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The dramatic increase in food allergy prevalence and severity globally requires effective

strategies. Food allergy derives from a defect in immune tolerance mechanisms. Immune

tolerance is modulated by gut microbiota function and structure, and microbiome

alterations (dysbiosis) have a pivotal role in the development of food allergy. Environmental

factors, including a low-fiber/high-fat diet, cesarean delivery, antiseptic agents, lack

of breastfeeding, and drugs can induce gut microbiome dysbiosis, and have been

associated with food allergy. New experimental tools and technologies have provided

information regarding the role of metabolites generated from dietary nutrients and

selected probiotic strains that could act on immune tolerance mechanisms. The

mechanisms are multiple and still not completely defined. Increasing evidence has

provided useful information on optimal bacterial species/strains, dosage, and timing

for intervention. The increased knowledge of the crucial role played by nutrients and

gut microbiota-derived metabolites is opening the way to a post-biotic approach in

the stimulation of immune tolerance through epigenetic regulation. This review focused

on the potential role of gut microbiome as the target for innovative strategies against

food allergy.

Keywords: immune tolerance, gut microbiota, mediterranean diet, dysbiosis, probiotics, gut microbiota

metabolites, short chain fatty acids, butyrate

INTRODUCTION

The Changing Scenario of Food Allergy
Food allergy (FA) is one of the most common allergic disorders in the pediatric age, and it
has been considered as a global health problem, particularly in industrialized world (1). During
the last two decades, studies have suggested that the epidemiology of FA has shown a dramatic
increase in the prevalence, severity of clinical manifestations and risk of persistence into later
ages, leading to an increase in medical visits, hospital admissions, treatments, burden of care
on families, and economic impact, with an increase of costs for the families and healthcare
system (2–4). According to the most recent epidemiological data, time trend analysis showed up
to a 7-fold increase in hospital admissions for food severe allergic reactions in children in the
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UK, USA, Italy and Australia over the last 10 years (5–10). More
than 170 foods have been identified as triggers of FA, such as tree
nuts, eggs, peanuts, fish, shellfish, milk, wheat, soy, and seeds,
with national and geographical variations concerning the most
common FA (1, 10–15).

New Insights in the Pathogenesis of FA
FA derives from a breakdown of immune tolerance to dietary
antigens (16). Immune tolerance mechanisms involved the
activation of dietary antigens specific regulatory T cell (Tregs)
(17). Current knowledge suggests that the epidemiology of
FA may be influenced by epigenome-genome-environment
interactions leading to an alteration of immune system function
(18, 19). To stabilize or fall the prevalence of FA, new and
innovative strategies to reduce FA incidence are required. Many
factors have been postulated to contribute to the onset of
FA. The multiple immutable risk factors that could influence
FA onset include male sex, ethnicity (increased risk among
Asian and African Americans children), and genetics (familial
risk, human leukocyte antigen (HLA), and specific genes) (2,
20–25). In addition, there are other modifiable factors that
can be potentially targeted to reduce or prevent FA. These
factors are related (mode of delivery, breast milk, use of
antibiotics or gastric acidity inhibitors, use of antiseptic agents,
rural environment, junk food-based and/or low-fiber/high-fat
diet, consumption of unpasteurized milk or fermented foods,
exposure to pets), or unrelated (comorbid atopic dermatitis,
timing and route of exposure to foods, reduced consumption of
omega-3-polyunsaturated fatty acids or vitamin D insufficiency,
antioxidants,) to an influence on gut microbiome development
and function (26–40) (Figure 1).

Clinical Consequences of Gut Microbiome Dysbiosis

in Children With FA
Many subjects with FA naturally outgrow it over time. Cow’s
milk allergy (CMA), hen’s egg allergy and wheat allergy resolve
in ∼50% of children by the age of 5–10 years. Other FAs
(including peanuts, tree nuts, fish) have low rates of resolution
and are considered persistent (41). In addition, many forms
of FA, may be related with later development of other allergic
manifestations such as oculorhinitis, atopic dermatitis, asthma,
and urticaria (the so called “Atopic March”) (42), as well
as other diseases such as functional gastrointestinal disorders
(FGIDs) (30, 43), inflammatory bowel diseases (IBD) (44), and
psychiatric disorders, such as autistic spectrum disorders (ASD)
attention deficit hyperactivity disorder (ADHD), and obsessive-
compulsive disorder (OCD) (45). The pathogenesis of these
events is still largely unknown, but increasing evidence suggest
the hypothesis that a perturbation of gut microbiome, leading

Abbreviations: FA, food allergy; CMA, cow’s milk allergy; EHCF, extensively

hydrolyzed casein formula; LGG, Lactobacillus rhamnosus GG; OIT, oral food

immunotherapy; SU, sustained unresponsiveness; PBMCs, peripheral blood

mononuclear cells; BLG, β lactoglobulin; OVA, ovalbumin; LAB, lactic acid

bacteria; NDC, Non-digestible dietary carbohydrates; SCFAs, short chain fatty

acids; Tregs, regulatory T cells; DCs, dendritic cells; Kyn, kynurenine; AhR,

arylhydrocarbonreceptor; IPA, indole 3-propionic acid; I3A: indole-3-aldehyde;

I3C, indole-3-carbinole.

to alterations in immune system and gut-brain axis, could
influence the occurrence of FA and FA-related conditions later
in life (Figure 2).

