ex vivo expansion,
with subsequent isotope detection in the different tissues or
compartments (99, 103, 142). Unfortunately, this method is
only semi-quantitative, since individual cells are not detected.
Individual cells can be labeled with rare earth metals and
detected with precision in vivo using laser ablation-inductively
coupled plasma-mass spectrometry, but so far this has only been
tested in mouse models (143, 144). Other emerging therapeutic
approaches such as CAR-Treg could take advantage of genetic
modifications to adapt reported gene imaging strategies to detect
the transferred cells by non-invasive methods (e.g., MRI, PET,
SPECT) (145, 146). Additionally, the use of T cell receptor (TCR)
engineered Treg or ex vivo expanded antigen-specific Treg create
the opportunity to track infused cells by predefining the TCR

clones and identifying them among the T cell compartment
repertoire through TCR sequencing analysis (147).

Harmonization to Allow Comparison
Current tolerogenic cell-based trials are highly heterogeneous,
comprising different cell types with variable manufacturing
approaches, and targeting various autoimmune diseases and
transplantation settings. Furthermore, by their very nature such
trials tend to involve low numbers of patients, often participating
in different centers or countries. It is therefore essential to
establish common immunomonitoring strategies in the research
community to achieve robust and reliable data which can
be compared and combined between trials. First, not all the
immunomonitoring methods are similarly standardisable, and
second, not all the centers have the technical expertise or
infrastructure to perform certain assays. Sample collection and
storage of whole blood or tissue biopsies for transcriptional
analysis does not involve extensive sample manipulation, making
standardization of this method achievable. On the contrary, while
flow cytometry analysis of circulating blood is an accessible
technology, instrumentation must be calibrated appropriately to
accurately define cell subsets, and analysis of the data needs to
be strictly regulated. Although centralized phenotypic analysis
in multicenter trials is feasible (105), this involves significant
logistical challenges, including the decision to either test fresh
or frozen samples; frozen samples sacrifice accuracy due to
loss of certain cell populations during separation and freezing
procedures. In general, flow cytometry standardization requires
extensive cooperation between centers and precise planning.
To further harmonize flow cytometry data implementation of
automated gating approaches will be of outmost importance
in the future (148–150). Finally, functional in vitro assays
also represent a challenging method to standardize, involving
different approaches depending of the cell type and function.
Nevertheless, several efforts have been made to establish a
minimal harmonization of antigen-specific functional assays
(56). While these assays are likely to be the most informative in
the assessment of therapeutic efficacy, it is unlikely that current
assay results will be directly comparable between independent
trials. Therefore, the inclusion of adequate control cohorts
and reference groups in the assays, considering the specific
cell therapy approaches and disease characteristics, remains an
objective to achieve feasible comparisons (107).

FINAL CONCLUSION

Tolerance-inducing cellular therapies have great potential.
Several cell types are now in early-stage clinical trials, including
various types of Treg and tolAPC (including tolDC and Mreg)
(Tables 1, 2). At the present time it is unclear which of these
cell types will prove most suitable as a cell-based therapy; each
likely has particular advantages that may be suitable for one
particular disease or another. In Table 3, the main specific
limitations to be considered for the treatment of autoimmunity
or transplantation with tolerance-inducing cell therapies are
summarized. It becomes clear that although we might treat these
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TABLE 3 | Main specific differences in tolerance-inducing cell treatment between transplantation and autoimmune disease setting.

Transplantation Autoimmunity

Antigen - Alloantigens (MHC alleles and other disparities)

- Autoantigens in case of underlying or de novo developed

autoimmune diseases

- Autoantigen not always known

- Epitope spreading might occur during disease progression

Pathogenic immune response - Normal, but undesired, immune response against foreign

antigen

- Loss of tolerance to self-antigen

Timing - Time point of antigen contact is known, treatment can be

given around time point of transplantation

- Disease already develops before clinical symptoms

- Better diagnosis and biomarkers are needed to be able to

intervene at earlier time point

Route of administration - Intravenous - Intradermal

- Local injection in affected tissue or draining lymph node of the

tissue is to be considered

Co-medication - High dose of conventional immune suppression (steroids,

CNI, MMF) +/- antibody-based induction therapy at the

moment of transplantation

- Varies and is disease specific

Clinical efficacy evaluation - Prevention of acute rejections

- Reduction conventional immune suppression. It is difficult to

lower co-medication without good markers to predict

transplant tolerance

- Disease-dependent. E.g. In T1D C-peptide response or insulin

consumption can be determined. In other AID disease-specific

scores can be used.

