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Effective prophylactic strategy against the current epidemic of sexually transmitted HIV-1

infection requires understanding of the innate gatekeeping mechanisms at the genital

mucosa. Surfactant protein D (SP-D), a member of the collectin family of proteins

naturally present in the vaginal tract, is a potential HIV-1 entry inhibitor at the cellular

level. Human EpiVaginal tissues compartmentalized in culture inserts were apically

exposed to HIV-1 and/or a recombinant fragment of human SP-D (rfhSP-D) and viral

passage was assessed in the basal chamber containing mononuclear leukocytes. To

map the gene signature facilitating or resisting the transepithelial viral transfer, microarray

analysis of the HIV-1 challenged EpiVaginal tissues was performed in the absence

or presence of rfhSP-D. Mucosal biocompatibility of rfhSP-D was assessed ex vivo

and in the standard rabbit vaginal irritation model. The passage of virus through the

EpiVaginal tissues toward the underlying target cells was associated with a global

epithelial gene signature including differential regulation of genes primarily involved in

inflammation, tight junctions and cytoskeletal framework. RfhSP-D significantly inhibited

HIV-1 transfer across the vaginal tissues and was associated with a significant reversal of

virus induced epithelial gene signature. Pro-inflammatory NF-κB and mTOR transcripts

were significantly downregulated, while expression of the tight junctions and cytoskeletal

genes was upheld. In the absence of virus, rfhSP-D directly interacted with the EpiVaginal

tissues and upregulated expression of genes related to structural stability of the cell and

epithelial integrity. There was no increment in the viral acquisition by the PBMCs present

in basal chambers wherein, the EpiVaginal tissues in apical chambers were treated with

rfhSP-D. The effective concentrations of rfhSP-D had no effect on lactobacilli, epithelial

barrier integrity and were safe on repeated applications onto the rabbit vaginal mucosa.

This pre-clinical safety data, coupled with its efficacy of restricting viral passage via

reversal of virus-induced gene expression of the vaginal barrier, make a strong argument

for clinical trials of rfhSP-D as a topical anti-HIV microbicide.
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INTRODUCTION

A clear majority of the HIV-1 infections are due to heterosexual
contact; more than 50% of HIV-1 infected individuals are women

and most children living with HIV-1 today are infected via
mother-to-child transmission (1). Thus, an effective vaginal
microbicide for the prevention of sexual transmission of HIV-
1 to women will have a huge impact on limiting the HIV

epidemic and its devastating consequences for both adults

and children. Despite this well-perceived need of intervention
and the efforts made to date in understanding the vaginal
mucosal barrier (2–4), the development of a safe and effective

topical vaginal microbicide has several technical challenges (5–
7). Clinical trials involving most of the promising candidates
showed reduced efficacy as they adversely affected the vaginal
milieu (7). Evaluation of microbicides in vivo using SIV-macaque
and humanized mouse models comes at a high cost and the
findings may only be an extrapolation to HIV-1 transmission in
humans (7). A serious limitation is lack of an appropriate ex vivo
model for the evaluation of efficacy of potential compounds on
the viral passage across the vaginal barrier to the target immune
cells (8–11). The ex vivo model should also assess compatibility
of the candidate molecules with the mucosal integrity and
barrier function including the colonization with healthy
vaginal microbiome.

Of special interest for pharmaceutical development are
candidate microbicides that would regulate vaginal innate
immune responses with minimal adverse effects on the
physiology (12, 13). Collectins are a group of secreted, anti-
microbial pattern recognition proteins in the female reproductive
tract (14–17). Surfactant Protein D (SP-D) is one such collectin
expressed by the epithelium, lining the vaginal tract (18).
Previously, we have demonstrated that a recombinant fragment
of human SP-D (rfhSP-D) containing homotrimeric neck and C-
type lectin domains binds to HIV-1 envelope glycoprotein gp120,
and inhibits viral entry and replication in target immune cells
(19). Beyond its pattern recognition capability, SP-D interacts
with various immune cells, maintains Th1/Th2 balance in the
lungs and induces immune quiescence (20, 21). By virtue of its
natural presence in the vaginal tract, broad anti-microbial activity
and immune-regulatory functions, SP-D is a unique microbicide
candidate. Importantly, anti-HIV-1 activity of rfhSP-D was intact
in physiological fluids like vaginal lavage and seminal plasma
which comprise of diverse enzymes, pH and inhibitors (19).

In this study, we assessed the effect of rfhSP-D on the
interactions of vaginal epithelial tissues and HIV-1 using a
rational scheme for ex vivo microbicide testing. The scheme
is designed to resemble sexual transmission of the virus and
comprises of bioengineered vaginal tissues, immune cells and
clinical isolates of Lactobacillus. In our model, HIV-1 traverses
through the intact, multi-layered vaginal epithelium toward the
underlying mononuclear leukocytes. We report, for the first
time, a “gatekeeping” gene signature of bioengineered human
tissues induced upon HIV-1 exposure. In this model, rfhSP-D
showed no adverse effects on the vaginal barrier, concomitant
with a significant impediment of viral movement to the activated
PBMCs in the basal compartment. Epithelial transcriptome

revealed reversal of HIV-1 induced differential expression of
genes associated with the cytoskeleton, inflammation and barrier
integrity. A range of preclinical assays confirmed safety of
rfhSP-D for vaginal application at the similar concentrations it
restricted viral transfer ex vivo, and thus, establishing it as a
promising anti-HIV-1 vaginal microbicide.

MATERIALS AND METHODS

Human Cell Lines
Well-characterized and immortalized human vaginal (Vk2/E6E7,
ATCC R© CRL-2616TM), endocervical (End1/E6E7, ATCC R© CRL-
2615TM), and ectocervical (Ect1/E6E7, ATCC R© CRL-2614TM)
cell lines developed by Dr. Raina Fichorova (22), were cultured
in antibiotic-free keratinocyte serum-free medium (KSFM),
supplemented with 50µg/ml bovine pituitary extract, 0.1 ng/ml
epidermal growth factor (Gibco, Invitrogen, USA), and 0.4mM
CaCl2 (Fisher Scientific, USA). These cell lines are known
to retain their physiological characteristics and are useful
models for various female reproductive tract infections, including
HIV-1 (22–26).

Vaginal Bioengineered Tissue (EpiVaginal
Tissue)
Twenty four EpiVaginalTM (VEC-100TM) tissues and medium
were purchased fromMatTek (Ashland, MA, USA). These tissues
are derived from primary human ectocervical/vaginal epithelial
cells, and possess characteristics comparable to that of the normal
tissues of origin (26, 27).

Clinical Lactobacillus Isolates
Lactobacillus crispatus isolates were obtained from vaginal
swab samples of healthy women participating in a vaginal
microflora research study at the Brigham and Women’s Hospital
(Boston, MA, USA) (6). Lactobacillus fermentum spps mucosae
(TRF#36), Lactobacillus gasseri (TRF#8), and Lactobacillus
salivarius (TRF#30) were a kind gift from Prof. GP Talwar, the
Talwar Research Foundation (New Delhi, India) (28).

Preparation of rfhSP-D
A recombinant fragment of human SP-D (rfhSP-D), composed
of trimeric neck and lectin domains along with 8 Gly-X-Y
repeats, was expressed in E. coli, purified and characterized,
as described previously (19, 29, 30). The endotoxin level in
the rfhSP-D preparations was determined using the QCL-1000
Limulus amebocyte lysate system (BioWhittaker Inc., USA). The
endotoxin concentration in the various preparations ranged
between 2.8 and 5.1 pg/µg of rfhSP-D. Controls of various
experiments were spiked by adding equivalent amounts of LPS
(Sigma-Aldrich, USA).

Assessment of the Expression of SP-D in
Human Vaginal Cells (VK2/E6E7) and
Cervicovaginal Lavage (CVL)
To assess the presence of SP-D in CVL, total protein was
precipitated using chilled acetone; 25 µg total protein was
loaded per well and subjected to 12% SDS-PAGE under
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reducing conditions and then electrophoretically transferred
to a nitrocellulose membrane for immuno-blotting. Mouse
monoclonal anti-human SP-D antibody (Abcam, UK) was used
at a dilution of 1:500, whereas, rabbit polyclonal anti-mouse
secondary antibody conjugated to horseradish peroxidase (HRP)
was used at a dilution of 1:1,000 (Dako). Detection was done
using chemiluminescent detection kit (Amersham Biosciences,
Piscataway, NJ). For immunostaining, Vk2/E6E7 cells were
grown on cover slips, probed with the mouse monoclonal
anti-human SP-D antibody (Abcam) and further detected
with anti-mouse Phycoerythrin-conjugates (Molecular Probes).
Nuclei were counterstained with 4′,6-Diamidine-2′-phenylindole
dihydrochloride (DAPI) (Sigma-Aldrich), the coverslips were
mounted in Vectashield (Vector Laboratories) and visualized
under a confocal microscope (Zeiss, Germany). To determine
transcript levels of SP-D, total RNA was extracted using Trizol
(Invitrogen) from Vk2/E6E7 cells; 3 µg of total RNA was reverse
transcribed into cDNA using Superscript III first strand synthesis
kit (Invitrogen) and subjected to PCR (Veriti Machine, Applied
Biosystems). Primers for SP-D, SP-A2, and 18S were designed
using NCBI Primer BLAST Software (Supplementary Table 1).
The resultant PCR products were electrophoresed on a 2%
agarose gel at 100V on electrophoresis. The bands were detected
via ethidium bromide under UV light.