Gut Microbiome Features in FA
Investigating the Metagenomic and Metabolomics

Features of Gut Microbiome
The knowledge and awareness of the roles played by gut
microbiome and metabolites in the balance between health and
disease is rapidly increasing. This is mainly due to advances
in technology and the availability of high-sensitivity means to
study microbial communities in any type of ecosystem. It is
important for the clinicians and researchers dedicated to the FA
field to know potential and limits of these technologies to better
understand the value and significance of the findings reported
in literature. Box 1 summarizes terminology for gut microbiota-
based investigations in FA.

Due to the power of genome DNA sequencing, we
have learned much about the composition of gut microbial
communities. In addition, the potential of transcriptomics,
proteomics, and metabolomics are enlarging our understanding
of the gut microbiota role in human health. Until the
1990s, knowledge of the gut microbiome was limited because
the structure of gut microbiota was characterized using
bacteriological culture. In the last decade, the composition of
the gut microbiota was described by next generation sequencing
of 16S ribosomal RNA genes. This is increasing the amount
of information that can be retrieved by studying metagenomes
from human samples, with the capability to infer the abundance
of genes and potential metabolic pathways that characterize a
microbial community. It is possible to describe the taxonomic
composition of the microbiota and also to study the potential
functions in a given system. Such methodological background
is fundamental to investigate associations between microbiota
structure and health as well as other environmental factors
(46) and also to observe the changes of the gut microbiota
in response to disease or perturbations in diet or lifestyle. An
advanced technique to investigate gut microbiota at deep level
is shotgun sequencing that represents a massive sequencing of
the whole genome. Shotgun sequencing involves DNA random
fragmentation, sequencing of these fragments and reconstruction
of overlapping sequences to assemble them into a continuous
sequence (47). Metabolomics represents one of the meta-omic
approaches to study gut microbiota functions. Metabolomics
uses high throughput techniques to characterize and quantify
small molecules in several biofluids, such as feces, urine, plasma,
serum, and saliva (48). The use of metabolomics is considered a
powerful top-down systems biology approach, and it is essential
to reveal the genetic-environment-health relationship, as well
as the clinical biomarkers of diseases (49). Currently, the rapid
development of several analytical platform, including liquid
chromatography (LC), gas chromatography mass spectrometry
(GC- MS), high-pressure LC (HPLC), ultra-pressure LC (UPLC),
electrophoresis (CE) coupled to mass spectrometry (MS),
Fourier transform infrared spectroscopy (FTIR), ion cyclotrone
resonance-FT (ICR-FT), capillary and nuclear, and proton
nuclear magnetic resonance spectroscopy (NMR-1H-NMR),
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FIGURE 1 | Gut microbiome as a target of intervention against food allergy. Several genetic, environmental, and dietary factors could modulate the gut

microbiome-immune system axis influencing the occurrence of FA. For instance, increased family size, exposure to pets and/or rural environment, healthy diet (full of

fibers, fermented foods, antioxidants, omega-3), breastfeeding and use of probiotics are associated with protection to FA. Conversely, C-section, prenatal, and

early-life exposure to antibiotics/gastric acidity inhibitors/antiseptic agents, unhealthy diet (low fibers/high saturated fats and junk foods) may increase the risk for the

development of FA. All these environmental factors act mainly on a modulation of gut microbiota structure and function which in turn could be responsible for the

epigenetic regulation of genes involved in immune tolerance.

allowed to better define bacteria related-metabolites and their
metabolic pathways (50). Box 2 summarizes techniques used to
investigate the gut microbiota metagenomic and metabolomic
features. Gut microbiota metabolomic features are still largely
unexplored. Metabolomics will provide important insides in the
pathogenesis of FA. In this light, preliminary data available
on short chain fatty acids (SCFA) profile are opening new
perspective of intervention (see below). What is needed is a
transition from descriptive research to understanding the ways
the microbiome interacts with the host and plays a role in health
and disease. In this frame, controlled clinical interventions are of
utmost importance to establishmicrobiota causative involvement
and are the basis to implement approaches of personalized
medicine (51, 52). The study of the relationship between
microbiome and FAmay begin with association and be translated
to causation and clinical practice with appropriate advances
in knowledge. Wide screening of microbial diversity in gut
microbiome of patients with a sure diagnosis of FA, including a
well-matched control population, may identify useful signatures
in the microbiome that are specific for certain types of FA (53).
If the wide screening included cohorts of patients with different

dietary style or ethnicity, the common microbial signatures
would be even stronger and provide a solid indication of the
microbial biomarkers of FA. Further mapping of the genomic
features associated with FAmay be inferred bymetagenomics and
metabolomics, which may provide information on the functional
microbial signatures associated with FA.

Biomarker strains or defined microbial systems may be
tested in gnotobiotic or humanized animal models to observe
the development of the disease, and beneficial vs. detrimental
microbial metabolites can be recognized and used as final
targets of microbiome-targeted personalized interventions. The
identification of bacterial metabolites that positively affect the
immune tolerance network, may be an interesting strategy
against FA using a post-biotic approach.