- Depending on disease progression on moment of application.

Irreversible tissues destruction will not improve. New

relapses/lesions can be scored.

Immunomonitoring - Donor antigen-specific T cells

- Donor specific antibodies

- Autoantigen not always known.

When known, T cell responses are difficult to detect, since they

are very low frequent and of low affinity

diseases with the same manufactured cell product, the optimal
treatment regime could be quite different.

Immunomonitoring is an indispensable aspect of current
and future tolerogenic cell-based therapies that will provide
fundamental information to understand and optimize cell
therapies. Monitoring will also aid in identifying biomarkers with
the capacity for early identification of therapy responders and
non-responders and patient-tailoring of therapy. As part of the
overall strategy to increase implementation of ATMPs, it will
be critical to harmonize GMP manufacturing protocols, product
characterization and immunomonitoring. Minimal information
models such as MITAP and MiTREG (132, 151) will serve as
important tools in this respect.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This article is based upon work from COST Action A FACTT
(BM1305: www.afactt.eu), supported by COST (European
Cooperation in Science and Technology) (www.cost.eu). COST

is a funding agency for research and innovation networks.
COST Actions help connect research initiatives across Europe
and enable scientists to grow their ideas by sharing them with
their peers. This boosts their research, career and innovation.
COST is supported by the EU Framework Programme Horizon
2020. Part of the work discussed is funded by The ONE
Study, EU FP7 Funding Program, BIO-DrIM, EU FP7 Funding
Program and ReSToRe, EU H2020 Funding Program. PT is
supported by the National Center for Research andDevelopment,
PL (grant no: STRATEGMED1/233368/1/NCBR/2014). EM-C
acknowledges the support by projects PI14/01175, PI16/01737
and PI17/01521, integrated in the Plan Nacional de I+D+I and
co-supported by the ISCIII-Subdirección General de Evaluación
and the Fondo Europeo de Desarrollo Regional (FEDER). NC
and EM-C acknowledge the support by project 140191 from
the Institute for the Promotion of Innovation by Science and
Technology (IWT-TMB) in Flanders (Belgium).

ACKNOWLEDGMENTS

This work has been supported by positive discussion by all
AFACTT members during A FACTT network meetings. We
specifically like to thank Juan Navarro Barriuso and Tanja Nikolic
for their input on the manuscript.

REFERENCES

1. Ten Brinke A, Hilkens CM, Cools N, Geissler EK, Hutchinson JA, Lombardi

G, et al. Clinical use of tolerogenic dendritic cells-harmonization approach

in European collaborative effort. Mediators Inflamm. (2015) 2015:471719.

doi: 10.1155/2015/471719

2. Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp

HR, Ten Brinke A, et al. Hurdles in therapy with regulatory T

Frontiers in Immunology | www.frontiersin.org 15 February 2019 | Volume 10 | Article 181

www.afactt.eu
www.cost.eu
https://doi.org/10.1155/2015/471719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ten Brinke et al. Ways Forward for Tolerance-Inducing Cellular Therapies

cells. Sci Transl Med. (2015) 7:304ps318. doi: 10.1126/scitranslmed.

aaa7721

3. Qin S, Cobbold SP, Pope H, Elliott J, Kioussis D, Davies J, et al.

“Infectious” transplantation tolerance. Science (1993) 259:974–7.

doi: 10.1126/science.8094901

4. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not

inactive: the tolerogenic function of immature dendritic cells. Immunol Cell

Biol. (2002) 80:477–83. doi: 10.1046/j.1440-1711.2002.01115.x

5. Thomson AW, Robbins PD. Tolerogenic dendritic cells for autoimmune

disease and transplantation. Ann Rheum Dis. (2008) 67(Suppl. 3):iii90–6.

doi: 10.1136/ard.2008.099176

6. Hilkens CM, Isaacs JD, Thomson AW. Development of dendritic cell-based

immunotherapy for autoimmunity. Int Rev Immunol. (2010) 29:156–83.

doi: 10.3109/08830180903281193

7. Raich-Regue D, Grau-Lopez L, Naranjo-Gomez M, Ramo-Tello C,

Pujol-Borrell R, Martinez-Caceres E, et al. Stable antigen-specific

T-cell hyporesponsiveness induced by tolerogenic dendritic cells

from multiple sclerosis patients. Eur J Immunol. (2012) 42:771–82.

doi: 10.1002/eji.201141835

8. Nikolic T, Roep BO. Regulatory multitasking of tolerogenic dendritic cells

- lessons taken from vitamin d3-treated tolerogenic dendritic cells. Front

Immunol. (2013) 4:113. doi: 10.3389/fimmu.2013.00113

9. Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY,

et al. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can

the unattainable dream turn into reality? Autoimmun Rev. (2014) 13:138–50.

doi: 10.1016/j.autrev.2013.09.008

10. Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells

for regulatory T cell induction in man. Front Immunol. (2015) 6:569.

doi: 10.3389/fimmu.2015.00569

11. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.