Ex vivo Model of Vaginal HIV-1
Transmission
In order to mimic vaginal transmission of HIV-1, a novel ex vivo
model was developed using EpiVaginal tissues (Figure 1A). Upon
delivery, EpiVaginal tissues were acclimatized in the medium
overnight. Blood (from non-autologous donors) was subjected
to Ficoll separation and PBMCs were isolated. PBMCs were
activated for 48 h using rhIL-2 (100 U/ml) (Sigma-Aldrich) and
PHA (5µg/ml) in the RPMI 1640 medium (Fisher Scientific)
containing 10% FBS and 0.5% antibiotic solution (Gibco,
Invitrogen). Activated PBMCs (105) were seeded in a 12-well
plate as target cells for further replication of migrated virions. In
a fresh tissue culture plate, inserts containing EpiVaginal tissues
were placed in each well. In our previous study, we have reported
the anti-HIV activity of purified native human SP-D, rfhSP-D
and another variant of recombinant fragment of SP-D, lacking
eight triplets of collagen repeats (delta-rfhSP-D) (19). Although
delta-rfhSP-D showed anti-HIV activity in the TZMbl reporter
assays (IC50 43.282 ± 10.76µg/ml), it was 3-fold less potent
than the native human SP-D and rfhSP-D (IC50 of rfhSP-D with
various viral isolates and target cell types ranged between 6.726
± 0.63 and 13.676 ± 3.37µg/ml) (19). In another assay (as
described in the section “Viability MTT assay”), we evaluated the
effect of various concentrations of rfhSP-D (1.562–100µg/ml)
on the viability of vaginal epithelial cells and used the maximal
tolerated dose of rfhSP-D (100µg/ml) in the ex vivo model. The
physiological concentration of free SP-D in various body fluids
ranges from 0.5 to ∼3µg/ml (31, 32). In view of the ability of
SP-D to bind several molecules, such as immunoglobulins, fatty
acids and nucleic acids, its total physiological concentration is
expected to be much higher (33–35). Apical tissues were treated

with rfhSP-D (100µg/ml) or a synthetic analog of Mycoplasma
fermentans lipopeptide macrophage activating lipopeptide 2
(MALP-2) (Alexis Biochemicals, USA) (25 nM) for 20min before
inoculation with 100 TCID50 R5 tropic HIV-1JR−CSF. After 24 h
incubation, apical and basal supernatants were collected for
determining levels of immune mediators. Basal supernatants
were used to determine HIV-1 p24 Ag by ELISA, as per
manufacturer’s instructions (R&D Systems).

Microarray Gene Expression Analysis
The microarray data, described in this study, has been deposited
in the NCBI Gene Expression Omnibus (GEO) under the GEO
series accession number GSE107478.

RNA Isolation
Total RNAwas extracted using TRIZOLVRReagent (Invitrogen);
RNA quantity and quality were determined using NanodropVR
spectrophotometer (NanoDrop Technologies, Wilmington, DE).
Targets were prepared using the Illumina RNA amplification
kit (Ambion, Austin, TX). cRNA was synthesized from 200 ng
of the total RNA followed by amplification and labeling steps.
Amplified biotin-labeled cRNA was hybridized to the Illumina
Human HT12 V6 bead chip. Illumina Bead Studio was used
to extract the raw data from the bead chip. Raw data was
Quantile normalized and baseline transformation was carried
out to obtain median of all samples using GeneSpring GX 12.5
software (Agilent Technologies Inc, Santa Clara, USA).

Statistical Analysis and Differentially Expressed

Genes
Differentially expressed probe sets (genes) in the treated
cells in comparison to the untreated cells were identified by
applying Volcano Plot using a fold-change threshold (absolute
fold-change >1.5). A statistically significant “t-test” “P-value”
threshold was adjusted for false discovery rate of <0.001.
Statistically significantly enriched transcripts with a “P-value”
adjusted for false discovery rate of <0.05, based on the
hyper-geometric distribution test corresponding to differentially
expressed genes, were determined using the Student’s “t-
test” along with Benjamini Hocheberg FDR test. Unsupervised
hierarchical clustering of the differentially expressed genes
following treatment in comparison to the untreated cells was
performed using Euclidian algorithm with Centroid linkage
rule to identify gene clusters whose expression levels were
significantly reproduced across the replicates.

Biological Pathways and Gene Ontology Enrichment

Analysis
Differentially expressed gene list was subjected to a biological
significance analysis by GOElite tool. A total of 21,887 protein
coding genes were used as the background and the differentially
expressed gene list was used as query. Database of GeneOntology
categories, Wikipathways, KEGG Pathways, Pathway Commons,
Pheno Ontology, Diseases, Protein Domains, Transcription
factor targets, and tissue expression were configured for
significance analysis. Each query list was subjected to the “Over-
representation Analysis” against each of the above databases.
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FIGURE 1 | Experimental designs. (A) Ex vivo model for vaginal transmission of HIV-1. Reconstructed, multi-layered EpiVaginal tissues placed in the cell culture

inserts were challenged with HIV-1 in the apical chamber for 24 h. The activated PBMCs placed in the basal chamber served as HIV-1 targets when HIV-1 traversed

through the EpiVaginal tissues. Twenty minutes prior to the HIV-1 challenge, the EpiVaginal tissues were either treated with rfhSP-D (HIV-1 entry inhibitor) or MALP-2

(inflammatory TLR agonist). (B) Ex vivo model to predict susceptibility of basal PBMCs to HIV-1 acquisition. Reconstructed, multi-layered EpiVaginal tissues placed in

the cell culture inserts were either treated with rfhSP-D (HIV-1 entry inhibitor) or MALP-2 (inflammatory TLR agonist). The non-activated PBMCs were placed in the

basal chamber to determine if the rfhSP-D and MALP-2 treatment of the vaginal tissue may lead to secretion of certain mediators resulting in the activation of PBMCs.

These treated PBMCs from the basal chamber were subsequently challenged with HIV-1 to evaluate their susceptibility to virus acquisition.

Z score and permutation or Fisher’s Exact Test p-value
were calculated to assess over-representation of the enriched
biological categories.

Biological Analysis Network Modeling of Differential

Regulome
Enriched biological categories, along with the differentially
expressed genes, were used as input for BridgeIsland Software
(Bionivid, Bangalore, India) for identifying the key edges that
connect genes with biological categories. Statistical scores from
differential expression and biological analysis were used as
attributes to visualize the network. Output of BridgeIsland
Software was used as input to CytoScape V 2.8. Circular layout
and yFiles algorithm were used to visualize the network that
encompasses biological categories. Further to this core network,
all the differentially expressed genes were colored based on
their fold change to reflect the rfhSP-D treatment induced
differential regulome.

Validation by Real Time RT-PCR
Since, EpiVaginal tissues (of ectocervical origin) used in the
assays were sufficient enough for microarray analysis, we carried
out the validation of microarray data using an ectocervical cell
line (Ect1/E6E7) under conditions similar to the ex vivo model
of HIV-1 transmission (same MOI). Cells were seeded in a
96-well plate, grown up to confluence and then treated with

rfhSP-D (100µg/ml) for 20min, before inoculation with 100
TCID50 R5 tropic HIV-1JR−CSF at 37◦C for 24 h. Total RNA
was isolated using Trizol (Invitrogen) and the quality of RNA
was assessed by nano-spectrophotometry and the nucleotide:
protein ratio (260:280) was determined. 1–3 µg of RNA was
reverse transcribed into cDNA using Superscript III first strand
synthesis kit (Invitrogen). The resulting cDNA was used for
real time PCR via the Bio-Rad CFX96 TouchTM real-time
PCR detection system using the iQTM SYBR Green Supermix
(Bio-Rad, USA). 18s RNA was used as the housekeeping
control. Primers were designed using NCBI Primer BLAST
Software. Primer sequences and conditions are provided in the
Supplementary Table 1.

