
ORIGINAL RESEARCH
published: 21 March 2019

doi: 10.3389/fimmu.2019.00185

Frontiers in Immunology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 185

Edited by:

Mark S. Cragg,

University of Southampton,

United Kingdom

Reviewed by:

Eswari Dodagatta-Marri,

University of California, San

Francisco, United States

Lee Machado,

University of Northampton,

United Kingdom

*Correspondence:

Taco W. Kuijpers

t.w.kuijpers@amc.uva.nl

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular Innate Immunity,

a section of the journal

Frontiers in Immunology

Received: 16 October 2018

Accepted: 21 January 2019

Published: 21 March 2019

Citation:

Nagelkerke SQ, Tacke CE,

Breunis WB, Tanck MWT, Geissler J,

Png E, Hoang LT, van der Heijden J,

Naim ANM, Yeung RSM, Levin ML,

Wright VJ, Burgner DP, Ponsonby A-L,

Ellis JA, Cimaz R, Shimizu C,

Burns JC, Fijnvandraat K, van der

Schoot CE, van den Berg TK, de

Boer M, Davila S, Hibberd ML,

Kuijpers TW and the International

Kawasaki Disease Genetics

Consortium (2019) Extensive Ethnic

Variation and Linkage Disequilibrium at

the FCGR2/3 Locus: Different Genetic

Associations Revealed in Kawasaki

Disease. Front. Immunol. 10:185.

doi: 10.3389/fimmu.2019.00185

Extensive Ethnic Variation and
Linkage Disequilibrium at the
FCGR2/3 Locus: Different Genetic
Associations Revealed in Kawasaki
Disease
Sietse Q. Nagelkerke 1,2†, Carline E. Tacke 2†, Willemijn B. Breunis 2, Michael W. T. Tanck 3,

Judy Geissler 1, Eileen Png 4, Long T. Hoang 4, Joris van der Heijden 1, Ahmad N. M. Naim 4,

Rae S. M. Yeung 5, Michael L. Levin 6, Victoria J. Wright 6, David P. Burgner 7,8,

Anne-Louise Ponsonby 7,8, Justine A. Ellis 7,8,9, Rolando Cimaz 10, Chisato Shimizu 11,

Jane C. Burns 11, Karin Fijnvandraat 2,12, C. Ellen van der Schoot 1, Timo K. van den Berg 1,13,

Martin de Boer 1, Sonia Davila 14, Martin L. Hibberd 4,15, Taco W. Kuijpers 1,2* and

the International Kawasaki Disease Genetics Consortium

1Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of

Amsterdam, Amsterdam, Netherlands, 2 Pediatric Hematology, Immunology and Infectious Diseases, Emma Children’s

Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands, 3Department of Clinical Epidemiology,

Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands, 4 Infectious Diseases,

Genome Institute of Singapore, Singapore, Singapore, 5Division of Rheumatology, Department of Pediatrics, The Hospital for

Sick Children, University of Toronto, Toronto, ON, Canada, 6Department of Pediatrics, Imperial College London, London,

United Kingdom, 7Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia, 8Department

of Paediatrics, University of Melbourne, Melbourne, VIC, Australia, 9 Faculty of Health, Centre for Social and Early Emotional

Development, Deakin University, Burwood, VIC, Australia, 10 Rheumatology Unit, Meyer Children’s Hospital, University of

Florence, Florence, Italy, 11Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA,

United States, 12Department of Plasma Proteins, Sanquin Research, Amsterdam UMC, University of Amsterdam,

Amsterdam, Netherlands, 13Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity

Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 14Human Genetics, Genome Institute of

Singapore, Singapore, Singapore, 15Department of Pathogen Biology, London School of Hygiene and Tropical Medicine,

London, United Kingdom

The human Fc-gamma receptors (FcγRs) link adaptive and innate immunity by binding

immunoglobulin G (IgG). All human low-affinity FcγRs are encoded by the FCGR2/3

locus containing functional single nucleotide polymorphisms (SNPs) and gene copy

number variants. This locus is notoriously difficult to genotype and high-throughput

methods commonly used focus on only a few SNPs. We performed multiplex

ligation-dependent probe amplification for all relevant genetic variations at the FCGR2/3

locus in >4,000 individuals to define linkage disequilibrium (LD) and allele frequencies

in different populations. Strong LD and extensive ethnic variation in allele frequencies

was found across the locus. LD was strongest for the FCGR2C-ORF haplotype

(rs759550223+rs76277413), which leads to expression of FcγRIIc. In Europeans,

the FCGR2C-ORF haplotype showed strong LD with, among others, rs201218628

(FCGR2A-Q27W, r2 = 0.63). LD between these two variants was weaker (r2 = 0.17) in

Africans, whereas the FCGR2C-ORF haplotype was nearly absent in Asians (minor allele

frequency <0.005%). The FCGR2C-ORF haplotype and rs1801274 (FCGR2A-H131R)

were in weak LD (r2 = 0.08) in Europeans. We evaluated the importance of ethnic
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variation and LD in Kawasaki Disease (KD), an acute vasculitis in children with increased

incidence in Asians. An association of rs1801274 with KD was previously shown in

ethnically diverse genome-wide association studies. Now, we show in 1,028 European

KD patients that the FCGR2C-ORF haplotype, although nearly absent in Asians, was

more strongly associated with susceptibility to KD than rs1801274 in Europeans. Our

data illustrate the importance of interpreting findings of association studies concerning

the FCGR2/3 locus with knowledge of LD and ethnic variation.

Keywords: Fc-gamma receptor, FCGR polymorphism, linkage disequilibrium, Kawasaki disease (KD),

immunogenetics

INTRODUCTION

The human cellular receptors for Immunoglobulin G (IgG), the
Fc-gamma receptors (FcγR), have an important role in immunity
by linking the adaptive and innate immune systems. Many
genetic variations in the genes encoding FcγRs have been found
to be associated with auto-immune (1–5), auto-inflammatory
(6–8), and infectious diseases (9, 10), and with efficacy of
immunotherapy in cancer patients (11–15). Several activating
and one single inhibitory FcγR (FcγRIIb) exist, with differential
expression on various leukocyte subsets (16, 17). Human FcγRs
can be distinguished into one high-affinity receptor (FcγRI)
and five low-affinity FcγRs (the different isoforms of FcγRII
and FcγRIII) (16, 17). All five genes encoding the low-affinity
FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B) are
located in a complex gene cluster at chromosome 1q23.3. Many
functionally relevant single nucleotide polymorphisms (SNPs)
and copy number variants (CNVs) are described in the FCGR2/3
locus, leading to altered receptor functions ranging from different
binding affinity to IgG to complete absence of expression of
certain genes (17–19). The FCGR2/3 locus involves a segmental
duplication, making it constitutively difficult to genotype because
of the high degree of homology between the genes (18, 20). Due
to the close proximity of all the five different FCGR2 and FCGR3
genes, the polymorphic variants in these genes are likely to be in
strong Linkage Disequilibrium (LD). However, except for some
incidental reports on LD between some of the SNPs (21–24), a
comprehensive analysis of LD between the functional variants at
this locus has not been previously performed.