Nature (1998) 392:245–52. doi: 10.1038/32588

12. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic

cells: which signals induce tolerance or immunity? Trends Immunol. (2002)

23:445–9. doi: 10.1016/S1471-4906(02)02281-0

13. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic

dendritic cells. Annu Rev Immunol. (2003) 21:685–711.

doi: 10.1146/annurev.immunol.21.120601.141040

14. Riquelme P, Geissler EK, Hutchinson JA. Alternative approaches to

myeloid suppressor cell therapy in transplantation: comparing regulatory

macrophages to tolerogenic DCs and MDSCs. Transplant Res. (2012) 1:17.

doi: 10.1186/2047-1440-1-17

15. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I

(safety) study of autologous tolerogenic dendritic cells in type 1 diabetic

patients. Diabetes Care (2011) 34:2026–32. doi: 10.2337/dc11-0472

16. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, et al.

Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-

positive rheumatoid arthritis patients. Sci. Transl. Med. (2015) 7:290ra87.

doi: 10.1126/scitranslmed.aaa9301

17. Bell GM, Anderson AE, Diboll J, Reece R, Eltherington O, Harry

RA, et al. Autologous tolerogenic dendritic cells for rheumatoid

and inflammatory arthritis. Ann Rheum Dis. (2017) 76:227–34.

doi: 10.1136/annrheumdis-2015-208456

18. Joo YB, Park J-E, Choi C-B, Choi J, Heo M, Kim H-Y., et al. Phase I

study of immunotherapy using autoantigen-loaded dendritic cells in patients

with anti-citrullinated peptide antigen positive rheumatoid arthritis. In:

Proceedings of the ACR/ARHP Annual Meeting, Abstract 946. Boston, MA

(2014).

19. Jauregui-Amezaga A, Cabezon R, Ramirez-Morros A, Espana C, Rimola

J, Bru C, et al. Intraperitoneal administration of autologous tolerogenic

dendritic cells for refractory Crohn’s disease: a phase I study. J Crohns Colitis

(2015) 9:1071–8. doi: 10.1093/ecco-jcc/jjv144

20. Geissler EK. The ONE Study compares cell therapy products in organ

transplantation: introduction to a review series on suppressive monocyte-

derived cells. Transplant Res. (2012) 1:11. doi: 10.1186/2047-1440-1-11

21. Hutchinson JA, Riquelme P, Brem-Exner BG, Schulze M, Matthai M,

Renders L, et al. Transplant acceptance-inducing cells as an immune-

conditioning therapy in renal transplantation. Transpl Int. (2008) 21:728–41.

doi: 10.1111/j.1432-2277.2008.00680.x

22. Hutchinson JA, Brem-Exner BG, Riquelme P, Roelen D, Schulze

M, Ivens K, et al. A cell-based approach to the minimization of

immunosuppression in renal transplantation. Transpl Int. (2008) 21:742–54.

doi: 10.1111/j.1432-2277.2008.00692.x

23. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N.

Antigen-specific inhibition of effector T cell function in humans after

injection of immature dendritic cells. J Exp Med. (2001) 193:233–8.

doi: 10.1084/jem.193.2.233

24. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells

induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood

(2002) 100:174–7. doi: 10.1182/blood.V100.1.174

25. Kryczanowsky F, Raker V, Graulich E, Domogalla MP, Steinbrink K. IL-10-

modulated human dendritic cells for clinical use: identification of a stable

and migratory subset with improved tolerogenic activity. J Immunol. (2016)

197:3607–17. doi: 10.4049/jimmunol.1501769

26. Tureci O, Bian H, Nestle FO, Raddrizzani L, Rosinski JA, Tassis A, et

al. Cascades of transcriptional induction during dendritic cell maturation

revealed by genome-wide expression analysis. FASEB J. (2003) 17:836–47.

