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NLRP3 inflammasome can be widely found in epithelial cells and immune cells. The

NOD-like receptors (NLRs) family member NLRP3 contains a central nucleotide-binding

and oligomerization (NACHT) domain which facilitates self-oligomerization and has

ATPase activity. The C-terminal conserves a leucine-rich repeats (LRRs) domain which

can modulate NLRP3 activity and sense endogenous alarmins and microbial ligands. In

contrast, the N-terminal pyrin domain (PYD) can account for homotypic interactions with

the adaptor protein-ASC of NLRP3 inflammasome. These characters enable it function in

innate immunity. Its downstream effector proteins include caspase-1 and IL-1β etc. which

exhibit protective or detrimental roles in mucosal immunity in different studies. Here,

we comprehensively review the current literature regarding the physiology of NLRP3

inflammasome and its potential roles in the pathogenesis of IBD. We also discuss about

the complex interactions among the NLRP3 inflammasome, mucosal immune response,

and gut homeostasis as found in experimental models and IBD patients.
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INTRODUCTION

Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC),
is characterized by chronic and relapsing inflammation in the gastrointestinal tract, and some
hypotheses propose that damage to the intestinal mucosa occurs as a result of dysregulated innate
immune response (1). Hence, understanding the regulatory circuits that control aberrant innate
immune responses in the intestine is critical to elucidate the pathogenesis of IBD. The NLRs
family member NLRP3 is rapidly emerging as a crucial regulator of intestinal homeostasis. This
innate immune receptor mediates the assembly of the inflammasome complex in the presence of
microbial ligands, triggering activation of caspase-1 and secretion of interleukin-1β (IL-1β) and
IL-18, and has been implicated in the pathogenesis of IBD (2), but the detailed role of NLRP3
inflammasome in IBD is still debated. Early studies reported that NLRP3 inflammasome-induced
production of IL-1β and IL-18 contributed to intestinal inflammation. However, the concept of
detrimental inflammasome signaling in IBD is being re-evaluated due to recent reports that IL-
1β and IL-18 production can confer protection against colitis. Here, we comprehensively review
the current literature regarding the physiology of NLRP3 inflammasome in the intestinal, and we
also discuss about the complex interactions among the NLRP3 inflammasome, mucosal immune
response and gut homeostasis as found in experimental models and IBD patients.
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DEFINITIONS AND COMPOSITION OF
NLRP3 INFLAMMASOME

Inflammasomes are a group of cytosolic protein complexes

that can recognize various stress, exogenous microbes, and
endogenous danger signals. Inflammasomes respond to them by

activating caspase-1, producing IL-1β, and IL-18, and starting
the inflammatory process (3, 4). The definition of inflammasome
was first made by the group of Tschopp in 2002 (5), they

found that it played a critical role in microbial infections and
also in the regulation of both mucosal immune responses and
metabolic processes. Inflammasomes comprise several subtypes,
among which the NLRP3 inflammasome is one of the most
studied. The multiprotein complex of NLRP3 inflammasome
consists of the sensors-NLRP3, the adaptor-apoptosis-associated
speck-like protein containing a caspase recruitment domain

(ASC) and the effector protein-caspase-1 (6), and it can be
widely found in immune cells including granulocytes, antigen
presenting cells (APC), macrophages, T and B lymphocytes (6).
As the core protein of NLRP3 inflammasome, NLRP3 contains
a central nucleotide-binding and oligomerization (NACHT)
domain which facilitates self-oligomerization and has ATPase
activity. The C-terminal conserved LRRs domain can modulate
NLRP3 activity and sense endogenous alarmins and microbial
ligands. In contrast, the N-terminal pyrin domain (PYD)
can account for homotypic interactions with the adaptor
protein-ASC. ASC contains two transduction domains, one is a
pyrin domain which can connect the upstream NLRP3, the other
is a caspase recruitment domain (CARD) which can connect
the downstream caspase-1 (7). As the effector protein of NLRP3
inflammasome, caspase-1 can convert pro-IL-1β and pro-IL-18
into their active forms-IL-1β and IL-18. In addition, caspase-1 is
also one of the essential factors involved in an inflammatory form
of cell death termed pyroptosis (8). In summary, the components
of NLRP3 inflammasome enable it function as an immunological
player after activation.