One of the diseases in which only one genetic variant
of the FCGR2/3 locus has been thoroughly studied is
Kawasaki Disease (KD). KD is an acute systemic vasculitis
that predominantly occurs in children <5 years (25).
About 25% of untreated KD patients develop coronary
artery aneurysms, which may lead to ischemic heart disease,
myocardial infarction and sudden death at young age (26).
Although the etiology of KD remains unknown, the general
consensus is that KD reflects an abnormal inflammatory
response to an unknown infectious trigger in genetically
susceptible individuals. Standard treatment consists of a single
infusion of high-dose intravenous immunoglobulins (IVIg)
in combination with aspirin (27). Although the mechanism
of action of IVIg in KD is unclear, early treatment shortens
the duration of fever and reduces the incidence of coronary

artery aneurysms to less than 5% (28). Since IVIg therapy
is effective in the majority of patients, the receptors for IgG,
the Fc-gamma Receptors (FcγRs), are of particular interest in
KD research.

In our GWAS study on KD (6), we identified the FCGR2A-
131H SNP (rs1801274) to be associated at genome-wide
significance. This variant results in a substantial difference in
the ability of FcγRIIa to bind the human IgG2 subclass (19).
rs1801274 shows the strongest evidence of association with KD
and this finding has been intensively studied and validated in a
number of cohorts of varying ethnicity (6, 7, 29–34). Apart from
the FCGR2A-H131R SNP (rs1801274), only a few other SNPs
in this locus have been evaluated for KD susceptibility, without
any significant association (29–31). Nevertheless, because of the
sequence homology and the genetic complexity, a very large part
of the FCGR2/3 locus was not covered in GWAS or other studies
before. Hence, we postulated that other variants at the locus may
also play a role in KD susceptibility, which could either be tagged
by FCGR2A-131H (rs1801274), or act independently. To address
this, we performed further fine-mapping of the FCGR2/3 gene
cluster in a case-control as well as a family-based linkage study
with a total of 1,028 patients with KD, and genotyped healthy
control individuals of different ethnic groups to define LD
and ethnic variation. We used a previously developed accurate
multiplex ligation-dependent probe amplification (MLPA) assay
covering all the functionally relevant SNPs and CNVs at the
FCGR2/3 locus (5).

In the present study, including more than 4,000 individuals,
we found marked ethnic differences in allele frequencies for
most of the SNPs and CNVs. The most prominent difference
was observed for the FCGR2C-ORF haplotype, which we have
previously shown to result in expression of the activating FcγRIIc
(35). In most individuals, FcγRIIc cannot be expressed as a
result of a polymorphic stop codon in exon3 (rs759550223),
but the expressed FCGR2C-ORF haplotype is associated with
susceptibility to immune thrombocytopenic purpura (5). We
now show that the FCGR2C-ORF haplotype is virtually absent in
Asian and African populations. FCGR2C-ORF is in very strong
LD with several other SNPs in the European population, but
could be identified as a novel susceptibility haplotype for KD
in this population, independent of the FCGR2A-H131R SNP.
Our comprehensive analysis of the FCGR2/3 locus will greatly
contribute to a better understanding of the relevance of the
different FcγRs in inflammatory diseases.
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SUBJECTS AND METHODS

Study Populations
KD Cases
Unrelated KD cases were recruited from Australia, The
Netherlands and the United States. All cases from Australia
(109) and the United States (62) were also included in our
previous GWAS (6), whereas the cases from the Netherlands
(234) consisted of 166 cases from the GWAS and 68 new cases.
There was no overlap with patients in the study previously
reported by Biezeveld et al (30). The diagnosis of KD was based
on the standard diagnostic clinical criteria from the American
Heart Association.

Cohorts of Control Subjects

Europeans
Since no DNA of the control population in our previous GWAS
was available, we genotyped a new group of unrelated controls
of European descent, consisting of healthy individuals from
Austria (478), Australia (156), The Netherlands (199), and the
United Kingdom (86). All were of European descent by self-
reported ethnicity (36, 37).

Chinese
The Chinese population consisted of 428 healthy individuals
from Canada of Han-Chinese descent, all of which were
grandparent-proven Han-Chinese.

African
The South African population consisted of 149 healthy blood
donors of African descent by self-reported ethnicity as reported
before (38). The Ethiopian population consisted of 142 healthy
blood donors of African Ethiopian descent by self-reported
ethnicity (38). The West African population consisted of
65 sickle-cell disease patients from the Netherlands, all of
which were of West-African descent by self-reported ethnicity,
including individuals from Ghana (52), Nigeria (4), Sierra Leone
(4), Togo (3), and Cameroon (2). The Surinam population
consisted of 78 sickle-cell disease patients of African Surinamese
descent by self-reported ethnicity. The Antillean population
consisted of 6 sickle-cell disease patients from the Netherlands
who were from Curaçao and were of African Caribbean descent
by self-reported ethnicity, and 68 healthy blood donors from
Curaçao who were of African Caribbean descent by self-reported
ethnicity as described previously (38).

Family-based association study
623 KD patients (none overlapping with the case control study)
were included, consisting of KD patients from the United States
(386, of which 348 complete trios and 38 incomplete trios, 153
European), Australia (104, all complete trios, 72 European) and
the Netherlands (98, all complete trios, 82 European) and Italy
(35, all complete trios, all Mediterranean). All KD patients in
the family-based association study from the United States and
Australia were included in our previous GWAS (6), the patients
from the Netherlands and Italy were new.

In total, 4,091 individuals were genotyped. Table S1 provides
an overview of all individuals. This study was carried out in

accordance with the recommendations of the Kawasaki Study
Protocol approved by the Medical Ethical Committee at the
Academic Medical Centre in Amsterdam, the Netherlands, with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Medical Ethical
Committee at the Academic Medical Centre in Amsterdam, the
Netherlands and by the medical ethical committees of the other
participating centers.