doi: 10.1096/fj.02-0724com

27. Naranjo-Gomez M, Raich-Regue D, Onate C, Grau-Lopez L, Ramo-Tello C,

Pujol-Borrell R, et al. Comparative study of clinical grade human tolerogenic

dendritic cells. J Transl Med. (2011) 9:89. doi: 10.1186/1479-5876-9-89

28. Raich-Regue D, Naranjo-Gomez M, Grau-Lopez L, Ramo C, Pujol-Borrell

R, Martinez-Caceres E, et al. Differential effects of monophosphoryl lipid

A and cytokine cocktail as maturation stimuli of immunogenic and

tolerogenic dendritic cells for immunotherapy. Vaccine (2012) 30:378–87.

doi: 10.1016/j.vaccine.2011.10.081

29. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH. CD4+ and

CD8+ anergic T cells induced by interleukin-10-treated human dendritic

cells display antigen-specific suppressor activity. Blood (2002) 99:2468–76.

doi: 10.1182/blood.V99.7.2468

30. Apostolou I, Von Boehmer H. In vivo instruction of suppressor commitment

in naive T cells. J Exp Med. (2004) 199:1401–8. doi: 10.1084/jem.20040249

31. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, Von

Boehmer H. Inducing and expanding regulatory T cell populations by

foreign antigen. Nat Immunol. (2005) 6:1219–27. doi: 10.1038/ni1265

32. Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, Van Ham

SM, Ten Brinke A. IL-10-generated tolerogenic dendritic cells are

optimal for functional regulatory T cell induction - a comparative study

of human clinical-applicable DC. Clin Immunol. (2012) 142:332–42.

doi: 10.1016/j.clim.2011.11.011

33. Li H, Shi B. Tolerogenic dendritic cells and their applications

in transplantation. Cell Mol Immunol. (2015) 12:24–30.

doi: 10.1038/cmi.2014.52

34. Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity.

Curr Opin Immunol. (2007) 19:309–14. doi: 10.1016/j.coi.2007.04.012

35. Wu J, Horuzsko A. Expression and function of immunoglobulin-like

transcripts on tolerogenic dendritic cells. Hum Immunol. (2009) 70:353–6.

doi: 10.1016/j.humimm.2009.01.024

36. Hoves S, Krause SW, Herfarth H, Halbritter D, Zhang HG, Mountz

JD, et al. Elimination of activated but not resting primary human

CD4+ and CD8+ T cells by Fas ligand (FasL/CD95L)-expressing Killer-

dendritic cells. Immunobiology (2004) 208:463–75. doi: 10.1078/0171-2985-

00293

37. Schutz C, Hoves S, Halbritter D, Zhang HG, Mountz JD, Fleck M.

Alloantigen specific deletion of primary human T cells by Fas ligand

(CD95L)-transduced monocyte-derived killer-dendritic cells. Immunology

(2011) 133:115–22. doi: 10.1111/j.1365-2567.2011.03417.x

38. Izawa T, Kondo T, Kurosawa M, Oura R, Matsumoto K, Tanaka

E, et al. Fas-independent T-cell apoptosis by dendritic cells controls

autoimmune arthritis in MRL/lpr mice. PLoS ONE (2012) 7:e48798.

doi: 10.1371/journal.pone.0048798

39. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux

H. Characterization of dendritic cells that induce tolerance and T

regulatory 1 cell differentiation in vivo. Immunity (2003) 18:605–17.

doi: 10.1016/S1074-7613(03)00113-4

40. Anderson AE, Sayers BL, Haniffa MA, Swan DJ, Diboll J, Wang XN,

et al. Differential regulation of naive and memory CD4+ T cells by

Frontiers in Immunology | www.frontiersin.org 16 February 2019 | Volume 10 | Article 181