Evidence on Gut Microbiome Dysbiosis in FA
Mounting evidence indicates that gut microbiome dysbiosis
early in life represents a critical factor underlying FA (26,
27, 54, 55). Experimental data from animal models suggest
a link between gut microbiome and the occurrence of FA.
Tregs was found reduced in mice treated with antibiotic or
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FIGURE 2 | The Food Allergy pyramid. Children with FA present an increased risk to develop other conditions such as allergic disorders (atopic march), inflammatory

bowel diseases (IBD), functional gastrointestinal disorders (FGIDs), and neuropsychiatric disorders. Several genetic factors are implicated in the pathogenesis of these

conditions, but recent evidence suggest the pivotal role of gut microbiome dysbiosis (induced by environmental factors). Emerging evidence support the hypothesis of

dysbiosis as the first hit in the development of alterations in intestinal barrier and immune system function (responsible for the occurrence of FA and atopic march) and

dysregulation of the brain-gut endocrine-immune system axis (responsible for the occurrence of FGIDs, IBD, and neuropsychiatric disorders), at least in part through

an activation of epigenetic mechanisms.

Box 1 | A brief glossary for a better understanding of the potential of gut

microbiota as target against food allergy.

Microbiota The community of microbes in a particular ecosystem

Microbiome The sum of micro-organisms, and their total genome

capacity, in a particular environment

Operational

taxonomic

unit

A clusters of micro-organisms, grouped by DNA

sequence similarity of a specific taxonomic marker gene.

Operational taxonomic units are defined based on the

similarity threshold (usually 97% similarity) set by the

researcher

Microbiota

diversity

A measure of how many different species are distributed

in the community

Eubiosis Healthy balance in a microbial ecosystem

Dysbiosis A state of imbalance in a microbial ecosystem

Metagenomics The study of the metagenome; the metagenome is the

collective assembly of genomes from an environment (for

example, the gut)

Metabolomics The study of the metabolome; the metabolome is the

collective array of metabolites present in a biological

sample

in germ free mice, with consequent predisposition to allergy
development (56–58). Administration of defined Clostridia, or
bacteria-derived short-chain fatty acids (SCFA) to germ freemice
induced an increase of Treg cells number, and reduced allergic
response (56, 59–62). The allergy-protective action of Clostridia
was also confirmed in the animal model, where a significant
protective effect consisting in regulation of innate lymphoid cell
function, Foxp3+ Tregs, immunoglobulin (Ig)A and intestinal
epithelial permeability was demonstrated (63). A “humanized

mice model,” created with inoculation of microbiota-derived
from human feces, resulted in an increase in Treg cells and
a reduction of allergic symptoms (64). The functional role of
dysbiosis associated with FA was also revealed by the different
capacity of the gut microbiota of allergen-sensitized mice to
increase Th2 cells number and IgE responses and to promote
allergic sensitization (17).

Unfortunately, data characterizing the gut microbiome of
patients affected by FA are still preliminary.

Table 1 summarizes main evidence on FA-associated gut
microbiome features. Heterogeneity in study design, used to
define the gut microbiome, make it difficult to establish a causal
relationship between development of FA and specific bacteria.
Despite these limitations, at least four relevant observations on
FA-associated gut microbiome can be raised:

- Dysbiosis precedes the FA onset;
- Microbial community structure early in life, particularly in the
first 6 months of life, is more relevant in FA development;

- No specific bacterial taxa could be consistently associated with
FA onset, with a broad range of microbes that could have
positive or negative influence on tolerogenic mechanisms;

- Dysbiosis could influence not only the occurrence, but also the
disease course of FA. As suggested by different gut microbiota
features comparing children who outgrow FA with patients
with persistent form of FA (71).

Recent studies underline the importance of themodulation of gut
microbiota through different dietary interventions in pediatric
patients with FA. CMA children treated with soy and rice based
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BOX 2 | Techniques used to investigate the gut microbiota metagenomic and metabolomic features.

Technique Description Advantages Disadvantages

Metagenomics

Culture Isolation of bacteria on selective media Cheap, semi-quantitative Labor intensive

qPCR Amplification and quantification of 16S rRNA.