mRNA Levels of Tight Junction Proteins in
EpiVaginal Tissues After HIV-1 Challenge
In order to determine the status of the vaginal barrier after
the viral challenge, transcripts from EpiVaginal tissues for
the tight junction proteins viz. Claudin 2, 3, 4, 5, and
occludin were quantified using real time qPCR. Owing to
the limited EpiVaginal tissue, the qPCR analysis was not
extended to quantitation of protein levels. Primers sequences
were synthesized (Sigma-Aldrich) as reported previously
(36). Primer sequences and conditions are provided in
the Supplementary Table 1.
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Susceptibility of PBMCs to HIV-1
Acquisition
HIV-1 is known to replicate faster in the activated human PBMCs
(37). We have shown previously that rfhSP-D rfhSP-D does
not alter the activation alter the activation of PBMCs and leads
to induction of quiescence in the activated PBMCs (21). The
present assay was designed to specifically determine the impact
of supernatants from rfhSP-D treated EpiVaginal tissues on the
activation status and viral acquisition of PBMCs. Non-activated
PBMCs (105) were seeded in a 12-well plate and apical regions
of the culture inserts containing EpiVaginal tissues were treated
with rfhSP-D (100µg/ml), MALP-2 (25 nM), or left untreated
for 24 h. Following incubation, basal PBMCs were collected and
challenged with 100 TCID50 HIV-1JR−CSF for 4 h to assess the
rate of HIV-1 acquisition (Figure 1B). PBMCs were washed and
cultured further in RPMI 1640 medium containing 10% FBS and
1% antibiotic solution for 7 days, and HIV-1 p24 levels in culture
supernatants were measured. Viability of PBMCs was evaluated
at the end of the assay (data not shown).

MTT Viability Assay
To assess the likely effect of rfhSP-D on cell viability, MTT assay
was performed on Vk2/E6E7 and Ect1/E6E7 cell monolayers.
Cells were seeded in a 96-well plate, grown up to confluence
and then treated with a range of rfhSP-D concentrations at 37◦C
for 24 h. Culture supernatants were then collected for measuring
immune mediators. Cells were treated with 1×MTT containing
KSFM and incubated overnight; 0.04N acidified isopropanol was
added to the cells to dissolve the formazan crystals. This color
intensity, read at OD570, is directly proportional to the number
of viable cells, as measured by a Victor2 counter with Wallac
2.01 software (PerkinElmer Life Sciences, USA) using a reference
wavelength at 630 nm. The OD of untreated (medium alone)
control cells was considered as 100%; percent viability of rfhSP-D
treated cells was calculated as compared to untreated control.

NF-κB Luciferase Assay
End1/E6E7 immortalized epithelial cells were transfected
with pHTS–NF-κB firefly luciferase reporter vector (Biomyx
Technology, USA) using a gene-juice transfection protocol
(38). Cells were seeded in a 96-well plate, grown until confluent
monolayers and treated with indicated concentrations of rfhSP-
D for 24 h at 37◦C. A synthetic analog of viral double-stranded
RNA, Poly (I:C) (10µg/ml) (InvivoGen, USA), a TLR3 agonist,
and MALP-2 (25 nM), a TLR2/6 agonist, were used as positive
controls. After incubation, the supernatant was removed, cells
were lysed in GloLysis buffer, and activation of luciferase was
determined using a Bright-Glo luciferase assay system (Promega,
USA). Luminescence signal was quantified via a Victor2 1420
multi-label microplate counter with Wallac 2.01 software
(PerkinElmer Life Sciences).

Assay for Toxicity to Lactobacillus
Direct toxicity assay on vaginal lactobacilli was performed using a
colorimetric assay as described previously (39). TRF#8, TRF#30,
TRF#36, and Lactobacillus crispatus LC223 were grown in the
Lactobacillus MRS Broth (HiMediaTM Laboratories). Bacterial
density was adjusted to an OD670 of 0.06, corresponding to a

0.5 McFarlands turbidity standard or ca. 108 CFU/ml. RfhSP-D
was plated at the appropriate concentrations into a 96-well round
bottom plates in a volume of 100µl, and the diluted Lactobacillus
spps were added in a volume of 100 µl. Commercially
available penicillin-streptomycin solution (Gibco, Invitrogen)
at a maximal test concentration of 1.25 U/ml and 1.25µg/ml
respectively) was used as a positive control for toxicity. Plates
were incubated in an orbital shaker at 35◦C under anaerobic
conditions using AnaeroPack system (PML Microbiologicals,
Wilsonville, OR) for 24 h. Bacterial growth was determined by
measurement of the OD490 using a Victor2 counter with Wallac
2.01 software (PerkinElmer Life Sciences) (40).

Lactobacilli-Epithelial Colonization Assay
Colonization of epithelial cells by lactobacilli in presence of
rfhSP-D was assayed as described earlier (6). Briefly, the
Lactobacillus crispatus isolate, suspended in antibiotic-free KSFM
(2.2 × 106 CFU/cm2), was added to confluent epithelial surfaces
Vk2/E6E7 and End1/NF-κB cells (10:1 ratio) and allowed to
adhere on the epithelial monolayer; unbound bacteria were
washed off by two washes of sterile Dulbecco’s phosphate-
buffered saline (PBS) (Invitrogen). To the bacteria-epithelial cell
co-culture, indicated concentrations of rfhSP-D, Poly (I:C) or
MALP-2 was added to each well. Supernatants were collected
after 24 h to measure immune mediators. Vk2/E6E7 epithelial
cells were washed twice with sterile PBS and examined for
viability by MTT (data not shown) and colony forming unit
(CFU) assays. End1/NF-κB co-culture plate was used to evaluate
NF-κB activation.

Colony Forming Units (CFU) Counts
Viable bacteria associated with Vk2/E6E7 monolayers were
measured by CFU counts after 24 h of epithelial colonization
followed by 24 h exposure to rfhSP-D (6). To enumerate cell-
associated bacteria, epithelial cells were washed with cold PBS
and hypotonically lysed in ice-cold HyPure water for 15min,
followed by adjustment of osmolality with PBS (2X) (Fisher
Scientific). Bacteria collected were plated on Brucella anaerobic
agar with 5% sheep blood (Becton, Dickinson and Company,
USA) as per the standardized protocol, and incubated in an
anaerobic chamber (Coy Laboratory Products, USA) (10%
hydrogen, 10% carbon dioxide, and 80% nitrogen) at 35◦C for up
to 72 h (until colonies were formed), followed by visual counting
of CFU.

Quantitation of Immune Mediators
Culture supernatants from the EpiVaginal tissues (apical),
PBMCs (basal) and Vk2/E6E7 (with or without bacterial co-
culture) were collected separately from various experiments.
A custom designed 3-plex assay for GRO-α (CXCL1), MIP-
3α (CCL20), and RANTES (CCL5) was used via Multiplex
Electro-chemiluminescence (Meso Scale Discovery, USA) as per
manufacturer’s instructions.

Rabbit Vaginal Irritation (RVI) Model
Treatment
Young adult reproductive age nulliparous Belgium white rabbits
(5–8 months old, body weight 2.2 kg ± 20%) (n = 5 per group)
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were divided into rfhSP-D, placebo and SDS (positive control)
groups. The aqueous gel formulation was prepared by dissolving
methyl paraben 0.18% (w/v) and propyl paraben 0.02% (w/v) in
heated glycerin 8.6% (v/v). Hydroxyethyl cellulose 2.5% (w/v)
was added and dispersed to form an organic phase. Citric acid
1.0% (w/v) was dissolved in purified water alone or aqueous
solutions of rfhSP-D (100µg/ml) or 1% SDS. The pH was
adjusted to 4.4, and the solution was clarified by passage through
a 0.22µm filter. Aqueous and organic phases were mixed and
stirred well before use. Various gel formulations (1ml) were
administered intra-vaginally to their respective groups using an
insulin syringe (without a needle) daily for 10 consecutive days.
Necropsy was done on day 11 following euthanasia. The vaginal
tissues were collected in formalin and processed for making
paraffin blocks. 5µ ribbon of paraffin bearing sections were
made using a microtome and collected on poly-L-lysine-coated
glass slides.

RVI Scoring
RVI scoring of hematoxylin-eosin stained tissue slides was
blinded. Briefly, the tissues were scored from 0 to 4 for epithelial
damage (0 = normal, 1 = flattening, 2 = metaplasia, 3 =

erosion, and 4 = ulceration) and leukocyte infiltration, edema
and congestion (0 = absent, 1 = minimal, 3 = moderate, 4 =

marked). At least three sections of vaginal tissues (both proximal
and distal) of each animal were assessed for each of the above
four parameters. Total score of each animal was calculated and
was averaged with number of sections analyzed. Standard RVI
method suggests that a total score from 1 to 4 is to be considered
as minimal irritation, 5–8 as mild irritation, 9–11 as moderate
irritation and 12–13 as marked irritation (41).

Statistical Analysis
Student t-test, One-way analysis of variance (ANOVA;
Bonferroni or Dunnett’s multiple-comparison analyses) was
performed using GraphPad Prism version 6.00 for Windows
(GraphPad Software, San Diego, CA). p-value of <0.05 was
considered significant.