ACTIVATION AND REGULATION OF NLRP3
INFLAMMASOME

The innate immune system is the first line defense, which can
sense microbes or endogenous danger signals via recognition of
damage-associated molecular patterns (DAMPs) or pathogen-
associated molecular patterns (PAMPs) by host pattern
recognition receptors (PRRs), such as Toll-like receptors (TLRs)
and NLRs. The NLRs family member NLRP3 is essential for the
recognition of PAMPs or DAMPs. NLRP3 inflammasome plays
a critical role in inflammatory response as a major component
of innate immunity, it provides a molecular platform which
can be activated by multiple endogenous and exogenous stimuli
including ATP, microbial agonists, particulate matters and pore-
forming toxins (9–11).When the basal level of NLRP3 expression
is competent for inflammasome activation in resting cells, a two-
step process is required (Part 1 of Figure 1). The first or priming
signal converges on the activation of nuclear factor kappa-B (NF-
κB) and transcriptional induction of NLRP3 itself and pro-IL-1β.

The second or activating signal, which may be a microbial or
danger signal, can directly activate inflammasome assembly
(12). Some mechanisms have been proposed to elucidate the
activation of NLRP3 inflammasome, including K+ efflux (13),
cathepsin B leakage from lysosomes (14), reactive oxygen
species(ROS) production (15), translocation to the mitochondria
(16), and mitochondrial dysfunction (17), despite none of them
has been found to be unified for all stimuli. In addition, NLRP3
inflammasome activation also occurs downstream of caspase-11
and gasdermin D cleavage and pore-formation in a process called
non-canonical inflammasome activation (18, 19). But whether
and how priming signal affects inflammasome assembly and
subsequent activation have remained elusive, newer data are
claiming that the synthesis of mitochondrial DNA (mtDNA),
induced after the engagement of Toll-like receptors, is crucial
for NLRP3 signaling. Toll-like receptors signal can function
via the MyD88 and TRIF adaptors to trigger IRF1-dependent
transcription of CMPK2 (a rate-limiting enzyme that supplies
deoxyribonucleotides for mtDNA synthesis) (20). However,
none of these hypotheses can fully explain the activation process
of NLRP3 inflammasome, it is possible that these hypotheses
may all coexist in this process. Membrane permeation, ROS
production and mitochondrial dysfunction are all interrelated
cellular events, and then more studies are warranted to elucidate
the exact mechanisms.

Although the activation of NLRP3 inflammasome is largely
beneficial to the host defense during infections and metabolic
processes, over production of IL-1β and IL-18 results in
sterile inflammation, which can increase the risk of developing
metabolic and autoinflammatory diseases among patients.
Therefore, in order to avoid overt tissue damage, the activation
of NLRP3 inflammasome must be finely controlled. Both
scaffolding proteins and post-translational modifications are
responsible for these fine regulations, and then they tightly
control and modulate the NLRP3 inflammasome activation
together. Actually, NF-κB- induced transcription regulates the
expression of NLRP3 inflammasome which further requires
stimulus from cytokine-signaling pathways or sensitization by a
TLR or CLR ligand (21). Although caspase-8 can suppress NLRP3
activities in dendritic cell (DC) (22), it contributes to a robust
activation of NF-κB due to TLR stimulation in macrophages, T
and B lymphocytes, and even natural killer (NK) cells (23–26).
The evidence reminds us that the negative effect of caspase-8 on
the NLRP3 inflammasome may be specific to DC. The canonical
NLRP3 inflammasome activation requires IL-1R–associated
kinases (IRAK) and their corresponding kinase activities. A
recent study, however, has identified a “priming-independent”
mode named as the transcription-dependent activation, which
occurs independently of IRAK1 and IRAK4 in lipopolysaccharide
(LPS)-primed cells followed by ATP treatment (27). Post-
translational modifications of NLRP3, including ubiquitination
and deubiquitination, can also either suppress or activate
inflammasome activation (28). Recently, Yan et al. reported
that Omega-3 fatty acids repressed NLRP3 inflammasome
activation and inhibited subsequent caspase-1 activation and
IL-1β secretion via G protein-coupled receptor 120 (GPR120)
and GPR40 (28). Soon afterwards, their data demonstrated
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FIGURE 1 | NLRP3 Inflammasome complex and pathology of the IBD. (Part 1) The production of proinflammatory cytokines IL-1β and IL-18 is a two-step process.