Reaction mixture contains a compound that

fluoresces when it binds to double-stranded DNA

Fast,quantitative, Phylogenetic

identification

PCR bias, unable to identify unknown

species

DGGE/TGGE Gel separation of 16S rRNA amplicons using

denaturant/ temperature

Fast, semi-quantitative, bands can be

excised for further analysis

No phylogenetic identification, PCR

bias

T-RFLP Fluorescently labeled primers are amplified and then

restriction enzymes are used to digest the 16S

rRNA amplicon. Digested fragments separated by

gel electrophoresis

Fast, cheap, semi-quantitative No phylogenetic identification, PCR

bias, low resolution

Fish Fluorescently labeled oligonucleotide probes

hybridize complementary target 16S rRNA

sequences. When hybridization occurs,

fluorescence can be enumerated using flow

cytometry

Phylogenetic identification,

semi-quantitative, no PCR bias

Dependent on probe sequences—

unable to identify unknown species

DNA microarrays Fluorescently labeled oligonucleotide probes

hybridize with complementary nucleotide

sequences. Fluorescence detected with a laser

Fast, Phylogenetic identification,

semi-quantitative

Cross hybridization, PCR bias,

species present in low levels can be

difficult to detect

Cloned 16S rRNA gene

sequencing

Cloning of full-length 16S rRNA amplicon, Sanger

sequencing and capillary electrophoresis

Phylogenetic identification,

quantitative

PCR bias, laborious, expensive,

cloning bias

Direct sequencing of

16S rRNA amplicons

Massive parallel sequencing of partial 16S rRNA

amplicons for example, 454 Pyrosequencing®

(Roche Diagnostics GMBH Ltd, Mannheim,

Germany) (amplicon immobilized on beads,

amplified by emulsion PCR, addition of luciferase

results in a chemoluminescent signal)

Fast, Phylogenetic identification,

quantitative, identification of unknown

bacteria

PCR bias, expensive, laborious

Microbiome shotgun

sequencing

Massive parallel sequencing of the whole genome

(e.g., 454 pyrosequencing® or Illumina®, San

Diego, CA, USA)

Phylogenetic identification,

quantitative

Expensive, analysis of data is

computationally intense

Metabolomics

Gas Chromatography

Mass Spectrometry

(GC-MS)

Thermally stable and volatile compounds are

separated by GC and the eluting metabolites are

detected by electron-impact (EI) mass

spectrometers.

High efficiency, reproducibility and

sensitivity

It can only be performed for volatile

compounds

Liquid Chromatography

Mass Spectrometry

(LC)

Allows to separate compounds with little effort in a

few pre-analytics steps (compared to GC-MS). The

metabolite separation obtained with LC is followed

by electro spray ionization (ESI) or atmospheric

chemical ionization under pressure (APCI)

Lower temperatures of analysis, and it

does not require sample volatility.

Sensitivity, specificity, resolving power,

and capability to extract additional

information about metabolites from

their retention time (RT) domain.

Capillary

Electrophoresis Mass

Spectrometry (CE)

Offers high-analyte resolution and detect a wider

spectrum of (polar) compounds compared to HPLC.

High resolution It is properly applicable only to

charged analytes

Fourier Transform

Infrared Spectroscopy

(FTIR)

Allows rapid, non-destructive and high-throughput

determination of different sample types. This

technique allows detecting different molecules, such

as lipids and fatty acids (FAs), proteins, peptides,

carbohydrates, polysaccharides, nucleic acids.

Ultra-high mass resolution able to

distinguish slight variations in a wide

number of mass signals, and allowing

to obtain the structural identification

of new biomarkers

Not high sensitivity and selectivity

Nuclear Magnetic

Resonance

Spectroscopy (NMR)

It uses the intramolecular magnetic field around

atoms in molecules to change the resonance

frequency, thus allowing access to details of

molecules’ electronic structure and obtaining

information about their dynamics, reaction state,

and chemical environment.

Useful to determine metabolic

fingerprints leading to the

identification and quantification of

compounds in a non-targeted

large-scale, in a non-destructive way,

and with a high reproducibility

It is a relatively insensitive technique,

and can only detect metabolites in

high concentrations

formula showed low fecal abundance of Coriobacteriaceae and
Bifidobacteriaceae. Contrarily, Coriobacteriaceae, and certainly
the genus Collinsella, the major bacteria that metabolized lactose
in the gut, resulted increased in CMA children that consumed

extensively hydrolyzed formula. In the same study, the authors
found that fecal butyrate levels are positive correlated with
abundance of Coriobacteriaceae (77). We showed that the
treatment with extensively hydrolysed casein formula (EHCF)
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TABLE 1 | Main gut microbiome features in food allergy.

OTUs Diversity Technology Main features References

Björkstén et al. (65) (n = 62; FA) N.R. N.R. Bacterial culture Coliforms, S. Aureus

Lactobacilli, Bifidobacteria

(65)

Thompson-Chagoyan et al. (66) (n = 46:FA) N.R. Bacterial culture Lactobacilli

Bifidobacteria

(66)

Thompson-Chagoyan et al. (67) (n = 46:FA) N.R. N.R. Bacterial culture C.coccoides, Atophium cluster (67)

Nakayama et al. (68) (n = 11: FA) = = 16s rRNA sequencing Bacteroides,Propionibacterium,

Klebsiella

Acinobacterium, Clostridium

(68)

Ling et al. (69) (n = 34: FA) = 16s rRNA sequencing Bacteroidetes, Proteobacteria,

Actinobacteria

Firmicutes

(69)

Azad et al. (55) (n = 12: FS) = 16s rRNA sequencing Enterobacteriaceae,

Bacteroidaceae

(55)

Chen et al. (70) (n = 23: FS) N.R. 16s rRNA sequencing Firmicutes,

Proteobacteria,

Actinobacteria

Veillonella

(70)

Berni Canani et al. (53) (n = 39; FA) N.R. 16s rRNA sequencing Ruminococcaceae,

Lachnospiraceae

Bifidobacteriaceae,

Streptococcaceae,

Enterobacteriaceae

(53)

Bunyavanich et al. (71) (n = 226; FA) N.R. 16s rRNA sequencing Bacteroidetes, Enterobacter (71)

Inoue et al. (72) (n = 4: FA) N.R. N.R. 16s rRNA sequencing Lachnospira, Veillionella,

Suterella

Dorea, Akkermansia

(72)

Kourosh et al. (73) (n = 68; FA) N.R. 16s rRNA sequencing Oscillobacter valericigenes,

Lachnocrostidium bolteae,

Faecalibacterium sp.