Clinical Data
Clinical information was collected by review of the clinical KD
registries. CAAs were defined based on the definition of the
Japanese Ministry of Health or Z-scores >2.5 according to the
Boston Z-score data. According to the definition of the Japanese
Ministry of Health a coronary artery was considered abnormal
if the diameter of the internal lumen was > in children younger
than 5 years or> in a child aged 5 years or older, or if the internal
diameter of a segment was at least 1.5 times larger than that of an
adjacent segment. IVIg response was determined in the patients
receiving treatment with IVIg within 11 days after the disease
onset. Patients who received more than one dose of IVIg because
of persistent or recrudescent fever more than 36 h after the initial
IVIg dose were defined as IVIg non-responders.

Genotyping by MLPA and Construction of
Haplotypes From MLPA Data
The MLPA assay was performed according to the manufacturer’s
protocol, essentially as described previously (5, 39) and is
described in great detail in the Supplemental Methods.

Flow Cytometry, Gene Expression
Microarray and RT-qPCR
Flow cytometry, gene expression microarray and RT-qPCR were
performed as described in the Supplemental Methods.

Statistical Analysis
Genotype/Allele Frequencies and Linkage

Disequilibrium
Differences in copy number and allele frequencies between
(sub)populations and differences in allele frequencies between
groups of individuals with normal, decreased and increased
copy number were tested using Fisher’s Exact test. Haplotype
frequencies and linkage disequilibrium (expressed as r2 or D’)
between (multiallelic) markers were estimated in the populations
and the parents from the KD trios using the gap package (40)
(version 1.1-12).

Association With Susceptibility to Kawasaki Disease

(KD)
In the case-control study, genotype frequencies were compared
between KD cases and healthy controls using Fisher’s exact
test and odds ratios were estimated using (multiple) logistic
regression. In the parent-affected offspring trios, the association
between KD and the markers was examined using the
(multimarker) FBAT (TDT) test statistic from the FBAT toolkit
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(41). Results from the case-control and KD trios were meta-
analyzed using a fixed effect model and the generic inverse
variance method following an approach described by Kazeem
and Farrall (42) and using Review Manager software (Version 5,
Cochrane Collaboration).

Comparison of Expression Levels
In case of multiple expression values per donor, the mean of these
values was taken for the statistical analyses. Expressions between
groups were compared using Mann-Whitney tests (two groups)
or a Kruskal-Wallis test with post-hoc Mann-Whitney tests (>2
groups) using GraphPad Prism 6.02.

Apart from the TDT and meta-analyses and the expression
analysis, all statistical analyses were carried out using R software
(Version 3.0.3, R Core Team). A p-value below 0.05 was
considered as statistically significant.

RESULTS

Characterization of the FCGR2/3 Locus
The FCGR2/3 locus is a complex region due to the presence
of a large segmental duplication and copy number variants
(CNV) (18, 43). MLPA was previously shown to accurately call
copy number variation at the FCGR2/3 locus (5, 20). We used
the MLPA to accurately identify all eight known functional
SNPs and haplotypes, as well as the four CNV regions (CNRs),
at the FCGR2/3 locus, which have previously been associated
with various autoimmune and infectious diseases (Figure 1 and
Table S2).

Allele Frequencies of CNV and SNPs at the
FCGR2/3 Locus Vary Among Different
Ethnic Groups, Especially for the Classic
and Nonclassic FCGR2C-ORF Haplotypes
The frequencies of many of the functional SNPs and CNVs have
been reported to vary among different ethnic backgrounds (10,
21, 44–47), but information about the FCGR2C haplotypes is yet
to be established. To explore differences in frequencies of SNPs
and CNRs between several ethnic groups, we genotyped and
compared large groups of healthy human subjects. Significant
differences (P < 0.05) between ethnic groups were found for
CNRs and for all SNPs except the FCGR3A-V158F SNP, which
had no difference in frequency among all groups (Table 1).
Analysis of subgroups within the European and African
populations revealed subtle differences within the European
population andmarked differences within the African population
(Table S3).

Among the groups included, the largest difference in allele
frequency was revealed for the FCGR2C-haplotypes. FCGR2C
consists of three haplotypes; the FCGR2C-Stop pseudogene
that is not expressed as a result of the FCGR2C-Q57X SNP
(rs759550223), its expressed counterpart, the so-called classic
FCGR2C-ORF with an open reading frame at rs759550223, and
the nonclassic FCGR2C-ORF, which has an open reading frame
at rs759550223 but has an almost complete lack of expression
as a result of a splice site mutation in intron7 (rs76277413)
(35). Figure 1E gives a schematic overview of the haplotypes
of FCGR2C. The classic FCGR2C-ORF haplotype results in

the expression of FcγRIIc as an activating IgG receptor on
myeloid cells and NK cells, as we have characterized previously
(5, 48). We now formally demonstrate that the nonclassic
FCGR2C-ORF haplotype can be determined by MLPA (see
Supplemental Methods and Table S4 for a description), as
expression of FcγRIIc is indeed low to absent in individuals
genotyped as nonclassic FCGR2C-ORF by MLPA (Figure 2,
gating strategy Figure S1). The slight difference in staining levels
compared to individuals with the FCGR2C-stop variant shows
that there is some residual expression of FcγRIIc protein, but
this is less than 10% of the expression in classic FCGR2C-ORF
individuals. These haplotypes were markedly different among
different ethnic groups; the classic FCGR2C-ORF haplotype was
virtually absent in Chinese (present in 2 out of 428 individuals,
minor allele frequency <0.005%) and rare in the different
African populations, whereas the nonclassic FCGR2C-ORF was
more prevalent in African populations compared to Europeans
(Table 1 and Figure 2C).

Linkage Disequilibrium at the FCGR2/3

Locus Defined
Because many functionally relevant SNPs in the FCGR2/3
locus are located in close proximity to each other, the SNPs
in FCGR genes are likely to be in strong LD, which can
greatly complicate the interpretation of genetic association
studies. From the control samples of the different ethnic
reference populations, we first calculated the background
LD pattern based on the SNPs and haplotypes in the
individuals that did not show CNV (r2 in Figure 3, D’ in
Figure S2).

In the European population, we found strong LD of the
classic FCGR2C-ORF haplotype (rs759550223 and rs76277413)
with several of the other SNPs in the region. First, the classic
FCGR2C-ORF haplotype was in almost complete LD (r2 = 0.92)
with the 2B.2 promoter in FCGR2C (rs149754834). Furthermore,
there was strong LD between the classic FCGR2C-ORF variant
and FCGR2A-27W (rs201218628, r2 = 0.63) and with the
2B.4 promoter haplotype in FCGR2B (rs143796418, r2 = 0.40).
Weaker LD was observed for the classic FCGR2C-ORF haplotype
with FCGR3A-158V (rs396991, r2 = 0.24) and FCGR2A-131H
(rs1801274, r2 = 0.08).