NF-κB activation can rapidly prime the expressions of pro-IL-1β and pro-IL-18, which are then cleaved into the mature IL-1β and IL-18 by caspase-1 in the

Inflammasome. The second signal can directly activate inflammasome assembly. And cleavage of gasdermin D by caspase-11 and caspase-1 is essential for

pyroptosis of innate immune cells and endothelial cells harboring LPS-tainted cytoplasm. (Part 2) The intestinal epithelial barrier protects underlying mucosal tissues

from commensal bacteria present in the gut. But in susceptible hosts, the epithelial barrier is compromised allowing commensal bacteria to invade lamina propria and

mucosa. Infiltrated bacteria interact with macrophages, Dendritic cells(DC) and neutrophils via innate recognition receptors such as NLRs. Activation of NLRs induces

the production of proinflammatory cytokines which further recruit immune cells to the infected tissue accelerating inflammatory response.

that neurotransmitter dopamine (DA) could also inhibit
NLRP3 inflammasome activation through dopamine D1 receptor
(DRD1), suggesting DRD1 signaling could negatively regulate
NLRP3 inflammasome via a second messenger cyclic adenosine
monophosphate (cAMP), which binds to NLRP3 and promotes
its ubiquitination and degradation (29). Moreover, it has been
indicated that IL-10 can function as a critical transcriptional and
post-translational regulator of NLRP3 inflammasome activation
in bothmurine and humanmacrophages by controlling intestinal
inflammation and maintaining gut homeostasis (30). It is
worth noting that non-canonical maturation of IL-1β can occur
via the NLRP3 inflammasome and caspase-11 during acute
inflammatory conditions (31), and several studies have found
the role of caspase-11 in mediating expression of IL-1β and IL-
18. In particular, a caspase-11-dependency for the production
of IL-1β and IL-18 is showed in intestinal tissues harvested
from DSS-induced mice (32, 33). Additionally, Shenoy et al. (34)
reported that guanylate binding protein 5 (GBP5) could enhance
the NLRP3 inflammasome assembly in response to bacterial
and bacterial cell wall components but not crystalline agents.
Another key regulator of NLRP3 inflammasome activation
is NEK7 (NIMA-related kinase 7), which is involved in the
regulation of the cell cycle, mitotic spindle formation and
cytokinesis. Interaction between the NLRP3 LRR domain and
NEK7 leads to NLRP3 inflammasome activation in interphase
cells downstream of potassium efflux independent of its kinase
activity (35). Lately, Lang et al. (36) reported that inhibition
of macrophage migration inhibitory factor (MIF) regulated the

release of IL-1α, IL-1β, and IL-18, not by affecting transcription
or translation of these cytokines, but via activation of NLRP3
inflammasome. As discussed above, activation and regulation of
NLRP3 inflammasome have been increasingly appreciated, it is
intriguing for researchers to explore the roles played by NLRP3
inflammasome in IBD which is a common autoimmune disease
in the GUT.