(73)

Fazlollahi et al. (74) (n = 141; FA) N.R. N.R. 16s rRNA sequencing Lachnospiraceae,

Streptococcaceae,

Leuconostocaceae

(74)

Dong et al. (75) (n = 60; FA) N.R. 16s rRNA sequencing Lactobacillaceae,

Bifidobacteriaceae,

Ruminococcaceae

(75)

Berni Canani et al. (76) (n = 46; FA) = = 16s rRNA sequencing Bacteroides, Alistipes (76)

Diaz et al. (77) (n = 27; FA) N.R. N.R. 16s rRNA sequencing Coriobacteriaceae (77)

FA, food allergy; FS, sensitization to food antigens; OTUs, operational taxonomic units; N.R., not reported; , increase; , decrease.

containing the probiotic L. rhamnosus GG (LGG) in CMA
children significantly increased SCFA-producers bacteria and
butyrate fecal levels. These effects were associated with immune
tolerance acquisition (76).

Targeting Gut Microbiome in FA
The Importance of the Diet-Gut Microbiome Axis
Advances in metagenomics and metabolomics implicate diet
and gut microbiome (the diet-gut microbiome axis) as key
modulators of the maturation of the immune system. Findings
from a recent systematic review further support the relationship
between maternal diet during pregnancy and lactation and FA
during childhood (78). Diet from conception (maternal diet)
up to the first 24 months of age (baby diet), may influence
the risk of developing FA (78–81). A recent study suggests
that a healthy diet with high levels of fruits, vegetables and

home-made foods is associated with less FA at the age of 24
months (82). Several studies have reported that nutrients impact
the gut microbiota and the production of bacterial metabolites
(83, 84). The Mediterranean diet (MD) is defined as a healthy
balanced diet. It is characterized by high consumption of assorted
cereals, legumes, fruits, vegetables, olive oil, and nuts; moderate
consumption of red wine, poultry and fish, and a lower intake
of red meat and sweets. MD during pregnancy and early life
has been demonstrated to have a protective role against allergic
disease in children (85). These effects could derive from the
high intake of non-digestible dietary carbohydrates (NDC),
the beneficial fatty acid profile that is rich in omega-3, the
high levels of polyphenols, and other antioxidants (86). Non-
digestible dietary carbohydrates represent the primary nutrient
source for gut bacteria, and their fermentation leads to the
production of SCFAs) (53, 87). It has been demonstrated that
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reduced availability of NDC lowered the concentration of fiber-
degrading bacteria and increased mucin-degrading bacteria (88).
High adherence to the MD has been associated with-increased
levels of Prevotella bacteria and other Firmicutes and of SCFAs
production (89). The immunomodulatory mechanisms elicited
by SCFAs represent one of the strongest connections between
diet, gut microbiome and allergic diseases (90). Major SCFAs
included acetate, propionate, butyrate, and valerate (87). SCFA-
producing bacteria represent a functional group, including
Faecalibacterium prausnitzii and Eubacterium rectal, Roseburia
are efficient butyrate producers (91). SCFAs are major energy
source for colonocytes and influence epigenetically several
non-immune (tight junction proteins, mucus production) and
immune functions (macrophages, neutrophils, dendritic cells
(DCs), T and B cells) involved in the immune tolerance network
(92–98). SCFAs interaction with enterocytes are mediated by
G-protein coupled receptors, namely GPCRs; GPR41, GPR43,
GPR109A, and Olfr78) (99–101). GPR43 and GPR41 are highly
expressed by enterocytes (102), whereas immune cells express
GPR43 and GPR109A (100, 103–106). Among SCFAs, butyrate
exerts a pivotal role in immune tolerance induction. It has been
found that SCFAs are able to increase colonic Treg frequency and
in vitro treatment of colonic Tregs, from germ free mice, with
propionate significantly increased FoxP3 and IL-10 expression,
a key cytokine that regulate Treg functions (60). Similarly, it
has been demonstrated that butyrate facilitates generation of
activated FoxP3+ Treg in mouse model (107).

Butyrate is able to regulate 103+DCs, reducing pro-
inflammatory cytokines production and enhancing retinoic acid
(RA) expression and subsequent generation of RA-regulated
tolerogenic DCs (108). Butyrate promotes B cell differentiation
and increases IgA and IgG production (107, 109).

The mechanisms are multiple and involve a strong epigenetic
regulation of gene expression through the inhibition of histone
deacetylase (HDAC) (60, 110, 111).