https://doi.org/10.1126/scitranslmed.aaa7721
https://doi.org/10.1126/science.8094901
https://doi.org/10.1046/j.1440-1711.2002.01115.x
https://doi.org/10.1136/ard.2008.099176
https://doi.org/10.3109/08830180903281193
https://doi.org/10.1002/eji.201141835
https://doi.org/10.3389/fimmu.2013.00113
https://doi.org/10.1016/j.autrev.2013.09.008
https://doi.org/10.3389/fimmu.2015.00569
https://doi.org/10.1038/32588
https://doi.org/10.1016/S1471-4906(02)02281-0
https://doi.org/10.1146/annurev.immunol.21.120601.141040
https://doi.org/10.1186/2047-1440-1-17
https://doi.org/10.2337/dc11-0472
https://doi.org/10.1126/scitranslmed.aaa9301
https://doi.org/10.1136/annrheumdis-2015-208456
https://doi.org/10.1093/ecco-jcc/jjv144
https://doi.org/10.1186/2047-1440-1-11
https://doi.org/10.1111/j.1432-2277.2008.00680.x
https://doi.org/10.1111/j.1432-2277.2008.00692.x
https://doi.org/10.1084/jem.193.2.233
https://doi.org/10.1182/blood.V100.1.174
https://doi.org/10.4049/jimmunol.1501769
https://doi.org/10.1096/fj.02-0724com
https://doi.org/10.1186/1479-5876-9-89
https://doi.org/10.1016/j.vaccine.2011.10.081
https://doi.org/10.1182/blood.V99.7.2468
https://doi.org/10.1084/jem.20040249
https://doi.org/10.1038/ni1265
https://doi.org/10.1016/j.clim.2011.11.011
https://doi.org/10.1038/cmi.2014.52
https://doi.org/10.1016/j.coi.2007.04.012
https://doi.org/10.1016/j.humimm.2009.01.024
https://doi.org/10.1078/0171-2985-00293
https://doi.org/10.1111/j.1365-2567.2011.03417.x
https://doi.org/10.1371/journal.pone.0048798
https://doi.org/10.1016/S1074-7613(03)00113-4
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ten Brinke et al. Ways Forward for Tolerance-Inducing Cellular Therapies

alternatively activated dendritic cells. J Leukoc Biol. (2008) 84:124–33.

doi: 10.1189/jlb.1107744

41. Speck S, Lim J, Shelake S, Matka M, Stoddard J, Farr A, et al. TGF-beta

signaling initiated in dendritic cells instructs suppressive effects on Th17

differentiation at the site of neuroinflammation. PLoSONE (2014) 9:e102390.

doi: 10.1371/journal.pone.0102390

42. Anderson AE, Swan DJ, Wong OY, Buck M, Eltherington O, Harry RA, et al.

Tolerogenic dendritic cells generated with dexamethasone and vitamin D3

regulate rheumatoid arthritis CD4(+) T cells partly via transforming growth

factor-beta1. Clin Exp Immunol. (2017) 187:113–23. doi: 10.1111/cei.12870

43. Beringer DX, Kleijwegt FS, Wiede F, Van Der Slik AR, Loh KL, Petersen

J, et al. T cell receptor reversed polarity recognition of a self-antigen

major histocompatibility complex. Nat Immunol. (2015) 16:1153–61.

doi: 10.1038/ni.3271

44. Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani

CF, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic

DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood (2010)

116:935–44. doi: 10.1182/blood-2009-07-234872

45. Carretero-Iglesia L, Bouchet-Delbos L, Louvet C, Drujont L, Segovia M,

Merieau E, et al. Comparative study of the immunoregulatory capacity

of in vitro generated tolerogenic dendritic cells, suppressor macrophages,

and myeloid-derived suppressor cells. Transplantation (2016) 100:2079–89.

doi: 10.1097/TP.0000000000001315

46. Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N, et al.

TIGIT(+) iTregs elicited by human regulatory macrophages control T cell

immunity. Nat Commun. (2018) 9:2858. doi: 10.1038/s41467-018-05167-8

47. Navarro-Barriuso J, Mansilla MJ, Naranjo-Gomez M, Sanchez-

Pla A, Quirant-Sanchez B, Teniente-Serra A, et al. Comparative

transcriptomic profile of tolerogenic dendritic cells differentiated with

vitamin D3, dexamethasone and rapamycin. Sci Rep. (2018) 8:14985.

doi: 10.1038/s41598-018-33248-7

48. Harry RA, Anderson AE, Isaacs JD, Hilkens CM. Generation and

characterisation of therapeutic tolerogenic dendritic cells for rheumatoid

arthritis. Ann Rheum Dis. (2010) 69:2042–50. doi: 10.1136/ard.2009.126383

49. Nikolic T, Woittiez NJC, Van Der Slik A, Laban S, Joosten A, Gysemans C,

et al. Differential transcriptome of tolerogenic versus inflammatory dendritic

cells points to modulated T1D genetic risk and enriched immune regulation.