ROS IN IBD

ROS refers to a class of special oxygen-containing compounds
that have much higher chemical activity than the oxygen. In
normal condition, a basal level of ROS has bactericidal effects,
participating in the intestinal defensive function. However,
in the process of chronic inflammation (such as IBD),
excessive ROS produced by the infiltrated neutrophil can trigger
oxidative stress (OS) and proteolytic enzymes, which act on
endothelial cells and cause cell injury and subsequent intestinal
mucosal barrier damage and luminal pathogen invasion,
and further in turn exaggerate inflammatory cell infiltration
and inflammatory damage, eventually leading to intestinal
mucosal necrosis and ulceration (37). Besides, accumulated
ROS could also act as secondary chemical messengers for
the activation of intracellular signal pathways, such as p38
mitogen-activated protein kinase (MAPK), and NF-κB, to
influence cell proliferation, differentiation and apoptosis (38, 39).
As transcription factors, a deregulation of NF-κB, signaling,
such as oxidative activation, enhances expression of various
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proinflammatory cytokines in the intestinal epithelial cells, such
as tumor necrosis factor alpha (TNF-α), IL-1, IL-8, and facilitates
inflammation and carcinogenesis (40). MAPKs are highly
conserved serine/threonine protein kinases which can function
in various cellular processes, such as proliferation, differentiation,
and apoptosis, as well as stress response (41). In UC tissues,
p38MAPK signaling changes are amolecular signature of UC and
proportional to the degree of inflammation (42). Recently Zhong
et al. (43) suggested that particulate stimuli might induce ROS
production in mitochondria, and further trigger a calcium influx
mediated via transient receptor potential melastatin 2 (TRPM2),
resulting in an activation of the NLRP3 inflammasome. While
many activators of the NLRP3 inflammasome generate ROS, the
interruption of ROS production with pharmacological inhibitors
can block the activation of NLRP3 (44). These data indicate
that the generation of ROS which is a critical factor in mucosal
immunity, may be an essential upstream event for NLRP3
inflammasome activation.

NLRP3 INFLAMMASOME IN MUCOSAL
IMMUNE RESPONSE

Although the precise etiology of IBD remains unclear, aberrant
immune responses against commensal microflora are widely
thought to underlie IBD (1, 45). Furthermore, it is worth noting
that chronic inflammation in patients with IBD is associated
with alterations in adaptive immune responses represented by
a Th2 profile in UC patients and a Th1/Th17 profile in CD
patients (46, 47). The innate immune system is critical to
control host resistance, one pivotal player within this system
is PRRs, which can not only translate danger and microbial
sensing into immediate host defenses, but also provide a signal
to prime the adaptive immune response for further protection.
The NLR family member NLRP3 has the ability to facilitate the
formation of inflammasome and the activation of MAPK and
NF-κB signaling cascades, and then initiate and support robust
immune responses. Both MAPK and NF-κB pathways culminate
in the transcriptional activation of genes encoding chemokines
and cytokines that activate the innate and adaptive immune
systems. Recent findings (48) have indicated that IL-1β, but not
IL-18, is the most likely effector molecule directly downstream
of the NLRP3 inflammasome in the intestine, but IL-18 might be
indirectly affected by NLRP3 through secondary effects, because
IL-18 deficiency can also abolish the protective effect of NLRP3
in the intestine. Besides, NLRP3 inflammasome further initiates
pyroptosis via an activating cleavage of gasdermin D (Gsdmd),
which forms pores in the plasma membrane and acts as the
executioner molecule for pyroptosis.

IL-1β
IL-1β is mainly produced by innate immune cells (such as
monocytes, DCs, and macrophages), and the major source of
IL-1β in colon is macrophages located in the lamina propria
(49). During infection, mucosal injury and stress, the activation
of IL-1β can trigger local mucosal immune responses, by
stimulating T cell proliferation, and direct neutrophils to injury