Butyrate deficiency has been observed in allergic children
(112). Bacteria-produced SCFAs have been studies, has been
specifically attributed to butyrate production by spore-forming
Clostridiales. An enrichment of butyrate-producing taxa
(Clostridia class and Firmicutes phylum) has been observed in
children with faster CMA resolution (71). Altogether, these data
suggest the potential of a “post-biotic” approach, based on the
use of SCFAs against FA. In this light, data from our laboratory
showed that oral butyrate induces a dramatic inhibition of
acute allergic skin response, anaphylactic symptom score, body
temperature decrease, intestinal permeability increase, anti-β
lactoglobulin (BLG) IgE, IL-4, and IL-10 production in a murine
model of CMA, suggesting a protective role of butyrate against
FA (113).

We evaluated the direct effects of butyrate on peripheral blood
mononuclear cells (PBMCs) from children affected by challenge-
proven IgE-mediated CMA. PBMCs were stimulated with BLG
in the presence or absence of butyrate. Preliminary results
showed that butyrate stimulates IL-10 and IFN-γ production and
decreases DNA methylation rate of these two cytokine genes.
The same effective butyrate dose induces FoxP3 demethylation
and down-regulation of HDAC6/HDAC9 expression (113, 114).

TABLE 2 | Main preclinical evidences on the probiotics role against food allergy.

Biological effects Bacterial strains References

Intestinal barrier maturation B. lactis/bifidum;

L. rhamnosus GG

(128, 130, 135)

Th1/Th2 response balance:

Th1 stimulation

B. lactis/bifidum/

infantis;

L. acidophilus/reuteri;

L. rhamnosus GG

(132, 133, 136,

137)

Th1/Th2 response balance:

Th2 suppression

B. bifidum/infantis/longum;

L. actobacillus

acidophilus/reuteri;

L. rhamnosus GG

(132, 134, 138–

140)

Immune system regulation:

Tregs development

B. bifidum/infantis/lactis;

L. acidophilus/reuteri/casei;

L. rhamnosus GG

(132, 134, 137)

Increase in B and T cell

proliferation with enhanced

production of Th1 and

regulatory cytokines

L. acidophilus; L. casei;

L. salivarius; L. lactis;

B. infantis; B. lactis;

B. longum

(135)

Immune system regulation:

tolerogenic DCs

development

B. bifidum;

L. reuteri/casei;

L. rhamnosus GG

(134, 137, 141,

142)

Suppression of IgE

production

B. bifidum/longum;

B. lactis Bb-12;

L. acidophilus;

L. rhamnosus GG

(128, 133, 138,

143, 144)

Epigenetic modulation of

Th1/Th2 genes expression

B. breve; L. rhamnosus

GG

(145–147)

Increase in the production of

the regulatory cytokine

IL-10 by monocytes and

dendritic cells; enhance of

IFN-γ production by T cells

L. plantarum;

B. adolescentis

(141, 148, 149)

Increase in the population of

CD4+FoxP3+ T cells,

up-regulation of FoxP3 and

down-regulation of GATA-3

L. plantarum;

B. coagulans

(145)

Reduction of allergic

reaction; reduction of IL-4,

IL-5, IL-13 and specific IgE

production

L. rhamnosus GG (139)

Improvement of anaphylaxis

symptoms and increase of

sIgA and CD4+ CD25+

FoxP3Treg cell

C. butyricum (150)

Additional potential mechanisms by which diet could exert pro-
tolerogenic effects in the gut are related to the production of
immunoregulatory metabolites, which interact with the host
immune cells to promote non-responsiveness to innocuous
luminal antigens (115). Tryptophan is an essential amino acid,
which cannot be synthesized independently by humans; thus,
it must be ingested through the diet. A portion of tryptophan
is utilized to synthesize protein, and the other portion is
catabolized to produce a variety of bioactive compounds, such
as kynurenine (Kyn), serotonin and melatonin (84). Tryptophan
absorbed by enterocytes directly activates the mTOR pathway
by intracellular tryptophan receptors (116, 117). mTOR is
known to play an important role in connecting metabolism
and the immune system. During an inflammatory process,
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tryptophan is metabolized through the Kyn pathway. Kyn is
an active metabolite and its biological activity is mediated
by aryl hydrocarbon receptor (AhR) (118). The bond of Kyn
to AhR receptor lead to the inhibition of DCs maturation
and the proliferation of Th17 cells and Treg, increasing
IL-22 and IL-10 production (119–122). Indole, indole 3-
propionic acid (IPA) and indole-3-aldehyde (I3A) are produced
by catabolism of tryptophan through intestinal commensal
bacteria. A study demonstrated that strains of Clostridium
cadaveris and Peptostreptococcus anaerobius CC14N metabolize
tryptophan to produce IPA. Tryptophan can be also catabolized
by lactobacilli to I3A. This metabolite protects gut mucosa
against inflammation through AhR recognition (123). Indole-
3-carbinole (I3C), an AhR ligand, has been demonstrated to
boost immune tolerance in an ovalbumin (OVA)-sensitized
mouse model (124). Mice fed I3C showed lower titres of anti-
OVA IgG1 antibodies and higher number of CD103+MHC-
II+ tolerogenic DCs compared to normal chow-fed control
mice (124).