Genes Immun. (2017) 18:176–83. doi: 10.1038/gene.2017.18

50. Xue Z, Zhang X, Chen M, Lu X, Deng R, Ma Y. Dendritic cells

transduced with single immunoglobulin IL-1-related receptor exhibit

immature properties and prolong islet allograft survival. Front Immunol.

(2017) 8:1671. doi: 10.3389/fimmu.2017.01671

51. Agrawal S, Ganguly S, Hajian P, Cao JN, Agrawal A. PDGF upregulates

CLEC-2 to induce T regulatory cells. Oncotarget (2015) 6:28621–32.

doi: 10.18632/oncotarget.5765

52. Schinnerling K, Soto L, Garcia-Gonzalez P, Catalan D, Aguillon JC. Skewing

dendritic cell differentiation towards a tolerogenic state for recovery of

tolerance in rheumatoid arthritis. Autoimmun Rev. (2015) 14:517−27.

doi: 10.1016/j.autrev.2015.01.014

53. Schinnerling K, Garcia-Gonzalez P, Aguillon JC. Gene expression

profiling of human monocyte-derived dendritic cells - searching for

molecular regulators of tolerogenicity. Front Immunol. (2015) 6:528.

doi: 10.3389/fimmu.2015.00528

54. Navarro-Barriuso J, Mansilla MJ, Martinez-Caceres EM. Searching

for the transcriptomic signature of immune tolerance induction-

biomarkers of safety and functionality for tolerogenic dendritic

cells and regulatory macrophages. Front Immunol. (2018) 9:2062.

doi: 10.3389/fimmu.2018.02062

55. Lord P, Spiering R, Aguillon JC, AndersonAE, Appel S, Benitez-Ribas D, et al.

Minimum information about tolerogenic antigen-presenting cells (MITAP):

a first step towards reproducibility and standardisation of cellular therapies.

PeerJ (2016) 4:e2300. doi: 10.7717/peerj.2300

56. Ten Brinke A, Marek-Trzonkowska N, Mansilla MJ, Turksma AW,

Piekarska K, Iwaszkiewicz-Grzes D, et al. Monitoring T-cell responses

in translational studies: optimization of dye-based proliferation assay for

evaluation of antigen-specific responses. Front Immunol. (2017) 8:1870.

doi: 10.3389/fimmu.2017.01870

57. MansillaMJ, Selles-Moreno C, Fabregas-Puig S, Amoedo J, Navarro-Barriuso

J, Teniente-Serra A, et al. Beneficial effect of tolerogenic dendritic cells pulsed

with MOG autoantigen in experimental autoimmune encephalomyelitis.

CNS Neurosci Ther. (2015) 21:222–30. doi: 10.1111/cns.12342

58. Mansilla MJ, Contreras-Cardone R, Navarro-Barriuso J, Cools N,

Berneman Z, Ramo-Tello C, et al. Cryopreserved vitamin D3-

tolerogenic dendritic cells pulsed with autoantigens as a potential therapy

for multiple sclerosis patients. J Neuroinflammation (2016) 13:113.

doi: 10.1186/s12974-016-0584-9

59. Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic

cells suppress experimental autoimmune thyroiditis by activation of

thyroglobulin-specific CD4+CD25+ T cells. J Immunol. (2005) 174:7433–9.

doi: 10.4049/jimmunol.174.11.7433

60. Stoop JN, Harry RA, Von DA, Isaacs JD, Robinson JH, Hilkens CM.

Therapeutic effect of tolerogenic dendritic cells in established collagen-

induced arthritis is associated with a reduction in Th17 responses. Arthritis

Rheum. (2010) 62:3656–65. doi: 10.1002/art.27756

61. Yang J, Yang Y, Ren Y, Xie R, Zou H, Fan H. A mouse model

of adoptive immunotherapeutic targeting of autoimmune arthritis

using allo-tolerogenic dendritic cells. PLoS ONE (2013) 8:e77729.

doi: 10.1371/journal.pone.0077729

62. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases:

implications for immunotherapy. Nat Rev Immunol. (2002) 2:85–95.

doi: 10.1038/nri724

63. Grau-Lopez L, Raich D, Ramo-Tello C, Naranjo-Gomez M, Davalos A,

Pujol-Borrell R, et al. Specific T-cell proliferation to myelin peptides in

relapsing-remitting multiple sclerosis. Eur J Neurol. (2011) 18:1101–4.