or infection site through the combination of IL-1β and IL-
1R complexes (21, 50), and further activate NF-κB and MAPK
pathways, leading to the upregulation of other pro-inflammatory
cytokines and chemokines (such as IL-6, IL-8, and TNF).
Meanwhile, IL-1β can upregulate IL-2 receptor expression,
prolonging survival of T cells, and enhance antibody production
by B cell proliferation. Early reports showed an overproduction
of IL-1β in patients with IBD and mice models, indicating
that the function of IL-1β in the development of mucosal
inflammation (51, 52). However, recently, many researches in the
chemical-induced model have reported that IL-1β can protect
mice from intestinal infection of Citrobacter rodentium and
Clostridium difficile, by promoting phagocytosis and eradication
of bacteria in mononuclear Phagocytes (53, 54). Besides, a
study by Fan et al. (55) also showed that the transplantation
of mesenchymal stem cells (MSC) primed by IL-1β could
alleviate the chemical-induced colitis. Taken together, the rather
ambiguous results concerning the role of IL-1β in mucosal
immune response and IBD demand a further investigation with
careful consideration.

IL-18
IL-18 is a multifunctional cytokine, which is mainly expressed
in the gut epithelium in both mice and Humans (49), recent
findings suggested that the epithelium IL-18 secretion was not
dependent on NLRP3 (56), but on caspase-1 (48). However, we
know NLRP3 plays a central role in the activation of caspase-
1, and then NLRP3 may also contribute to IL-18 production in
intestine. IL-18 is functionally found to induce interferon (IFN)-
γ and promote Th1 response (57, 58). Early report indicated
that IL-18 was upregulated in IBD patients (especially in CD),
and had the pro-inflammatory effect of IL-18 by upregulating
pro-inflammatory cytokines, such as TNF-α, IL-1, and IL-6
(59, 60), but these studies failed to tell whether the increased
IL-18 level in patients was a consequence or causing factor
for IBD. Later, polymorphisms in IL-18 genomic locus were
showed to be a risk factor for IBD (61). Recently, a series
of studies have pointed out that IL-18 can provide protection
against colitis and/or colitis-associated cancer (33, 62–66), and
IL-18 deficiency may predispose the host to chemically induced
colitis. Moreover, IL-18 can induce Th1 cells and NK cell to
secrete IFN-γ, which can regulate a proliferation and repairment
response in the intestinal tract when the epithelium is injured.
And recent studies have also shown that the signals of IFN-γ and
downstream STAT-1 were decreased in mice deficient in NLRP3,
which were dependent on IL-18 (67). These data indicate that IL-
18 may be involved in repair of the epithelial layer of the gut by
maintaining proper levels of epithelial cell proliferation during
acute experimental colitis. Further, IL-18 also has the function
of immunomodulation, for instance, it can enhance proliferation
of Th1 cells and host defense against pathogens, inhibit IgE
production, and has antitumor effects.

IL-1α
IL-1α cleavage can be induced by NLRP3 inflammasome stimuli
such as nigericin or uric acid crystal, resulting in the co-secretion
of both IL-1α and IL-1β. Precursor IL-1α on the surface of
several cells, particularly on monocytes and B cells, is referred
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to as membrane IL-1α. Mice deficient in IL-1α exhibit a reduced
inflammation, in which cell death and intracellular IL-1α release
do not take place (68). Intrinsic IFN-γ activities depend largely on
constitutively expressed IL-1α. Besides, IL-1α also works as a co-
stimulator of T cell functions, primarily together with an antigen
or a mitogen. It is suggested that IL-1α could contribute to Th2
polarization in mice model (69).

Pyroptosis
Pyroptosis is a special form of programmed inflammatory cell
rupture, which plays a critical role in anti-bacterial innate
immune defense and lethal endotoxemia (70). Initially, it’s found
that pyroptosis was promoted following the activation of pro-
caspase-1 by some pathogens, could destroy the infected immune
cell and expose the surviving/bacteria to circulating phagocytes
and neutrophils, these measures could halt the intracellular
replication of pathogens (31, 71). In a spontaneous colitis
model deficient in both TLR2 and MDR1A, the activation of
inflammasome by commensal bacteria caused myeloid CD11b+
cells to undergo pyroptosis, moreover, similar situation was
observed in genetically relevant patients with IBD (72), which
suggested that pyroptosis might be involved in the pathogenesis
of IBD. Recent findings suggest that cleavage of Gsdmd by
mouse caspase-11 or human caspase-4 is also essential for
the pyroptosis of innate immune cells and endothelial cells
harboring LPS-tainted cytoplasm. Moreover, cleaved Gsdmd also
triggers NLRP3-dependent activation of caspase-1 through a
cell-intrinsic pathway (19). Mechanistically, Gsdmd is a generic
substrate for inflammatory caspases (caspase-1 and caspase-
4/5/11), and cleavage of Gsdmd critically determines pyroptosis
by releasing the cleaved gasdermin-N domain that bears intrinsic
pyroptosis-inducing activity (73). Thus, Gsdmd is revealed as an
unexpected, but critical aspect of the anti-bacterial response.