RESULTS

Global Gene Signature of HIV-1 Challenged
EpiVaginal Tissues: Clues to Early Events
During Vaginal Transmission
Figure 1 depicts the experimental design used in the study
to map the transcriptome of EpiVaginal tissues under
different conditions. We report here, for the first time, a
compendium of genes that were differentially expressed in
EpiVaginal tissues when challenged with HIV-1 alone (355),
HIV-1 in presence of rfhSP-D (518), or rfhSP-D alone (185)
(Supplementary Figures S1, S2, S4). For the identification of
differentially expressed genes, data was subjected to unsupervised
hierarchical clustering using Pearson Uncentered algorithm with
average linkage rule using Cluster 3.0 software. The resultant
cluster was visualized using Tree View software. It revealed
distinct patterns of upregulated and downregulated genes
following treatments and indicated significant reproducibility

within the replicates (Supplementary Figures S1, S2, S4). The
microarray data was validated by evaluation of transcript
expression by real time RT-PCR for six randomly selected,
differentially expressed genes by HIV-1 and rfhSP-D to
represent the three functional categories (Figures 2B, 4D). Gene
regulatory network analysis of the three interactions revealed
involvement of several biological processes and pathways.
Differentially expressed genes, along with the pathways, were
subjected to regulatory network modeling, that resulting in
the identification of key genes that act as bridges (involved
in more than one process) and islands (which are specific to
a process) (Figures 2A, 4B,C, 6B; Supplementary Figure S3).
We have focused on three important processes involved in
HIV-1 transmission, which are cell-cell interaction and barrier
integrity, innate immune response, and cell survival. The
networks were refined further to comprise the most relevant
genes (Figures 4B,C, 6B).

The gene signature of EpiVaginal tissues post 24 h HIV-
1 exposure showed 187 upregulated and 168 downregulated
genes (Supplementary Figure S1), associated with biological
processes, such as cell integrity, inflammation and innate
immune response, pyroptosis, cell survival, cell signaling and
cytoskeleton (Figure 2A). Microarray results were validated by
real time RT-PCR for PYCARD, CD44, XRCC2, SERPINE1,
STX3, and CREB1 (Figure 2B). PYCARD, CD44, and SERPINE1
were among the prominent genes downregulated by HIV-1
but upregulated by rfhSP-D and XRCC2; STX3 and CREB1
were among the prominent genes upregulated by HIV-1 but
downregulated by rfhSP-D.

HIV-1 induces a cytokine/chemokine storm at the mucosal
sites (42) that facilitates the viral entry and transmission. HIV-
1 challenged EpiVaginal tissues showed an upregulation of
transcripts of cytokines and chemokines, such as IL-32, CCL20,
and CXCL9. Transcripts of other pro-inflammatory genes, such
as MYD88, ADAM17, TNFSF14, IL-1R2, HLA-F, CD58, PKN2,
and STX3 were also upregulated. A significant upregulation
of PSMB10, executioner caspases CASP7 and CASP1 of the
inflammasome is suggestive of pyroptosis. However, a few
inflammation-related genes MMP9, MUC-1, SERPINE1, TGF-α,
TMEM173 were downregulated.

Interestingly, a group of interferon-inducible guanylate-
binding proteins (GBP1, GBP2, and GBP5) were upregulated,
suggesting that the vaginal epithelium attempts to mount an anti-
viral response. TRIM21, another interferon-inducible gene, was
also found to be upregulated along with the interferon-inducible
transcription factors, such as IRF1, ATF3, BATF2, and CREB1.

A likely breach in the vaginal barrier after HIV-1 exposure
is evident by alterations in several genes encoding for
proteins of plasma membrane, cytoskeletal framework and gap
junction. Actin cytoskeleton rearrangement (CNN3), integral
plasma membrane proteins (CAV-1, STX6), microtubules and
cytoplasmic dynactin binding (DCTN1), extracellular matrix
glycoprotein (LAMB1), cell-cell recognition and signaling
molecules (MSN, CD44) were all downregulated. Gap junction
proteins, GJA1 and GJB6, were also downregulated. TFF2,
which protects the mucosa from injury or insults, stabilizes
the mucus layer and aids healing of the epithelium, was
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FIGURE 2 | HIV-1 induced global gene signature of EpiVaginal tissues: (A) Gene regulatory network of differentially expressed genes and pathways by the EpiVaginal

tissues treated with HIV-1 vs. Untreated EpiVaginal Control tissues. Biological processes are blue colored blocks downregulated genes are green colored, and

upregulated are in red. Circles are sized according to their p-value. Genes that were used for validation (CD44, XRCC2, SERPINE1, STX3, CREB1) have been

highlighted with a red star in their vicinity. (B) Validation of microarray data by real time qPCR. Ect/E6E7 cells were subjected to identical conditions and treatments as

for EpiVaginal tissues. RNA was isolated and cDNA was subjected to real time qPCR. Data represents mean ± S. D of three independent experiments. Fold change in

expression of the 5 genes for validation were statistically significant (p < 0.05) relative to untreated Ect/E6E7 cells.

upregulated, suggesting a plausible feedback in response to the
damaged epithelium.

To corroborate the HIV-1 induced inflammation in the ex vivo
model, we evaluated the levels of chemokines, such as RANTES,
MIP-3α, and GRO-α in the apical (EpiVaginal) and basal
(PBMCs) supernatants. A significant rise in RANTES and GRO-
α but not in MIP-3α levels was observed in the supernatants
of basal chambers of the EpiVaginal tissues upon HIV-1
challenge. MALP-2, a TLR2/6 agonist, induced all the three
chemokines, indicating excessive inflammation (Figure 3), which
is reminiscent of enhanced HIV-1 acquisition during RTI/STIs.

HIV-1 Traverses Through EpiVaginal Tissue
and rfhSP-D Impedes This Movement
The ex vivo model (Figure 1A). Mimics several aspects of
vaginal transmission of HIV-1. The reconstructed, multi-layered
EpiVaginal explants in the upper chamber serve as the first
line of protection. The activated PBMCs present in the lower
chamber serve as targets for the viral particles that traversed

through the EpiVaginal tissues. In this model, along with HIV-
1, rfhSP-D or both, we also used MALP-2 as a positive control
for inflammation.

At 24 h, HIV-1 p24 Ag was detected in the supernatants
of basal chambers. A higher level of p24 Ag detected in the
supernatants, when the vaginal tissues were challenged with
HIV-1 in presence of MALP-2 (>1.6-fold higher than control;
[Medium alone]), suggested that more virions migrated to the
basal chamber (though could not attain statistical significance).
RfhSP-D significantly reduced the viral transfer and only one-
fifth (20 ± 2.6%) of the HIV-1 p24 Ag level was detected in
the basal PBMCs supernatants, as compared to the HIV-1 alone
(100%) (Figure 4A).

RfhSP-D Reverses the HIV-1-Induced Gene
Signature: Decoding the Protective
Response
To recognize the gene signature that illustrates inhibition
of vaginal transfer of HIV-1, we analyzed transcriptome of
rfhSP-D treated HIV-1 challenged EpiVaginal tissues in the
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FIGURE 3 | Chemokine response of EpiVaginal tissues upon HIV-1 challenge: Levels of (A) MIP-3α, (B) GRO-α, and (C) RANTES in the culture supernatant of

EpiVaginal tissues (apical) and PBMCs (basal) with or without HIV-1 challenge. Each bar represents the mean ± S.D in pg/ml and of triplicates. *indicates statistical

significance (p < 0.05) relative to control (untreated) whereas # indicates statistical significance (p < 0.05) relative to HIV-1 challenge EpiVaginal tissues.

apical chamber (Supplementary Figure S2). We observed
a remarkable reversal of gene expression associated with
gap junction proteins, plasma membrane and cytoskeletal
framework of the cell. Several genes including GJA1,
GJB6, CAV1, CAV2, LAMB1, ACTN1, DBN1, and DCTN1
were upregulated upon rfhSP-D treatment, which were
otherwise downregulated by HIV-1 (Supplementary Table S2;
Figures 4B,C). Maintenance of vaginal barrier integrity by
rfhSP-D was evident from upregulation of NECTIN1 and
CD44 along with gap junction genes. Interestingly, DBN1,
ACTN1, NECTIN1, and CD44 have been shown to act as
anti-viral or entry inhibitors (Table 1). Inflammation is the
primary reason for epithelium breakage and compromised
vaginal barrier. RfhSP-D reversed HIV-1 induced inflammatory
genes, such as ADAM17, MYD88, SMAD3, SMAD6, CD58,
CCL20, TRIM21, and SMARC1. NF-κB and mTOR, the two
master regulators of inflammation, were also downregulated,
suggesting induction of a state of quiescence within the
EpiVaginal tissues. A few anti-inflammatory genes were
upregulated; IL-20, BCL-3, NME1, NME2, CHEK1, and
CDKN1C. SOCS2 and SOCS3 were selectively upregulated,
suggesting rfhSP-D mediated dampening of pro-inflammatory
cytokine production. TGF-β pathway seems to be relevant
in vaginal transfer of virus since several genes (SMAD3,
SMAD6, TSC1, EID2, TGF-β-1L1, TGF-βR, and TGFA) of
this pathway were altered by HIV-1 and reversed by rfhSP-D
(Table 1; Figures 4C,D).