doi: 10.1111/j.1468-1331.2010.03307.x

64. Lutterotti A, Yousef S, Sputtek A, Sturner KH, Stellmann JP, Breiden P, et

al. Antigen-specific tolerance by autologous myelin peptide-coupled cells:

a phase 1 trial in multiple sclerosis. Sci. Transl. Med. (2013) 5:188ra175.

doi: 10.1126/scitranslmed.3006168

65. Chataway J, Martin K, Barrell K, Sharrack B, Stolt P, Wraith DC,

et al. Effects of ATX-MS-1467 immunotherapy over 16 weeks

in relapsing multiple sclerosis. Neurology (2018) 90:e955–62.

doi: 10.1212/WNL.0000000000005118

66. Ingulli E. Mechanism of cellular rejection in transplantation.

Pediatr Nephrol. (2010) 25:61–74. doi: 10.1007/s00467-008-

1020-x

67. Marin E, Cuturi MC, Moreau A. Tolerogenic dendritic cells in solid

organ transplantation: where do we stand? Front Immunol. (2018) 9:274.

doi: 10.3389/fimmu.2018.00274

68. Anderson AE, Swan DJ, Sayers BL, Harry RA, Patterson AM, Von Delwig

A, et al. LPS activation is required for migratory activity and antigen

presentation by tolerogenic dendritic cells. J Leukoc Biol. (2009) 85:243–50.

doi: 10.1189/jlb.0608374

69. Nuyts AH, Ponsaerts P, Van Tendeloo VF, Lee WP, Stein B, Nagels

G, et al. Except for C-C chemokine receptor 7 expression, monocyte-

derived dendritic cells from patients with multiple sclerosis are functionally

comparable to those of healthy controls. Cytotherapy (2014) 16:1024–30.

doi: 10.1016/j.jcyt.2014.02.016

70. Grover A, Kim GJ, Lizee G, Tschoi M, Wang G, Wunderlich JR,

et al. Intralymphatic dendritic cell vaccination induces tumor antigen-

specific, skin-homing T lymphocytes. Clin Cancer Res. (2006) 12:5801–8.

doi: 10.1158/1078-0432.CCR-05-2421

71. Radomski M, Zeh HJ, Edington HD, Pingpank JF, Butterfield LH, Whiteside

TL, et al. Prolonged intralymphatic delivery of dendritic cells through

implantable lymphatic ports in patients with advanced cancer. J Immunother

Cancer (2016) 4:24. doi: 10.1186/s40425-016-0128-y

72. De Laere M, Derdelinckx J, Hassi M, Kerosalo M, Oravamaki H, Van Den

Bergh J, et al. Shuttling tolerogenic dendritic cells across the blood-brain

barrier in vitro via the introduction of de novo C-C chemokine receptor 5

expression using messenger RNA electroporation. Front Immunol. (2017)

8:1964. doi: 10.3389/fimmu.2017.01964

73. Garrod KR, Chang CK, Liu FC, Brennan TV, Foster RD, Kang SM. Targeted

lymphoid homing of dendritic cells is required for prolongation of allograft

survival. J Immunol. (2006) 177:863–8. doi: 10.4049/jimmunol.177.2.863

Frontiers in Immunology | www.frontiersin.org 17 February 2019 | Volume 10 | Article 181

https://doi.org/10.1189/jlb.1107744
https://doi.org/10.1371/journal.pone.0102390
https://doi.org/10.1111/cei.12870
https://doi.org/10.1038/ni.3271
https://doi.org/10.1182/blood-2009-07-234872
https://doi.org/10.1097/TP.0000000000001315
https://doi.org/10.1038/s41467-018-05167-8
https://doi.org/10.1038/s41598-018-33248-7
https://doi.org/10.1136/ard.2009.126383
https://doi.org/10.1038/gene.2017.18
https://doi.org/10.3389/fimmu.2017.01671
https://doi.org/10.18632/oncotarget.5765
https://doi.org/10.1016/j.autrev.2015.01.014
https://doi.org/10.3389/fimmu.2015.00528
https://doi.org/10.3389/fimmu.2018.02062
https://doi.org/10.7717/peerj.2300
https://doi.org/10.3389/fimmu.2017.01870
https://doi.org/10.1111/cns.12342
https://doi.org/10.1186/s12974-016-0584-9
https://doi.org/10.4049/jimmunol.174.11.7433
https://doi.org/10.1002/art.27756
https://doi.org/10.1371/journal.pone.0077729
https://doi.org/10.1038/nri724
https://doi.org/10.1111/j.1468-1331.2010.03307.x
https://doi.org/10.1126/scitranslmed.3006168
https://doi.org/10.1212/WNL.0000000000005118
https://doi.org/10.1007/s00467-008-1020-x
https://doi.org/10.3389/fimmu.2018.00274
https://doi.org/10.1189/jlb.0608374
https://doi.org/10.1016/j.jcyt.2014.02.016
https://doi.org/10.1158/1078-0432.CCR-05-2421
https://doi.org/10.1186/s40425-016-0128-y
https://doi.org/10.3389/fimmu.2017.01964
https://doi.org/10.4049/jimmunol.177.2.863
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ten Brinke et al. Ways Forward for Tolerance-Inducing Cellular Therapies