In the Chinese population, LD for the classic FCGR2C-ORF
haplotype appeared similar to the LD in Europeans, but this was
based only on 2 individuals.

In the African population, LDwas also found for the FCGR2C-
ORF haplotype with several of the variants, but in general this LD
was weaker than in Europeans (Figure 3, second panel).

The previously described LD between FCGR3A-158V
(rs396991) and FCGR2A-131H (rs1801274) (21, 23) was
confirmed in the European and African population, although
relatively weak (r2 = 0.06). We show now that this LD
was reversed in the Chinese population, i.e., FCGR3A-158F
(rs396991) and FCGR2A-131H (rs1801274) were in weak LD
(r2 = 0.04).

We then investigated LD between CNV and SNPs for all of the
CNRs known at the locus. Because the standard measurements
of LD (r2 and D’) cannot be calculated in areas with CNV,
we performed this analysis by calculating allele frequencies
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FIGURE 1 | Genomic organization of the FCGR2/3 locus. Overview of the FCGR2/3 locus at 1q23.3. (A) CNV at the locus occurs always in regions containing a

series of genes, termed CNV regions (CNRs) (18, 21). Numbers between brackets indicate observed copy number for that CNR in the individuals tested in this study,

black lines indicate the extent of the different CNRs. Gray shaded bars indicate the extent of two paralogous repeats of the locus. The novel rare CNR4 that we

recently described (18) was found in 4 of the individuals included in this study, and was combined with the similar CNR1 in this study for reasons of simplicity. (B)

Overview of the genes in the locus with their orientation. Depiction of genes is not to scale. (C) Functional SNPs at the locus, indicated by single letter amino acid

code and amino acid position, except for the splice variant c.798+1A>G. All these SNPs were determined in this study. (D) Functional haplotypes at the locus. 2B.1,

2B.2, and 2B.4 are haplotypes of two SNPs (at nucleotide positions −386 and −120 relative to the start of translation) in the otherwise identical promoter regions of

FCGR2B and FCGR2C (haplotypes in gray are very rarely found in that particular gene). FCGR3B NA1, NA2, and SH are haplotypes determined by six SNPs. These

haplotypes determine the different allotypes of Human Neutrophil Antigen 1 (HNA1) involved in neutrophil alloimmunization, and respectively encode the

HNA1a/HNA1b/HNA1c antigenic variants. (E) Schematic representation of the different haplotypes of FCGR2C haplotypes, which determine expression of FcγRIIc.

FCGR2C-Stop (1) and FCGR2C-Stop (2) haplotypes are similar in function and expression and are taken together as FCGR2C-Stop throughout the manuscript.

Percentages represent allele frequencies of the different haplotypes in European healthy controls.

for groups of individuals with normal (2 copies), decreased
(≤1 copies) or increased (≥3 copies) copy number of at
least one CNR and analyzed significant differences by Fisher’s
exact test.

Results for CNR1 are shown inTable S5. For CNR1, strong LD
was found between increased copy number and the nonclassic
FCGR2C-ORF haplotype (rs759550223 and rs76277413), both
in the European and African population. Increased copy
number in CNR1 also revealed strong LD with the FCGR3B-SH

(rs5030738) haplotype in the European, but not in the African
population. Some other SNPs [FCGR2A-H131R (rs1801274);
FCGR3A-V158F (rs396991); FCGR2B-I232T (rs1050501)] were
also associated with changes in CNV in CNR1.

For the less prevalent CNR2, LDwas found only for rs1050501
in the European population (All results for CNR2 are shown
in Table S6).

For the rare CNR3, no statistically significant LD was found at
all (data not shown).
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TABLE 1 | Frequencies of CNVs (CNRs, proportion of individuals with that

number of copies is shown) and SNPs (allele frequencies are shown).

Variant European

(n = 919)

Chinese

(n = 428)

African

(n = 508)

Fisher’s

exact

CNR1

FCGR3B +

FCGR2C

0 copies 0.00 0.00 0.00

1 copy 0.07 0.09 0.11

2 copies 0.83 0.73 0.73

3 copies 0.09 0.17 0.14

4 copies 0.01 0.01 0.01 <0.0001

CNR2

FCGR3A +

FCGR2C

1 copy 0.01 0.01 0.01

2 copies 0.94 0.96 0.96

3 copies 0.04 0.04 0.03

4 copies 0.00 0.00 0.00 0.87

CNR3

FCGR3A +

FCGR2C

1 copy 0.00* 0.00 0.00*

2 copies 1.00 0.98 1.00

3 copies 0.00 0.02 0.00 <0.001

FCGR2A

131H 0.54 0.67 0.44

131 R 0.46 0.33 0.56 <0.0001

27 Q 0.88 1.00 0.89

27W 0.12 0.00 0.11 <0.0001

FCGR3A

158 F 0.64 0.64 0.64

158V 0.36 0.36 0.36 0.94

FCGR2C

Stop 0.84 1.00 0.90

Classic ORF 0.11 0.00 0.02

Nonclassic ORF 0.05 0.00 0.08 <0.0001

Promoter

haplotype

2B.1 0.89 1.00 0.95

2B.2 0.11 0.00 0.05 <0.0001

FCGR3B

NA1 0.35 0.62 0.38

NA2 0.62 0.38 0.46

SH 0.02 0.00 0.15 <0.0001

FCGR2B

232I 0.88 0.74 0.73

232T 0.12 0.26 0.27 <0.0001

Promoter

haplotype

2B.1 0.90 1.00 0.99

2B.4 0.10 0.00 0.01 <0.0001

Fisher’s exact test: Overall P for differences between populations for that variation is

shown. P-values < 0.05 are shown in bold. *1 European and 1 West African individual

showed a deletion of CNR3.

Association of SNPs and CNV at the
FCGR2/3 Locus With Susceptibility to KD
After defining the background allele frequencies and LD of
the functional SNPs and CNV in the control groups, we
then analyzed the full content of variants in the FCGR2/3

locus for susceptibility to KD, now also including the SNPs
and CNV in the region that had not been covered in our
previous GWAS study (6). We performed a case-control study
in 405 KD cases and the cohort of 919 controls described
above, all of European descent. For a family-based association
study, 586 complete trios and 37 incomplete trios were
genotyped. The characteristics of the KD patients are shown
in Table S7.