We identified some pro-inflammatory genes that were
upregulated in rfhSP-D treated HIV-challenged EpiVaginal
tissues, such as CD40, ILK, ESR1, EGF, FGFR2, HIPK2,
SOD1, MAP3K1, IFI16, NOD2, IL-1B, HTRA1, EDNRA.
Interestingly, there was a downregulation of the intrinsic
SP-D gene expression that suggested a mitigation of
inflammatory response of vaginal tissues in presence of
rfhSP-D (Figures 4C,D). HIV-1 challenged EpiVaginal
tissues showed an upregulation of SFTPD (gene encoding
SP-D protein) transcript (Figure 4C) whereas, rfhSP-D pre-
treatment followed by HIV-1 challenge reverted the HIV-1
induced upregulation of rfhSP-D (Figure 4D). rfhSP-D
treatment alone did not alter the expression of native SP-D
transcript (Figure 6B).

HIV-1 Induced Downregulation of Tight
Junction Gene Expression Is Rescued by
RfhSP-D
HIV-1 is known to downregulate tight junction proteins
in order to traverse through the weakened vaginal barrier
(36). We assessed the status of claudins and occludin in
the EpiVaginal tissues. HIV-1 challenge led to a significant
decrease in the transcript levels of tight junction proteins that
were further downregulated when simultaneously treated with
MALP-2 (Figures 5A–E). RfhSP-D countered the HIV-1 induced
downregulation of transcripts of claudin 2, 3, 5 and occludin,
except claudin 4, suggesting a reduced damage to the vaginal
integrity (Figures 5A–E).

RfhSP-D Does Not Enhance the
Susceptibility of Target Cells to HIV-1
Acquisition
Another experimental setup was designed to interrogate whether
rfhSP-D, on its own, caused inflammation within EpiVaginal
tissues (in the absence of HIV-1 challenge), which in turn
increased susceptibility of target cells (Figure 1B). PBMCs in the
basal chamber of rfhSP-D treated tissues showed no significant
increase in the acquisition of HIV-1 while the inflammatory
MALP-2 treated tissues showed increased p24 levels on
day 6 (Figure 6A).

RfhSP-D Treatment Strengthened Vaginal
Barrier: SP-D a Natural Vaginal Host
Defense Molecule
Alterations in the transcripts of EpiVaginal tissues induced by
rfhSP-D were also identified by microarray analysis. Of the total
185 genes differentially regulated, 103 were upregulated and 82
were downregulated (Supplementary Figure S4). Upregulation
of CAV1 and CAV2, along with Laminins (LAMA3, LAMB1,
LAMC1, and LAMC2), which are essential for formation
and function of the basement membrane, was suggestive of a
strengthened mucosal barrier. Collagen transcripts (COL4A5,
COL5A1, COL5A2 and COL7A1, COL17A1), important
structural components of basement membranes, were also
upregulated. With an integral role in adhesion of the epithelium
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FIGURE 4 | rfhSP-D impedes viral movement across the EpiVaginal tissue barrier and reverses HIV-1 induced gene signature: (A) Determination of HIV-1 p24 Ag by

ELISA in supernatants from basal chambers at 24 h. Data represents mean ± S. D of three sets. *indicates statistical significance *p < 0.05 relative to medium alone.

(Continued)
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FIGURE 4 | Gene regulatory network for EpiVaginal tissues treated with HIV-1 Vs untreated (C) and EpiVaginal tissues treated with rfhSP-D + HIV-1 vs. HIV-1 (D).

Biological processes are blue colored blocks and > 1.5-fold downregulated genes are green colored, > 1.5-fold upregulated genes are red, and <1.5-fold

upregulated genes are orange. Circles are sized according to their p-value. (B) Validation of microarray data by real time RT-PCR. Ect/E6E7 cells were subjected to

identical conditions and treatments as for EpiVaginal tissues. RNA was isolated and cDNA was subjected to real time RT-PCR. Data represents mean ± S. D of three

independent experiments. Fold change in expression of the 5 genes for validation were statistically significant (p < 0.05) relative to untreated Ect/E6E7 cells.

to extracellular matrix, integrins α3, α6, and β4, were upregulated
by rfhSP-D (Figure 6B; Supplementary Figure S5). Specific
upregulation of genes related to structural stability of the cell
and epithelial integrity suggested that rfhSP-D strengthened
the local tissue architecture. Consistent with its established
anti-inflammatory role, rfhSP-D downregulated genes that
promote inflammatory signals, such as GBP2, IRF1, ATF3,
CREB1, IGFBP2, and IGFBP7.

SP-D is synthesized by the human vaginal epithelial
cells and its uterine expression is hormone regulated
(17). We detected SP-D in the vaginal lavage of normal
cycling women (Supplementary Figure S5A). Vaginal
epithelial cells (Vk2/E6E7) also showed transcripts of
SP-D (Supplementary Figure S5B). In addition, confocal
microscopy revealed that SP-D protein was being produced
by Vk2/E6E7 and could be localized in the cytoplasm
(Supplementary Figure S5C). With its natural presence in
the vaginal tract, its role as a pattern recognition protein and
in strengthening of the vaginal barrier as evident from gene
expression studies, SP-D seems to be vital as the first line of
defense at the vaginal surfaces.

rfhSP-D Has No Adverse Effect on Cell
Viability and NF-κB Translocation
In addition to the ex vivo efficacy of rfhSP-D as an inhibitor of
the vaginal transmission of HIV-1, it was pertinent to evaluate
the safety of rfhSP-D application on the vaginal surface. As a first
step, we assessed its effect on the viability and inflammation of
vaginal and ectocervical cells. Within the concentration range of
1.562–100µg/ml and a duration of 24 h treatment, the viability
of vaginal and ectocervical cells was unaltered (Figure 7A). NF-
κB activation is a prerequisite for inflammation and breach
of vaginal barrier providing access to HIV-1 entry. Hence, to
determine the effect of rfhSP-D on the NF-κB activation, we used
an endocervical cell line (End1/E6E7) transfected with pHTS–
NF-κB firefly luciferase reporter. None of the indicated rfhSP-D
concentrations induced NF-κB activation, whereas MALP-2 and
poly I:C, agonists of TLR-2/6 and TLR3 respectively, led to a
significant activation (Figure 7B). Furthermore, rfhSP-D did not
cause any alteration in the levels of anti-inflammatory immune
mediators, such as interleukin-1 receptor antagonist (IL-1RA),
secretory leukocyte protease inhibitor (SLPI) and elafin, which
are known to maintain vaginal homeostasis (data not shown).

RfhSP-D Does Not Adversely Affect
Vaginal Lactobacilli
Lactobacilli, as vaginal commensals, are integral to the female
reproductive tract. A direct toxicity assay revealed that
rfhSP-D did not adversely affect viability of the clinical

isolates of Lactobacilli (TRF #8, TRF #30, TRF#36 and
Lactobacillus crispatus LC223) (Figure 8A). Lactic acid produced
by Lactobacilli contributes to vaginal defense and any alteration
in its production would enhance susceptibility to pathogens
including HIV-1 (43). The pH of the supernatant from cultures
treated with rfhSP-D was acidic like untreated controls. As
expected, Pen-Strep reduced the viability of Lactobacilli and
the supernatant showed a significantly higher pH (toward
neutral) (Figure 8B).

rfhSP-D Does Not Interfere With Vaginal
Epithelium-Lactobacilli Interaction
Since the vaginal microflora tightly controls the epithelial
immune functions in a species- and strain-specific manner, any
interference from topically applied microbicides or potential
anti-HIV-1 agents may prove detrimental. Thus, we employed
vaginal Lactobacilli colonization model that mimics in vivo
conditions (6). In the co-culture conditions, rfhSP-D treatment
did not lead to any reduction in CFU counts (Figure 8C).

Epithelial interaction with commensals leads to enhanced
inflammation in a regulated manner; when exacerbated,
it enhances susceptibility to HIV-1 and when calmed, it
compromises immunity. Hence, we assessed the effect of rfhSP-D
on NF-κB induction in this co-culture model. Importantly,
NF-κB levels were not affected across all the tested concentrations
of rfhSP-D (Figure 8D). Poly I:C and MALP-2 did show
an exaggerated NF-κB activity. Further, rfhSP-D did not
significantly alter the levels of chemokines, such as RANTES,
GRO-α, MIP-3α, corroborating no adverse effect on vaginal
immune physiology (Figures 9A–C).