74. Hawiger D, Inaba K, Dorsett Y, GuoM, Mahnke K, Rivera M, et al. Dendritic

cells induce peripheral T cell unresponsiveness under steady state conditions

in vivo. J Exp Med. (2001) 194:769–80. doi: 10.1084/jem.194.6.769

75. Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, et al.

Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1

to the dendritic cell receptor DEC-205. Sci. Transl. Med. (2014) 6:232ra251.

doi: 10.1126/scitranslmed.3008068

76. Hotaling NA, Tang L, Irvine DJ, Babensee JE. Biomaterial strategies

for immunomodulation. Annu Rev Biomed Eng. (2015) 17:317–49.

doi: 10.1146/annurev-bioeng-071813-104814

77. Tostanoski LH, Gosselin EA, Jewell CM. Engineering tolerance using

biomaterials to target and control antigen presenting cells. Discov Med.

(2016) 21:403–10.

78. Ochando J, Braza MS. Nanoparticle-based modulation and monitoring of

antigen-presenting cells in organ transplantation. Front Immunol. (2017)

8:1888. doi: 10.3389/fimmu.2017.01888

79. Capini C, Jaturanpinyo M, Chang HI, Mutalik S, Mcnally A, Street S, et

al. Antigen-specific suppression of inflammatory arthritis using liposomes.

J Immunol. (2009) 182:3556–65. doi: 10.4049/jimmunol.0802972

80. Pujol-Autonell I, Serracant-Prat A, Cano-Sarabia M, Ampudia RM,

Rodriguez-Fernandez S, Sanchez A, et al. Use of autoantigen-loaded

phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

PLoS ONE (2015) 10:e0127057. doi: 10.1371/journal.pone.0127057

81. Pujol-Autonell I, Mansilla MJ, Rodriguez-Fernandez S, Cano-Sarabia M,

Navarro-Barriuso J, Ampudia RM, et al. Liposome-based immunotherapy

against autoimmune diseases: therapeutic effect on multiple sclerosis.

Nanomedicine (2017) 12:1231–42. doi: 10.2217/nnm-2016-0410

82. Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, De Creus A, et

al. “Alternatively Activated” dendritic cells preferentially secrete IL-10,

expand Foxp3+CD4+ T cells, and induce long-term organ allograft

survival in combination with CTLA4-Ig. J Immunol. (2006) 177:5868–77.

doi: 10.4049/jimmunol.177.9.5868

83. Ezzelarab MB, Zahorchak AF, Lu L, Morelli AE, Chalasani G, Demetris

AJ, et al. Regulatory dendritic cell infusion prolongs kidney allograft

survival in nonhuman primates. Am J Transplant (2013) 13:1989–2005.

doi: 10.1111/ajt.12310

84. Baas MC, Kuhn C, Valette F, Mangez C, Duarte MS, Hill M, et al. Combining

autologous dendritic cell therapy with CD3 antibodies promotes regulatory T

cells and permanent islet allograft acceptance. J Immunol. (2014) 193:4696–

703. doi: 10.4049/jimmunol.1401423

85. Stanko K, Iwert C, Appelt C, Vogt K, Schumann J, Strunk FJ, et

al. CD96 expression determines the inflammatory potential of IL-9-

producing Th9 cells. Proc Natl Acad Sci USA. (2018) 115:E2940–9.

doi: 10.1073/pnas.1708329115

86. Garber K. Immunology: a tolerant approach. Nature (2014) 507:418–20.

doi: 10.1038/507418a

87. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat

Rev Immunol. (2008) 8:523–32. doi: 10.1038/nri2343

88. Trzonkowski P, Bieniaszewska M, Juścinska J, Dobyszuk A, Krzystyniak
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