Engineering Gut Microbiome With Probiotics in FA
Immune tolerance is a major therapeutic target in FA.
Evidence supports the concept that probiotics, defined as
live microorganisms which when ingested in adequate amounts
confer a beneficial effect on the host (125), could act at different
levels in the immune tolerance network: modulating gut
microbiota structure and function (increased production of
butyrate) (53); interacting with enterocytes with subsequent

modulation of non-immune (gut permeability and mucus
thickness) (126–129) and immune tolerogenic mechanisms
(stimulation of sIgA and β-defensins production) (130);
modulation of cytokine response by immune cells (110–113, 131–
134). Main pre-clinical evidence on probiotic activity against

Box 3 | Targeting gut microbiota against FA: a research agenda.

Targets Possible strategies

Identifying specific

gut microbiota

features

associated with FA

To comparatively analyze metagenomics and

metabolomics features of well-characterized

populations of patients affected by different types

of FA(naive of any dietary treatment) and healthy

well-matched controls.

Characterizing the

effect of dietary

intervention and

probiotic therapy

Prospective studies analyzing gut metagenomic

and metabolomics changes in well-characterized

populations.

Identifying the best

probiotic strain to

treat FA

Studies on mechanisms action in in vitro and in

in vivo models. Clinical trials with well-characterized

probiotic strains and doses involving patients with

challenge-proven diagnosis of FA.

Optimizing the

post-biotic

approach to treat

FA

Full characterization of the bio-functional features

of gut microbiota metabolites that could be used

against FA. Studies on mechanisms action in

in vitro and in in vivo models. Clinical trials with

well-characterized products involving patients with

challenge-proven diagnosis of FA.

FIGURE 3 | The structure of the gut microbiome-immune system axis. Within the gut microbiome-immune system axis the cross talk between microbes and the

immune system may occur directly through microbial components or indirectly through the action of metabolites, such as SCFAs. A positive modulation of this axis

can counteract the pathogenesis of FA by promoting epithelial integrity, gut permeability, mucus production, CD103+ tolerogenic DCs, Treg differentiation, cytokines

production, and sIgA release from plasma cells.
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FA are summarized in Table 2. In the last decades, a number of
experimental investigations have been developed to characterize
organisms that could be used to modulate the immune system
of patients with FA. Stimulation of human PBMCs with selected
probiotic strains is a commonly used experimental tool for
the investigation of the effect of these microorganisms on
immune cells. The incubation of PBMCs with L. plantarum
and B. adolescentis resulted in an increased production of
the regulatory cytokine IL-10 by monocytes and DCs, and to
enhanced IFN-γ production by T cells) (138, 148, 149). The
addition of a probiotic mixture (L. casei W56, L. lactis W58,
L. acidophilus W55, L. salivarius W57, B. infantis W52, B. lactis
W18, and B. longum W51) to PBMCs from children with FA
stimulated an increase of Th1 cells and related cytokines (141).
An increase in T and B cells proliferation and a reduction in
IgE production, were also observed in PBMCs from children
with FA treated for 3 months with the same probiotic mixture
(141). Using a 3D co-culture model of intestinal epithelial cells
and PBMCs as an in vitro model of the intestinal mucosal
immune system, Ghadimi et al. demonstrated that the probiotics
B. breve and LGG inhibit activation of proinflammatory
cytokines, IL-23, and IL-17, thereby reducing histone acetylation
and simultaneously enhancing DNA methylation (135). The
limitation of studying the effect of probiotics in vitro lies in the
extrapolation of the results of in vivo benefits. For that reason,
another commonly used experimental tool in this area is based
on the use of animal model of FA. Using an OVA mouse model,
it was demonstrated that oral administration of B. infantis
reduced serum OVA-specific IgE, and IgG1 levels and Th2
cytokine release from splenocytes. Moreover, gut microbiota
analysis showed that the probiotic-mediated protection was
conferred by high abundance of Coprococcus and Rikenella (151).
Different effects of oral administration of B. coagulans 09.712,
L. plantarum 08.923, and B. infantis 11.322 in the reduction

of Th2-driven intestinal inflammation and other symptoms
associated with food-induced anaphylaxis, were demonstrated
in a murine model of shrimp allergy (145). In particular, oral
supplementation with B. coagulans 09.712 and L. plantarum
08.923 significantly ameliorates anaphylaxis symptoms and
increases the population of CD4+ CD25+FoxP3+ T cells
through mTORC inhibition, FoxP3 upregulation, and GATA-
3 downregulation (145). Oral treatment with C. butyricum
significantly ameliorated anaphylaxis symptoms and increased
sIgA and FoxP3+Treg cells in the spleen from BLG-sensitized
mice (150). Neonatal monocolonization of germ-free mice
by L. casei BL2 modulated the allergic sensitization to cow’s
milk proteins, developed higher IgG responses against caseins,
elicited by L. casei hydrolysed insoluble caseins into soluble
immunogenic peptides (152). Similar results were obtained by
others who observed a decrease of concentrations of IgE, IL-4,
and IL-13 following administration of B. infantis CGMCC313-2
in BLG-sensitized mice (153). Oral administration of VSL#3
(a mixture of Streptococcus thermophilus BT01, B. breve
BB02, B. longum BL03, B. infantis BI04, L. acidophilus BA05,
L. plantarum BP06, L. paracasei BP07, L. delbrueckii subsp.
bulgaricus BD08) to sensitized mice significantly reduces Th2
immune responses and protects against anaphylactic reactions
in a mouse model of FA (154). Also, the incubation of mouse
spleen cells from sensitized mice with probiotic mixture reduced
allergen- stimulated IL-13 and IL-5 production and increased
of IFN-γ and IL-10 production (154). An immunoregulatory
action by LGG has been demonstrated in a murine model of
CMA. LGG administration suppressed Th2 responses, such
as reduced hypersensitivity score and lowered serum CMP-
specific IgG1, while promoting IFN-γ and CMP-specific IgG2a
levels (155). Similar results have been reported by our group
in a BLG-sensitized mice model, in which we found that the
administration of LGG added to EHCF elicited a significant