Repeated Application of rfhSP-D on Rabbit
Vaginal Surface Does Not Induce
Inflammation
Rabbits with repeated vaginal application of 1% SDS (positive
controls) showed rupturing of the epithelial barrier and
hemorrhage, whereas, rfhSP-D and placebo groups showed no
signs of inflammation (Figures 10A–C). As per the RVI scoring,
vaginal sections of rfhSP-D and placebo groups showed none or
minimal irritation. The total sum of RVI scoring was 2.98 ± 0.6
for the rfhSP-D group and was not significantly different from the
RVI score of 2.54 ± 0.3 for the placebo group, whereas, 1% SDS
showed a moderate inflammation score of 9.7 ± 1.01, indicating
gross toxicity (Figure 10D).

DISCUSSION

Inflammation and breach of mucosal barrier are the two major
events that render the “gatekeeping mechanisms” ineffective
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TABLE 1 | rfhSP-D-mediated reversal of HIV-1 induced alteration of gene expressions in EpiVaginal tissues.

Gene

name

HIV-1 (FC) rfhSP-D +

HIV-1 (FC)

Functions Ref. Role in HIV Ref.

INFLAMMATION

ADAM17 Up

(1.51)

Down

(−1.16)

A protease critical in cleavage of

TNF-α and other inflammatory

proteins to active form. Important in

diverse cellular processes such

proliferation, migration, cell

adhesion

PMID: 20184396 Nef activates and shuttles

activated ADAM17 into

exosomes

Exosomal Nef and ADAM17

activates quiescent CD4+ T

Lymphocytes via TNF-α

PMID: 23317503

PMC4178784

MMP9 Down

(−3.69)

Up

(3.75)

Proteolytic enzyme, degrades

extracellular matrix.

PMID: 12540195 Induced by Tat in astrocytes

Upregulated by gp120 in

vaginal epithelial cell line

PMC2679334

PMC3222676

MYD88 Up

(1.82)

Down

(−1.26)

universal adapter protein

downstram of TLRs

(except TLR 3) to activate the

transcription factor NF-κB

PMID 18064347 HIV-1 Tat Activates both the

MyD88 and TRIF Pathways

To Induce TNF-α and IL-10

in Monocytes

PMID: 27053552

RIPK1 Up

(1.29)

Down

(−1.95)

Serine/threonine kinase that

regulate a variety of cellular

processes such as cell death and

innate immune responses to viral

and bacterial infection, induces

necroptosis

PMID: 19524512

PMID: 24129419

PMID: 26086143

Cleaved by HIV proteases

and modulate cellular

response

PMC4546280

CD58 Up

(1.64)

Down

(−1.25)

Interaction between CD2 and its

counterreceptor, CD58

(LFA-3) aids in T cell-APC cell cell

contact

PMID: 10380930 Engagement of CD58

enhances HIV-1 replication

in monocytic cells

PMID: 8656013

TFF2 Up

(1.99)

Down

(−2.11)

Secreted into the mucus layer

where it stabilizes the mucin gel

layer and stimulates migration of

epithelial cells. Upgregulated in

chronic inflammation

PMID: 19064997 – –

SERPINE1 Down

(−2.04)

Up

(2.92)

An inhibitor of fibrinolysis, high

concentrations of the gene product

are associated with thrombophilia

PMID: 24669362 Monocytes from

asymptomatic viremic

HIV(+) individuals show

increased PAI-1

(SERPINE1)

PMID: 22815948

CCL20 Up

(2.94)

Down

(−2.61)

Responsible for the

chemo-attraction of iDCs,

effector/memory B cells and T cells.

High specificity for CCR6

PMID: 27617163 Attracting key immune cells,

including Th17 cells and

dendritic cells, to sites of

infection and propagating

the virus to other sites of the

body

PMID: 28005525

TRIM21 Up

(3.29)

No change

(1.08)

Intracellular antibody effector in the

intracellular antibody-mediated

proteolysis pathway. Directs the

virions to the proteasome.

PMID: 21045130 Chimeric restriction factor

TRIM21-CypA provides

highly potent protection

against HIV-1 without loss

of normal innate immune

TRIM activity

PMID: 22909012

SOCS2 Down

(−1.2)

Up

(1.63)

Down-regulation of cytokine

signaling

PMID: 12208853 Tat impaired the IFN γ -

receptor signaling pathway

at the level of STAT1

activation, via

Tat-dependent induction of

suppressor of cytokine

signaling-2 (SOCS-2)

activity

PMID: 19279332

(Continued)
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TABLE 1 | Continued

Gene

name

HIV-1 (FC) rfhSP-D +

HIV-1 (FC)

Functions Ref. Role in HIV Ref.

SOCS3 No change

(1.09)

Up

(1.9)

Down-regulation of cytokine

signaling

PMID: 9202125

PMID: 9430658

PMID: 9857039

Protein levels were lower in

CD4 (+) T cells of

HIV-infected patients than in

healthy controls,

Suppressed Th17 levels

correlate with elevated

SOCS3 expression in CD4T

cells during acute simian

immunodeficiency virus

infection

PMID: 21337543

PMID: 23596301

NOS3 Up

(1.16)

Down

(−1.14)

Major determinant of vascular tone

and blood pressure

PMID: 7514568 Nitric oxide inhibits HIV

tat-induced NF-κB

activation

PMID: 10393859

PYCARD Down

(−1.64)

Up

(2.47)

Involved in NLRP3 induced

inflammasome. Responsible for

cleavage of pro-caspase 1

PMID: 20303873 Involved caspase-1

dependent pyroptosis of

HIV infected CD4T cells

PMC4047036

SMARCD1 Down

(−1.95)

Up

(2.45)

Part of SWI/SNF complexes that

regulate gene activity of chromatin

remodeling, may act as tumor

suppressor

PMCID:

PMC5406539

Role in HIV-1 assembly,

interaction between Nef and

INI1/SMARCB1 augments

replicability of HIV-1 in

resting PBMCs facilitate

Tat-mediated HIV-1

transcription

PMID: 27558426

PMID: 25559666

PMID: 16889668

CREB1 Up

(1.69)

Down

(−2.04)

CREB family of transcription factors

consists of cAMP-responsive

activators including CREB, cAMP

response element modulator, and

activating transcription factor

PMID: 10872467 Tat utilizes CREB to

promote IL-10 production,

although the significance of

this regarding HIV

pathogenesis is not entirely

clear, IL-10 can inhibit HIV-1

replication in monocytes

and macrophages

PMID: 7527449

RIPK3 Down

(−1.28)

Up

(1.64)

Serine/threonine kinases that

regulate a cellular processes such

as cell death and innate immune

responses to viral and bacterial

infection, induces necroptosis

PMID: 19524512

PMID: 24129419

PMID: 26086143

Not cleaved by HIV

proteases and modulate

cellular response

PMC4546280

SOD1 Down

(−1.30)

Up

(1.23)

Enzyme attaches

(binds) to molecules of copper and

zinc to break down toxic, charged

oxygen molecules called

superoxide radicals.

PMID: 7901908 SOD1 prevented gp120 and

Tat elicited reactive oxygen

species (ROS) and rescued

neuron apoptosis

PMID: 17336361

TGFBR2 Up

(1.21)

Down

(−1.7)

TGF-β mediates its actions through

heteromeric kinase receptor

complex consisting of TGF

receptors of type 1 and 2

PMID: 1333888 Increased expression upon

Tat treatment of epithelial

cells

PMID: 15857508

TGFA Up

(1.15)

Down

(−1.46)

Exerts several effects on target

cells, such as neovascularization

promotion and mitogenic signaling.

PMID: 9242560 Significant rise in chronic

HIV type 1 infection

PMID: 27268396

SMAD6 Down

(−1.37)

Up

(1.59)

Smad6 inhibits signaling by the

TGF-beta superfamily

PMID: 9335505 Down-regulated after Tat

treatment of U937

macrophages

PMID: 16282533

STX3 Up

(2.01)

Down

(−2.04)

Potentially involved in secretion of

IL-6 from dendritic cells following

activation of TLRs

PMID: 25674084 Depletion of STX3 reduced

HCMV production

PMID: 25583387

(Continued)
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TABLE 1 | Continued

Gene

name

HIV-1 (FC) rfhSP-D +

HIV-1 (FC)

Functions Ref. Role in HIV Ref.

XRCC2 Up

(2.33)

Down

(−2.38)

DNA repair protein binding to

double stranded breaks

PMID: 10227297 Suppression of retroviral

infection by XRCC2

PMID: 15297876

CYTOSKELETON AND CELL-CELL INTERACTION AND INTEGRITY

GJA1 Down

(−3.07)

Up

(3.39)

Involved in intercellular

communication

(GJIC) between cells to regulate cell

death, proliferation, and

differentiation. Involved in

inflammation

PMID: 25110696

PMID: 25560303

– –

CD44 Down

(−2.42)

Up

(5.25)

Cell-surface glycoprotein involved in

cell–cell interactions, cell adhesion

and migration

PMID: 28546458 Blocking of HIV entry

through CD44–hyaluronic

acid interactions.