Case-Control Study
Genotype and allele frequencies of CNVs and SNPs are shown
in Table 2. Several significant differences between cases and
controls were observed, the most significant being the classic
FCGR2C-ORF (rs759550223 and rs76277413) (15.7% vs. 11.2%,
P = 0.002). Other significantly associated SNPs were the
2B.2 promoter in FCGR2C (rs149754834) (15.3% vs. 10.8%,
P = 0.009), the FCGR2A 27Q>W SNP (rs201218628) (15.3%
vs. 11.9%, P = 0.014) and the 2B.4 promoter in FCGR2B
(rs143796418) (12.7% vs. 10.0%, P = 0.047). These four
significantly associated variants are in strong LD with each
other (Figure 3). In a multiple logistic regression analysis that
included all the variants, none were independently associated,
but a backward regression analysis revealed the classic FCGR2C-
ORF as the strongest predictor of KD susceptibility (data
not shown).

We did not detect significant differences for any of the
CNV regions, or for the other functional SNPs. Even though
we detected a slight trend among the KD patients with higher
frequency of the FCGR2A-131H (rs1801274) risk allele in the
current study, this association found previously in GWAS and
meta-analysis (6, 7, 33) was not replicated in this dataset of
European patients and healthy controls. A multiple logistic
regression analysis of only the FCGR2C-ORF and FCGR2A-131H
revealed that the association of FCGR2C-ORF was independent
of FCGR2A-131H (Table 2).

Family-Based Study on KD
In an attempt to confirm our findings, we performed a KD
family-based association study in 623 family trios in which the
child was diagnosed with KD. The transmission disequilibrium
test (TDT) analysis revealed a significant association (P = 0.006)
of FCGR2A-131H (rs1801274) (Table 3). For the FCGR2C-ORF
haplotype (rs759550223 and rs76277413) and the other SNPs or
CNRs tested, there was no evidence of association (except for
the rare allele with two copies of FCCR3A on one chromosome,
of which one was 158V and the other was 158F, which had
only 18 informative families) (Table 3). Of note, the number
of informative families for FCGR2C-ORF was also relatively
small, as a result of the low prevalence of this variant (Table 1).
Analysis of the families enabled us to construct complete
haplotypes for all parental chromosomes, which confirmed the
LD pattern observed in the cohort of healthy controls, both
in parents without any CNV as in parents that did show
CNV (Figure S3).
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FIGURE 2 | Haplotypes of FCGR2C determine expression of FcγRIIc. (A) Representative histograms of staining with MoAb 2B6 on NK cells (left), monocytes (middle),

and neutrophils (right) of an individual homozygous for FCGR2C-Stop variant (upper panel) and an individual homozygous for the FCGR2C-ORF variant (lower panel).

2B6 recognizes the extracellular domain of both FcγRIIb and FcγRIIc. In FCGR2C-Stop individuals, FcγRIIc cannot be expressed, therefore staining of 2B6 in those

individuals must be FcγRIIb only. Black line: 2B6, gray shading: isotype control. (B) Summary of 2B6 staining, corrected for isotype control, on human NK cells (left),

monocytes (middle) and neutrophils (right) of genotyped individuals. Y axis scale is different for monocytes than for the other cell types. Because FcγRIIb is also

stained by 2B6, only cells that do not express FcγRIIb can be easily analyzed for FcγRIIc expression. Therefore, individuals with a deletion of CNR1 were excluded

from the analysis of NK cells, and individuals with a 2B.4 promoter haplotype in FCGR2B were excluded from the analysis of monocytes and neutrophils, because

these variants result in ectopic expression of FcγRIIb on NK cells (35), or myeloid cells (36), respectively. NK cell analysis: FCGR2C-Stop n = 93, nonclassic

FCGR2C-ORF, including cases with 1 or 2 copies n = 8, FCGR2C-ORF(1x), with 1 copy of the classic FCGR2C-ORF haplotype, n = 23, FCGR2C-ORF(2x), with 2

copies n = 7. Monocyte and neutrophil analysis: FCGR2C-Stop n = 99, nonclassic FCGR2C-ORF, including cases with 1 or 2 copies n = 8, FCGR2C-ORF(1x), with 1

copy of the classic FCGR2C-ORF haplotype, n = 10, FCGR2C-ORF(2x), with 2 copies n = 2. Some individuals were analyzed more than once at different time points

with similar results; means are shown for these. All individuals analyzed are of European descent except for five FCGR2C-Stop and two nonclassic FCGR2C-ORF

individuals who were of African origin. (C) World map showing allele frequencies of FCGR2C haplotypes for different ethnic groups. MFI, median fluorescence

intensity; ns, non-significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 as determined by Mann Whitney test.
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FIGURE 3 | Linkage Disequilibrium at the FCGR2/3 locus. Linkage Disequilibrium for SNPs and haplotypes in individuals without CNV. r2 is shown for all combinations,

which variant is linked to which variant is shown underneath. Values shown in bold are significantly different from 0 (p < 0.05). FCGR2C-ORF = classic FCGR2C-ORF

haplotype vs. all other FCGR2C haplotypes. FCGR2C-NC-ORF = nonclassic FCGR2C-ORF haplotype vs. all other FCGR2C haplotypes. NA, not available, because

the classic FCGR2C-ORF haplotype and nonclassic FCGR2C-ORF haplotype are mutually exclusive. Polymorphic amino acids are indicated by one-letter code.
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TABLE 2 | Genotype and allele frequencies of functional genetic variants at the FCGR2/3 locus, comparing KD patients of European descent with healthy controls of

European descent.

Variant Cases Controls Fisher Single logistic regression (additive model) Multiple logistic regression

(n= 405) (n= 919) All

variants

2

variants

P-value OR

(95%LL-95%UL)

P-value P-

value

P-

value

CNR1

(FCGR2C + FCGR3B)

0 copies 1 1 <2 vs. rest:

1 copy 27 60 1.04 (0.66–1.66) 0.853 0.719

2 copies 348 768

3 copies 27 83 >2 vs. rest:

4 copies 2 7 0.533 0.71 (0.46–1.10) 0.124 0.291

CNR2

(FCGR2C + FCGR3A)

1 copy 3 11 <2 vs. rest:

2 copies 376 866 0.62 (0.17–2.22) 0.459 0.491

3 copies 25 41 >2 vs. rest:

4 copies 1 1 0.390 1.43 (0.87–2.37) 0.162 0.256

CNR3

(FCGR2C + FCGR3A)

2 copies 405 917 >2 vs. rest:

3 copies 0 2 1.000 0.00 (0.00-inf) 0.973 0.973

FCGR2A Q27W

QQ 289 713

QW 108 194

WW 8 12 0.047

Allele frequency (W) 15.3% 11.9% 1.35 (1.06–1.72) 0.014 0.783

FCGR2A H131R

HH 122 269

HR 211 463

RR 72 187 0.559

Allele frequency (H) 56.2% 54.5% 1.07 (0.91–1.27) 0.408 0.857 0.927

FCGR3A V158F

0V (F, FF, FFF, FFFF) 150 386

1V (V, VF, VFF) 205 403

2V (VV, VVF, VVFF) 47 128

3V (VVV) 3 2 0.046

Allele frequency (V) 37.0% 35.5% 1.08 (0.91–1.28) 0.373 0.606

FCGR2C promoter

0 2B.2 286 717

1 2B.2 110 185

2 2B.2 9 16

3 2B.2 0 1 0.017

Allele frequency (2B.2) 15.3% 11.5% 1.37 (1.08–1.72) 0.009 NE

FCGR2C

ORF/Stop/NC-ORF

0 ORF 283 721

1 ORF 113 184

2 ORF 9 13

3 ORF 0 1 0.005

0 NC-ORF 389 853

(Continued)

Frontiers in Immunology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 185

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nagelkerke et al. LD and Ethnic Variation at the FCGR2/3 Locus

TABLE 2 | Continued

Variant Cases Controls Fisher Single logistic regression (additive model) Multiple logistic regression

(n= 405) (n= 919) All

variants

2

variants

P-value OR

(95%LL-95%UL)

P-value P-

value

P-

value

1 NC-ORF 6 33

2 NC-ORF 10 33 0.059

Allele frequency (ORF) 15.7% 11.2% 1.46 (1.16–1.85) 0.002 0.093 0.002

Allele frequency

(NC-ORF)

3.1% 5.2% 0.72 (0.51–1.02) 0.063 0.112

Allele frequency (Stop) 81.2% 83.7% 0.88 (0.74–1.04) 0.136

FCGR3B NA1/NA2/SH

0 NA1 158 373

1 NA1 201 430

2 NA1 45 114

3 NA1 1 2 0.754

0 SH 389 874

1 SH 16 45 0.481

Allele frequency (NA1) 36.2% 35.3% 1.01 (0.85–1.20) 0.933 0.537

Allele frequency (NA2) 63.8% 64.7% 0.94 (0.80–1.12)

Allele frequency (SH) 4.0% 4.9% 0.80 (0.45–1.43) 0.450 0.247

FCGR2B promoter

0 2B.4 307 748

1 2B.4 93 157

2 2B.4 5 14 0.043

Allele frequency (2B.4) 12.7% 10.0% 1.29 (1.00–1.67) 0.047 0.834

FCGR2B I232T

II 322 697

IT 76 201

TT 7 21 0.359

Allele frequency (T) 11.1% 13.2% 0.83 (0.64–1.06) 0.141 0.189

For SNPs that are subject to CNV, several genotypes are pooled as indicated to combine all the different genotypes with the same copy number of 1 of the variants. For the tri-allelic

haplotypes in FCGR2C and FCGR3B, this is done for two of the haplotypes separately. Fisher exact test was calculated on genotype frequencies as shown in the table. A single logistic

regression analysis was performed for each (presumed) risk allele in an additive model. A multiple logistic regression analysis was performed on all variants (except the FCGR2C promoter

haplotypes, which were left out of the multiple logistic regression analysis because of the near perfect LD with the classic FCGR2C-ORF haplotype) and on FCGR2A-H131R and classic

FCGR2C-ORF alone. P-values < 0.05 are shown in bold.

Combined Analysis Reveals Both
FCGR2A-131H and FCGR2C-ORF to be
Significantly Associated With Susceptibility
to KD
We performed a meta-analysis of the associations from both the
case-control and familial TDT analyses, and we found the classic
FCGR2C-ORF haplotype (rs759550223 and rs76277413, meta-
P = 0.002) and the FCGR2A 131H (rs1801274, meta-P = 0.01)
were both significantly associated with KD susceptibility
(Figure 4).

mRNA for the FCGR2 Isoforms Is
Upregulated in Acute KD Patients, in
Contrast to the FCGR3 Isoforms
To determine whether alteration of expression levels of the low-
affinity FcγRs plays a role in the pathophysiology of KD, we
compared mRNA expression levels in KD patients in the acute

and convalescent phase of the disease, using samples from a
previous study (49). First, we compared Z scores for FCGR
transcripts that were already present in the microarray for this
study. In this analysis, we found FCGR2A, FCGR2B, FCGR3A,
FCGR3B, and also FCGR1A, encoding the high-affinity FcγRI, to
be all transcriptionally upregulated in acute KD (Figure 5A).

To confirm these findings and extend the analysis to FCGR2C,
we then performed highly specific qPCRs for FCGRs on a
selection of these patients from which RNA was still available.
This confirmed that FCGR2A, FCGR2B and FCGR2C transcripts
were all upregulated during acute KD (Figure 5B). FCGR3A was
not differentially expressed between the acute and convalescent
phase (Figure 5B) but FCGR3B seemed to be upregulated in
the acute phase (Figure 5B). However, because acute KD could
have resulted in a shift in leukocyte differentials and in our
cohort a marked increase of neutrophil percentages was observed
(data not shown), we applied a correction for percentages
of different leukocyte subsets in the 100 patients for whom
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leukocyte differentials were available. In the case of FCGR3B, a
correction for neutrophil percentages (Figure 5C) showed that
the apparent upregulation was the result of the relative increase in
neutrophils during acute KD and does not reflect a true increase
in transcription. On the other hand, expression levels of FCGR2A
and FCGR2C were increased in acute KD even after correction
for shifts in white blood cell distribution (Figure 5C).

Comparison for several genetic differences known to influence
expression levels showed marked differences (Figure 5D),
confirming earlier reports and the validity of our analysis.

DISCUSSION

In a comprehensive study using MLPA, we have analyzed the
full collection of functionally defined SNPs and CNRs at the
FCGR2/3 locus at an unprecedented level of detail. We report
extensive LD in this notoriously difficult gene cluster, as well
as large ethnic variation in different European, African and
Asian subpopulations. Our findings are in line with previously
published allele frequencies and CNV in different populations for
this locus (21, 44, 50) and extend these findings with additional
variants and populations. Applying this as the reference dataset,
previously reported genetic association studies may need to be
re-evaluated.