FIGURE 4 | Toward a gut microbiome-based precision medicine against food allergy. We are approaching an era where the metagenomic and metabolomic

evaluation of gut microbiota in children at risk for FA will drive personalized intervention to preserve or restore an “eubiosis” state based on nutritional counseling and

educational programs.
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reduction of allergic reaction, and of IL-4, IL-5, IL-13 and specific
IgE production (139).

Clinical studies have investigated the efficacy of selected
probiotic strains against FA. The effect appears strain-specific
and more evident in the pediatric age group. In a randomized
double-blind placebo-controlled trial, it was demonstrated that
the administration of L. casei CRL431 and B. lactis BB12 added
to hypoallergenic formula for 12 months did not modulate the
rate of immune tolerance acquisition to cow’s milk proteins
in infants with CMA (140). Using a similar study design,
we have demonstrated that EHCF containing the probiotic
LGG is able to accelerate immune tolerance acquisition in
CMA children. Children (aged 1–12 months), consecutively
referred for suspected CMA (IgE- or non-IgE-mediated), but
still receiving cow’s milk proteins, were evaluated in the study.
Subjects were randomly allocated to one of the two groups
of dietary interventions: EHCF (control group); and EHCF
containing LGG (at least 1.4×107 CFU/100mL; active group).
After 12 months, the double-blind placebo- controlled food
challenge was negative in 15 of 28 control infants (53.6%) and in
22 of 27 infants receiving EHCF with LGG [(81.5%, p = 0.027)]
(156). The results were confirmed in a subsequent trial, when
the effect of 5 different dietary strategies was investigated: EHCF,
EHCF + LGG, partially hydrolyzed rice formula, soy formula or
amino acid-based formula, in children affected by IgE- or non-
IgE-mediated CMA. After the treatment period of 12 months,
the proportion of children acquiring immune tolerance to cow’s
milk proteins was significantly higher in the group receiving
EHCF+LGG (78.9%) than in other groups (157). At the 3-year
follow- up of another pediatric cohort, a further confirmation
of a greater rate of resolution of IgE-mediated CMA as well as
a lower incidence of other atopic manifestations was described
after treatment with EHCF+LGG (158). These effects could
derive at least in part by a modulation elicited by selected LGG
components on immune functions through different pathways
including enterocytes, monocytes, mast cells, DCs and Tregs
(159–162), and by an expansion of butyrate- producing gut
microbiota (53, 76). Accordingly, studies in children with eczema
and/or CMA who received EHCF plus LGG showed benefits in
decreasing inflammation and gastrointestinal symptoms (163).
Probiotics have been also proposed to reinforce the effectiveness
of immunotherapy (164). Oral food immunotherapy (OIT) is

currently the most investigated approach for persistent FA and
it is based on the concept that repeated oral/intestinal exposures
to antigens normally leads to tolerance. Randomized double-
blind placebo- controlled trial was performed in 62 children
with peanut allergy treated with fixed dose of probiotic together
with peanut OIT (PPOIT) or placebo once daily for 18 months
(165). Sustained unresponsiveness (SU), determined by double
blind placebo controlled food challenge (DBPCFC), was achieved
in 82.1% of children receiving PPOIT compared with 3.6%
of those receiving placebo. PPOIT also induced high rates of
resolution (90%) and was associated with reduced skin prick test
reactivity, decreased peanut-specific IgE and increased peanut-
specific IgG4 levels. No participants withdrawing because of
adverse reactions.

No OIT control group was evaluated to determine if the
probiotic itself had any effect on SU (165). Further studies are
required to evaluate this approach comparing peanut OIT and
probiotics with peanut OIT with placebo or probiotic alone.

CONCLUSIONS

Gut microbiome could be a promising target for innovative
therapeutic and preventive strategies against FA. The results
of the studies are encouraging, but more data are needed
to better define the potential of modulating the diet-gut
microbiome–immune system axis to fight FA (Figure 3). We
are approaching a new era in which we can regulate immune
system development and function through dietary intervention
and measure the clinical impact through gut microbes and
their metabolites. Given the current gaps in the investigational
approaches and data analysis and interpretation, we need
more scientific evidence that can be translated in clinical
practice (Box 3).

Understanding how nutrients and metabolites, or probiotics
could influence gut bacteria communities and the immune
system will contribute to building up a precision medicine
approach for FA care (Figure 4).
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