PMID: 25155464

PMID: 25320329

CAV1 Down

(−1.89)

Up

(2.53)

Cav-1 is enriched in caveolae,

involved in endocytosis, signal

transduction. Role in innate immune

defense, and it regulates

macrophage cytokine production

and signaling

PMID: 16982844 Cav-1Tat induced

alterations of tight junction

protein. Cav-1 mediated

uptake via langerin restricts

HIV-1 infectivity

PMID: 18667611

PMID: 25551286

CAV2 Down

(−1.22)

Up

(2.48)

Similar to Cav-1 and also inhibits

cell proliferation, migration and

invasion

PMID: 23454155 – –

DBN1 Down

(−1.86)

Up

(1.74)

DBN1 suppresses

dynamin-mediated endocytosis via

interaction with cortactin. DBN1

restricts the entry of viruses into

host cells and more broadly to

function as a crucial negative

regulator of diverse

dynamin-dependent endocytic

pathways

PMID: 28416666 Drebrin is a negative

regulator of HIV entry and

HIV-mediated cell fusion.

Down-regulation of drebrin

expression promotes HIV-1

entry, decreases F-actin

polymerization, and

enhances profilin local

accumulation in response to

HIV-1

PMID: 23926103

NECTIN1 No change

(1.04)

Up

(2.94)

Nectin cell adhesion molecule,

plays role in organization of adheren

junctions and tight junction

PMID: 28392352 HIV-Induced Exposure of

Nectin-1 Facilitates HSV-1

Infection

PMID: 24586397

IGFBP3 No change

(−1.05)

Up

(2.11)

Binds IGF-I and IGF-II with relatively

low affinity, and belongs to a

subfamily of low-affinity IGFBPs. It

also stimulates prostacyclin

production and cell adhesion.

PMID: 21835307 Inhibit the replication of

HIV-1 in cultured cord blood

mononuclear cells and

chronically HIV-infected

U937 cells

PMID: 7576911

ACTN1 No change

(−1.01)

Up

(1.34)

Major actin cross-linking proteins

found in virtually all cell types as a

cytoskeleton.

PMID: 26312134 α-Actinin regulates the

immune synapse formation

and is required for efficient T

cell activation. silencing of

either EWI-2 or α-actinin-4

increased cell infectivity.

Regulation of the actin

cytoskeleton at T cell

immune and virological

synapses

PMID: 22689882

GJB6 Down

(−1.95)

Up

(2.87)

Gap junctions allow the transport of

ions and metabolites between the

cytoplasm of adjacent cells

PMID: 19944606 Gap junction channels

shutdown under

inflammatory conditions,

including viral diseases.

PMC4774036

FC-Fold Change.
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FIGURE 5 | HIV-1 mediated downregulation of transcripts of tight junction genes while rfhSP-D maintained integrity. Relative expression of transcripts of (A) Claudin 2,

(B) Claudin 3, (C) Claudin 4, (D) Claudin 5, (E) Occludin were determined in EpiVaginal tissues by real time qPCR. When compared with HIV-1 challenged tissues,

rfhSP-D treatment led to significant upregulation of Claudin 2, 3, 5, and occludin. Data is represented as mean ± S. D. *, # indicate statistical significance of p < 0.05

in comparison to untreated and HIV-1 treated EpiVaginal tissues, respectively.

leading to HIV-1 transmission. The present study establishes a
recombinant fragment of human SP-D (rfhSP-D) as a candidate
microbicide, which remarkably inhibited HIV-1 transfer in an
ex vivo model comprising of multi-layered vaginal mucosal
tissue. We also report the gene expression profile of HIV-
1 challenged EpiVaginal tissues. RfhSP-D specifically reversed
the infection-promoting gene signature induced by the virus,
thereby, maintaining the integrity of vaginal epithelium and
suppressing the pro-inflammatory milieu. Furthermore, in vitro
and in vivo safety studies implied that the rfhSP-D is safe
for mucosal application at the concentrations that to restrict
viral passage.

Transcriptome snapshot of the EpiVaginal tissues upon HIV-
1 challenge revealed an inflammatory response comprising
of chemokines, cytokines and components of inflammasome.
Upregulation of these genes would act in sync, contributing
to a generalized local inflammation in the vaginal epithelium.
Fanibunda et al. (44) reported global gene expression in a
monolayer of vaginal epithelial cell line (Vk2/E6E7) challenged
with HIV-1 recombinant gp120 protein with a predominant
induction of immunomodulatory processes and proteases.
Following HIV-1 exposure, primary genital epithelial cell
cultures showed enhanced proinflammatory cytokines (e.g.,
TNF-α and IL-6) and disruption of tight junctions, such as
claudins, occluding, and ZO-1, leading to a compromised barrier

(36, 45). Barouch et al. demonstrated that 24 h post-vaginal
SIV challenge, the host lacked expression of the antiviral
restriction factors and the response comprised of NLRX1
and TGF-α which incapacitated a strong anti-viral response
(46). Consistent with the previous reports, the ex vivo model
of human vaginal tissues showed pro-inflammatory response
on viral challenge. Alongwith, it showed upregulation of
host restriction factors, such as guanylate-binding proteins
(GBP1, GBP2, GBP5), TRIM21 and other IFN-inducible genes.
GBP5 has been recently reported as a host restriction factor
in virus-challenged macrophages (47). Although, not proven
in the context of HIV-1, TRIM21 is known to obstruct
the incoming antibody-opsonized non-enveloped virions and
efficiently mediate post-entry neutralization and innate immune
signaling (48, 49). Being effective intracellularly, it is possible
to hypothesize that these restriction factors may prevent
further movement of the transcytosed virions (50). HIV-1 can
also pass freely through the intercellular gaps in the vaginal
epithelium. We observed a dramatic downregulation of several
genes of the plasma membrane and cytoskeleton framework
along with downregulation of tight junction proteins (claudins
and occludin) induced by the virus. Although the EpiVaginal
tissue attempts to mount an interferon response, the excessive
inflammation and a disturbance in cellular functions weaken
the epithelial barrier and provide a gateway to the underlying
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FIGURE 6 | Susceptibility of PBMCs to HIV-1 acquisition: (A) Day 3 and 6 HIV-1 p24 Ag levels as determined by ELISA. RfhSP-D did not enhance susceptibility to HIV

acquisition whereas MALP-2 treatment enhanced it on day 6. Data is representative of three biological replicates and is represented as mean ± S. D. *indicate

statistical significance of p < 0.05 in comparison to day 6 untreated (control). (B) Gene regulatory network for EpiVaginal tissues treated with rfhSP-D vs. untreated.

Biological processes are blue colored blocks, downregulated genes are green colored, upregulated are red, unaltered are in orange. Circles are sized according to

their p-value.

target cells (Figure 11A). There are several compelling evidence
of interaction of HIV-1 with the vaginal epithelial cells via
TLR2 and TLR4 (46), gp340 (51), syndecans (52), and human
mannose receptor (53). These receptors, when engaged with
PAMPs, initiate an inflammatory cascade. In our model, MALP-
2 that activated the TLR2/6 inflammatory axis, synergizes with
HIV-1 to further reduce the expression of tight junction proteins
and enhances chemokine secretion, reiterating their crucial role
in HIV transmission.

The gene signature of EpiVaginal tissues, induced by HIV-1,
reflected key mechanisms for viral movement across the
multilayered epithelium resulting in its acquisition by the
underlying PBMCs. RfhSP-D showed a remarkable ability to
restrict viral movement (though not a complete blockade in the
experimental conditions). Previously, we and others have shown

that rfhSP-D (as well as native SP-D) potently binds to HIV-1
gp120, leading to agglutination and inhibition of infectivity
of target cells (19, 54). It can, therefore, be considered that
interaction of trimeric rfhSP-D with HIV-1 plausibly results
in large complexes that are unable to travel through the
tight vaginal barrier. Moreover, since HIV-1 envelope protein
gp120 primarily makes the first contact with the epithelium,
restriction of this interaction by rfhSP-D may also contribute
to a shift from HIV-1 induced gene signature. The presence
of a fraction of the virions in the basal chamber of rfhSP-D
treated EpiVaginal tissues indicated interaction of the HIV-1 with
the EpiVaginal tissues (although it was significantly reduced).
In addition, evident from the differential gene expression
of the rfhSP-D treated EpiVaginal tissues, rfhSP-D directly
interacted with the vaginal epithelial cells and thus strengthened
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FIGURE 7 | rfhSP-D does not affect viability or NF-κB activation: (A) MTT assay showing no significant alteration in cellular viability of vaginal (Vk2/E6E7) and

ectocervical (Ect1/E6E7) cells 24 h after rfhSP-D treatment. (B) NF-κB activity measured by firefly luciferase reporter assay at 24 h of stimulation of endocervical

epithelial (End1/NF-κB) cells with rfhSP-D (up to 100µg/ml). Values represent mean ± SD.