This is the first study to illustrate the relevance of a more
detailed reference for a pediatric vasculitis. KD has a ten-fold
increased prevalence in Japanese and other Asian populations
compared to children of European descent. In multi-ethnic
GWAS studies, the association of FCGR2A-131H(rs1801274)
with KD susceptibility was detected across KD cohorts of
different ethnic backgrounds, indicating that this common
variant is an independent susceptibility marker in all groups,
including the Asian and European populations (6, 7). We now
show that within the European cohorts, the classic FCGR2C-
ORF haplotype (rs759550223 and rs76277413) may be the most
strongly associated FCGR gene variant with KD susceptibility.
Evidence from low LD (r2 = 0.08) and conditional analyses
identify the association of this classic FCGR2C-ORF haplotype
to be independent of the previously identified FCGR2A-131H
GWAS association. Interestingly, the classic FCGR2C-ORF,
which is strongly associated with KD susceptibility in Europeans,
was virtually non-existent in the Asian populations. This suggests
that the increased prevalence of KD in Asian populations
compared to European populations derives from factors other
than the currently known genetic variation in FCGR genes.

The very strong LD of the classic FCGR2C-ORF haplotype
with several other variants in the FCGR2/3 locus means that
the interpretation of associations with this locus are more
complex than previously appreciated. Classic FCGR2C-ORF is
in strong LD with three other variants: the 2B.2 promoter
in FCGR2C (rs149754834), FCGR2A-27W (rs201218628) and
the 2B.4 haplotype in FCGR2B (rs143796418). Hence, all these
variants could tag the classic FCGR2C-ORF and were also
significantly associated with KD susceptibility in a single logistic
regression analysis. However, when we analyzed all variants
in a multiple logistic regression analysis, we found the classic
FCGR2C-ORF to be the strongest predictor of KD susceptibility.

TABLE 3 | Transmission disequilibrium test for the different variants at the

FCGR2/3 locus in a family-based association study.

Allele/haplotype

(on 1 chromosome)

Allele

frequency

#

families*

Z P-value

CNR1

0 (deletion) 0.049 105 0.285 0.776

1 0.875 214 −0.065 0.948

2 (duplication) 0.074 133 −0.338 0.735

CNR2

0 (deletion) 0.006 13 −0.277 0.782

1 0.976 61 0.378 0.705

2 (duplication) 0.018 48 −0.429 0.668

FCGR2A Q27W

Q 0.891 210 −0.328 0.743

W 0.109 210 0.328 0.743

FCGR2A H131R

H 0.575 431 2.750 0.006

R 0.425 431 −2.750 0.006

FCGR3A V158F

– 0.005 11 −0.302 0.763

F 0.642 395 0.483 0.629

FF 0.010 27 0.577 0.564

VF 0.006 18 −2.828 0.005

V 0.331 397 −0.088 0.930

VV 0.004 10 0 1.000

Promoter FCGR2C

- 0.055 114 0.451 0.652

2B.1 0.748 349 −0.242 0.809

2B.1-2B.1 0.089 164 −0.818 0.414

2B.2 0.099 182 0.491 0.623

FCGR2C ORF/Stop/NC-ORF**

– 0.055 115 0.268 0.788

ORF 0.100 184 1.120 0.263

Stop 0.743 354 −0.241 0.810

NC-ORF 0.009 23 −1.460 0.144

Stop-stop 0.075 143 −0.477 0.633

NC-ORF-NC-ORF 0.007 19 −0.229 0.819

FCGR3B NA1/NA2/SH

– 0.053 108 0.186 0.853

NA1 0.362 389 0.490 0.624

NA1-NA2 0.051 96 −0.198 0.843

NA1-SH 0.009 21 0.218 0.827

NA2 0.508 396 −0.439 0.660

NA2-NA2 0.004 11 −0.905 0.366

SH 0.004 12 −1.155 0.248

Promoter FCGR2B

2B.1 0.905 185 −0.563 0.574

2B.4 0.090 172 0.946 0.344

FCGR2B I232T

I 0.867 226 0.741 0.459

T 0.133 226 −0.741 0.459

*Number of informative families (i.e., at least one of the parents is heterozygous for

the indicated allele or haplotype). Only alleles for which the number of informative

families is >10 are shown. **ORF means classic FCGR2C-ORF haplotype, NC-ORF

means nonclassic FCGR2C-ORF haplotype. Z; Z statistic, a positive Z indicates more

transmission than expected, a negative Z indicates less transmission than expected, P

indicates whether Z is significantly different from 0, P < 0.05 is considered significant.
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FIGURE 4 | Meta-analysis of case-control and TDT for FCGR2A-131H and the classic FCGR2C-ORF haplotype. Combined OR (95% CI) and P-values from the

case-control study and TDT analysis, for FCGR2A-131H (A) and classic FCGR2C-ORF (B).

The 2B.2 variant in FCGR2C was omitted from the multiple
logistic regression analysis because of its near complete LD
with classic FCGR2C-ORF. In fact, this variant can actually be
only of biological relevance in the case of a classic FCGR2C-
ORF haplotype, because with the other FCGR2C haplotypes, this
2B.2 promoter haplotype would reside in the promoter of an
untranslated variant or FCGR2C (FCGR2C-Stop or nonclassic
FCGR2C-ORF). It is unlikely that the tagging FCGR2A-Q27W
SNP independently contributes to KD susceptibility, as it is
a genetic variation for which a biological role has not been
described (46). It lies outside the IgG-binding region of FcγRIIa
and an analysis of expression levels revealed no influence on
expression levels (Figure S4). However, genotyping the FCGR2A-
Q27W SNP may be informative in genetic association studies, as
it may be used as a tagging SNP for the classic FCGR2C-ORF as
part of a susceptibility haplotype. The FCGR2A-Q27W SNP lies
outside the copy number variable part of the FCGR2/3 locus and
is straightforward to genotype.

We did not find a significant association of CNV of the locus
for any of the different CNRs that have been described. This is
in contrast with an earlier report that described an association of
CNV in FCGR3B and in FCGR2C with susceptibility to KD (51).
In our opinion, analysis of CNV of FCGR2C without information
on the FCGR2C-ORF variant is futile, as CNV of FCGR2C
per se does not correlate with expression levels, normally being a
pseudogene (i.e., FCGR2C-Stop). On the other hand, CNV in the
FCGR3B does have a potential biological role, as we confirmed
with our qPCR analysis, which showed a direct effect of CNV of
the FCGR3B gene on transcript levels of FCGR3B. Nevertheless,
CNV of FCGR3B was not associated with KD susceptibility in
our cohorts.