FIGURE 8 | No adverse effects of rfhSP-D on vaginal lactobacilli and epithelium-commensal interaction: (A) Bacterial growth was assessed at 490 nm. At 24 h, none

of the indicated rfhSP-D concentrations led to any alteration in growth of lactobacilli (Lactobacillus fermentum spps mucosae (TRF#36), Lactobacillus gasseri (TRF#8),

Lactobacillus salivarius (TRF#30) and Lactobacillus crispatus (LC223) whereas penicillin-streptomycin (P/S) significantly inhibited its growth. (B) pH of the spent

medium is a measure of lactic acid production. LC-Lactobacillus crispatus (LC223). Values represent means ± SD of three experiments. (C) CFU counts before and

after epithelial (Vk2/E6E7)-bacterial (Lactobacillus crispatus) co-cultures were treated with rfhSP-D. (D) Co-cultures of epithelial cells (End1/NF-κB)-bacteria

(Lactobacillus crispatus) were assayed for luciferase activity. No apparent rise in luciferase activity was observed following treatment with rfhSP-D whereas Poly I:C

and MALP-2 showed a significant increase in NF-κB activity. Values represent mean ± SD. *p < 0.05 in comparison to untreated.

the barrier with upregulated expression of cytoskeleton-related
genes. Taken together, these observations suggest that rfhSP-D
was able to contain the HIV-1 induced changes in gene
expression of the EpiVaginal tissues. Significant upregulation

of transcripts for several tight junction proteins in the HIV-1
challenged EpiVaginal tissues in presence of rfhSP-D validated
this hypothesis. The two key pro-inflammatory players, NF-κB
andmTOR (55, 56), were significantly downregulated, suggesting
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FIGURE 9 | rfhSP-D does not alter basal levels of chemokines: (A) GRO-α, (B) MIP-3α, and (C) RANTES Levels were determined using MSD assay in the epithelial

cells (Vk2/E6E7)—bacterial (Lactobacillus crispatus, LC223) co-culture. Data is representative as mean ± S. D. *p < 0.05 was considered statistically significant.

likely inhibition of the sequential steps of HIV-1 transmission.
Notably, the Guanylate binding proteins (GBPs) were either
upregulated or unaltered, suggesting that rfhSP-D facilitated the
protective response mounted by the EpiVaginal tissue against
HIV-1 (Figure 11B). We have recently reported DC-SIGN as a
novel receptor of SP-D (using rfhSP-D). A tripartite engagement
between DC-SIGN, rfhSP-D and gp120 significantly inhibited
transfer of HIV-1 from DC-SIGN to the PBMCs (57). This
findingmay hold immense importance in vaginal transmission of
HIV-1, since DC-SIGN on dendritic cells acts as “Trojan horse”
that captures HIV-1 in the mucosa and facilitates its transport
to secondary lymphoid organs rich in CD4+ T cells followed by
trans-infection (58).

SP-D has been shown to potently inhibit the infectivity of
other enveloped viruses, such as Influenza A Virus (IAV) (59)
and Respiratory Syncytial Virus (RSV) (60), concomitant with
induction of an anti-inflammatory environment by interacting
with mucosal epithelial and immune cells. This unique property
has made rfhSP-D a viable therapeutic option for cystic fibrosis,
neonatal lung disease and smoking-induced emphysema (61).
RfhSP-D seems to have a similar role against HIV-1 at the vaginal
interface. While rfhSP-D limits viral access, it also induces a
state of immune quiescence in the vaginal tissues. There is a
direct correlation of immune quiescence at the mucosal sites,
with resistance to HIV-1 acquisition in serodiscordant women
(62). It would be worth exploring the clinical significance of the
candidate genes associated with restricted transmission identified
in the present study in the highly exposed seronegative women.

An anti-HIV molecule can be effective as a microbicide only
if it retains its anti-viral activity without inducing immune
activation. Several candidates have failed in the clinical trials
due to inflammation caused to the epithelial and target cells,
leading to enhanced susceptibility to the virus. Our model
revealed that treatment with rfhSP-D did not induce any aberrant
inflammatory response by EpiVaginal tissues and did not lead
to activation of PBMCs (target cells), and thus, minimized the
likelihood of viral transfer and acquisition. In contrast, MALP-
2 showed increased activation and susceptibility of PBMCs to
the virus, confirming the appropriateness of the model for the
evaluation microbicides (63).

To save time and resources, an extensive characterization of
candidate prophylactics is warranted before testing their efficacy
in vivo. Therefore, we subjected rfhSP-D to a series of safety
evaluations. RfhSP-D was well-tolerated by human vaginal and
ectocervical cells; even at the highest concentration (100µg/ml),
no apparent alterations in the viability of vaginal epithelial
cells or inflammation were observed. Similarly, rfhSP-D did not
adversely affect the growth of lactobacilli or acid production.
However, in the vagina, the epithelial cells and microflora
together determine the vaginal health. Vaginal microflora is
critical in regulating the epithelial innate immune response.
To accurately replicate the in vivo condition, we tested safety
of rfhSP-D in an epithelial-bacterial colonization model (6).
As is the case for a successful microbicide candidate, rfhSP-
D did not affect lactobacilli counts, NF-kB activation and
chemokine levels in the co-culture. Although SP-D potently
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FIGURE 10 | Rabbit Vaginal Irritation (RVI) model demonstrates intact integrity of mucosal barrier on repeated application of rfhSP-D gel: H&E staining of vaginal

sections of rabbits (n = 5/group) treated with (A) placebo gel (B) rfhSP-D (100µg/ml) gel and (C) 1% SDS gel (positive control) daily for 10 consecutive days. Sections

from 1% SDS gel treated rabbits showed inflamed epithelial barrier with significant infiltration of polymorphonuclear cells (PMNs) (depicted by “red arrows”) and

hemorrhage (depicted by the “red asterisk”). Black arrow heads depict epithelial membrane with minimal infiltration of PMNs in the “placebo gel” and “rfhSP-D

(100µg/mL) gel” in (A,B). Magnification 10×. (D) RVI score of the rfhSP-D treated group was not significantly different from the placebo group. At least three sections

of vaginal tissues (both proximal and distal) of each animal (blinded) were scored from 0 to 4 for epithelial damage (0 = normal, 1 = flattening, 2 = metaplasia, 3 =

erosion, and 4 = ulceration) and leukocyte infiltration, edema and congestion (0 = absent, 1 = minimal, 3 = moderate, 4 = marked). Total score of each animal was

calculated and was averaged with number of sections analyzed. A total score from 1 to 4 is to be considered as minimal irritation, 5–8 as mild irritation, 9–11 as

moderate irritation, and 12–13 as marked irritation. *p < 0.05 was considered statistically significant.

FIGURE 11 | A schematic model illustrating effects of HIV-1 and rfhSP-D on EpiVaginal tissues. (A) The intact epithelium seems to be breached after HIV-1 exposure.

Alterations in the genes encoding tight junction proteins, cytoskeleton and those contributing to inflammation are plausibly the critical events in HIV-1 transmission

through the multi-layered tissue. (B) rfhSP-D potently binds to HIV-1 and interacts with EpiVaginal tissues, reverses HIV-1 induced gene signature, and inhibits HIV-1

transmission.
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inhibits reproductive tract pathogens, such as Chlamydia
(64) and Candida (65), we report the SP-D-commensal
interaction for the first time. Further investigations may
ascertain molecular determinants that define the ability of SP-
D to differentiate between vaginal pathogens and commensals.
One plausible reason could be evolution of tolerance of the
vaginal microflora in the presence of SP-D and other anti-
microbial proteins and peptides naturally secreted in the
vagina (66). SP-D is naturally expressed and secreted by the
human vaginal epithelial cells. Therefore, it was expected that
repeated application of rfhSP-D may not harm the vaginal
surface. There were no evident histological signs of mucosal
toxicity in the rabbit vagina, suggesting that rfhSP-D is
well-tolerated in vivo.

In summary, we demonstrate the transcriptional gene
expression signatures of EpiVaginal tissues in response to HIV-1.
An ex vivomodel of vaginal transmission of HIV-1 was developed
that revealed novel genes and features of HIV-1 transmission, and
offers a highly reproducible, cost-effective, non-animal model to
study efficacy of candidate microbicides. Importantly, rfhSP-D
emerges as a potent anti-HIV-1 microbicide candidate, and the
results provide a strong argument for its further evaluation in
non-human primate models.
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