Transcript levels of FCGR2A have previously been shown to
be increased in KD patients compared to febrile controls (52),
and we now show that mRNA levels of all FCGR2 isoforms,
as well as FCGR1A1 [encoding FcγRI (CD64)], are upregulated
during the acute phase of KD, compared to paired convalescent
samples of the same patients, which further underscores the
importance of FcγRs in KD.

A striking finding of our study is the lack of a significant
association of FCGR2A-131H in the case-control study,
contrasting our previous GWAS findings (6). This discrepancy
was not explained by a difference in allele frequency in the case
group, but by a difference in allele frequency between the control
groups tested. Both control groups were randomly selected
individuals of European descent. A remarkable difference
between the two control groups was that the control group of
the GWAS consisted mainly of individuals from the United
Kingdom, which in the present study have a significantly lower
prevalence of the FCGR2A-131H than the other European groups
(Table S3). Apparently, even within the European population,
the selection of the control group may influence the results
of association analyses. Although both control groups were
randomly selected, we believe that the group used in the current
study is more representative of the background population, since
it consists of more controls from the countries of origin of the
patients. Nevertheless, even with the new control group, in a
combined meta-analysis with our TDT analysis, FCGR2A-131H
was still significantly associated with KD susceptibility.

In addition to small differences within the European
population, of more relevance were the significant differences
in allele frequencies at the FCGR2/3 locus between the different
ethnic groups. Our MLPA assay enabled us to look at the
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FIGURE 5 | Gene expression analysis of FcγRs shows upregulation of FcγRI and FcγRII, but not FcγRIII during acute KD. (A) Difference in expression intensity of

various FCGR transcripts, as determined by RNA microarray, shown as Z scores (higher score indicating higher expression), in 171 subjects with KD in the acute and

convalescent phase of the disease. (B–D) Relative expression of different FCGR transcripts detected by qPCR on whole blood, corrected for housekeeping genes

GUS and GAPDH, as compared to one randomly chosen sample in the convalescence phase of KD. (B) Dot plots showing a comparison of the acute and

convalescent phase of KD in 118 patients. (C) Dot plots showing a comparison of the acute and convalescent phase of KD for transcripts of FCGR2A, FCGR2C,

(Continued)
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FIGURE 5 | and FCGR3B in 100 patients for which WBC differentials were known, after correction for the main cell type that expresses the transcript. (D) Comparison

of genotypes for the expression of various transcripts in 135 patients with acute KD. FCGR2B: patients with only the 2B.1 promoter (n = 122) or with 1 copy of the

2B.4 promoter (n = 13) in FCGR2B. FCGR2C: patients with the FCGR2C-Stop haplotype (n = 114), patients with 1 copy of the classic FCGR2C-ORF haplotype

(n = 18), patients with 1 or 2 copies of the nonclassic FCGR2C-ORF haplotype (n = 3). FCGR3A patients with 2 copies (n = 129), or 3 copies (n = 6) of the FCGR3A

gene. FCGR3B: patients with 0 copies (n = 1), 1 copy (n = 12), 2 copies (n = 89), 3 copies (n = 31) or 4 copies (n = 2) of the FCGR3B gene. ns: non-significant; **p

< 0.01; ***p < 0.001; ****p < 0.0001 as determined by paired t-test or Wilcoxon matched-pairs signed rank test (A–C) or students t-test or Mann Whitney test (D).

distribution of FCGR2C haplotypes in African, European and
Chinese populations. We show that MLPA reliably distinguished
the classic FCGR2C-ORF from the nonclassic FCGR2C-ORF
haplotype that does not result in expression of FcγRIIc.
Theoretically, only minimal errors in haplotype calling can occur
for FCGR2C with the MLPA methods (calculated error rate of
only 0.1%, Table S4), whereas Illumina whole-exome sequencing
was unable to detect the rs759550223 SNP of the classic FCGR2C-
ORF haplotype in all three individuals with this haplotype among
ten individuals tested in total (error rate 30%) (18).

The classic FCGR2C-ORF haplotype is virtually absent from
the Asian population, whereas in the African population, the
non-expressed nonclassic ORF was much more prevalent than
the classic FCGR2C-ORF. The absence of the classic FCGR2C-
ORF in the Asian population is of particular interest because of
the fact that there is a striking difference in the incidence of KD
between children of Asian (69–308 per 100,000 children<5 years
of age) (53) and of European descent (4–15 per 100,000 children
<5 years of age) (54–56). Clearly, the FCGR2C-ORF is only a
risk factor for KD susceptibility in European subjects, and cannot
account for the increased incidence of KD in Asian children.

A potential limitation of our MLPA technology lies in the
uncertainty of allocating the promoter haplotypes 2B.2 and 2B.4
to either FCGR2B or FCGR2C, but data previously generated by
us and others (5, 36, 57, 58) show that our allocation approach is
accurate in>95% of European individuals with at least one of the
rare variants 2B.2 or 2B.4. The majority of individuals does not
carry a rare variant and these individuals will be 100% accurately
genotyped by MLPA.

Detailed knowledge of genetic linkage in IgG receptors has
major implications for every other study on associations of
FCGR2/3 polymorphisms with disease or therapeutic efficacy.
For example, many studies investigating associations with
therapeutic efficacy of therapeutic antibodies against cancer have
found an association with the FCGR3A-158V variant (rs396991)
(13–15, 59), which we now show to be in moderate LD with the
classic FCGR2C-ORF (r2 = 0.24). Since the classic FCGR2C-ORF
haplotype leads to expression of the activating FcγRIIc on NK
cells, neutrophils, monocytes (Figure 2) and macrophages (17),
it may contribute to killing of tumor cells by antibody-dependent
cellular cytotoxicity by these cells, and could potentially be a
stronger predictor of treatment success.

In conclusion, we have reported a novel association of the
classic FCGR2C-ORF variant (rs759550223 and rs76277413) with
susceptibility to KD in European patients, independent of the
FCGR2A-131H (rs1801274), which is a separate susceptibility
marker. Upregulation of the transcripts for both activating
receptors encoded by these genes (respectively FcγRIIc and
FcγRIIa) during acute KD further indicates their importance in
KD pathophysiology. FcγRIIa and FcγRIIc are co-expressed by

two circulating cell types, monocytes and neutrophils. Both cell
types are actively recruited to arterial lesions in KD patients. Our
data support a central role of the activating IgG receptors on
these cell types in the pathophysiology of KD, whereas the SNPs
in the inhibitory FcγRIIb were not associated. This suggests that
inhibiting the function of activating FcγRs (which is a possible
working mechanism of IVIg, the first-line treatment in KD) may
be an important treatment goal in patients with this pediatric
vasculitis during the acute phase of the disease.
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