It is well-known that the activation of NLRP3 inflammasome
plays an important role in mucosal immune system, however,
the disturbed mucosal immunity may lead to the development
of auto-immune and inflammatory diseases. We speculate that
during the early stage of an inflammatory condition in the gut,
NLRP3 may still only engage IL-1β for downstream signaling.
But during chronic colitis, NLRP3 in infiltratedmyeloid cells may
also contribute to IL-18 production. Although studies on IL-18
and IL-1β have found some different results, the effect of these
cytokines in repair and restitution of the ulcerated epithelium
seems to come to light recently. In addition, pyroptosis has
been classified as a defense mechanism of the innate immune
system, and the cleavage of new gasdermin family-Gsdmd by
inflammatory caspases has also changed our understanding
of pyroptosis and programmed necrosis. More studies are
warranted to comprehensively explore the functions of these
effectors in IBD.

NLRP3 INFLAMMASOME IN GUT
HOMEOSTASIS AND IBD

The gastrointestinal environment is a continuous system, which
provides energy to the human body and aids in the elimination

of waste material. In addition, it prevents infection by providing
a vast array of immune cells within the mucosa of GI
tract targeting environment toxins and potential pathogens.
Accumulating evidence suggests that innate immune recognition
at mucosal surfaces particularly within the intestine is an
important mediator of intestinal homeostasis (74). Recent
studies have highlighted the role for NLRP3 inflammasome,
not only as being a crucial mediator of host defense but also
being a crucial regulator of gut homeostasis by controlling
integrity of the intestinal epithelium and modulating immune
responses to microbiota in the gut. However, researches on
NLRP3 inflammasome and IBD reported controversial data,
most of these studies adopted animal models and some used
IBD patients.

Human Studies
Recent genome-wide association studies have found that
polymorphisms conferring a hypofunctional NLRP3 phenotype
are associated with the development of CD, suggesting a
protective role for NLRP3 inflammasome in the pathogenesis
of CD, as shown in Figure 2. Previously, NOD2 and NLRP3
are both belong to the NLRs family, the NLR protein
CARD15/NOD2 has been reported to be correlated with CD (75).
Remarkably, Villan et al. (76) found that SNPs rs10733113 in the
NLRP3 gene region strongly contributed disease susceptibility
to CD, although Lewis et al. (77) could not replicate this
association in a Large UK Panel. Subsequently, Schoultz et al.
(78) have reported that men carrying with both the C10X allele
in CARD8, Q705K allele in NALP3, and wild-type alleles of
NOD2 demonstrated a disease susceptibility to CD in a cohort
of Swedish men, with an obvious sex difference in the genetic
susceptibility pattern. Moreover, recent findings suggested that
a loss function CARD8 mutation was also showed to activate
NLRP3 inflammasome and contribute to the development of
CD (79, 80). Lately, polymorphisms of the NLRP3 effector IL-
18(rs1946518 A>C, rs360718 A>C, and rs187238 G>C) were
reported to be associated with an increased susceptibility to
CD (81). Nonetheless, a lately study from China demonstrated
that both rs10925019 and rs10754558 could contribute the
susceptibility to UC, but not to CD in Han Chinese (82).
A recent GWAS meta-analysis has shown that SNPs that
affect receptors downstream of NLRP3, such as IL18R1, IL1R1,
IL1RL1, IL1RL2, and IL1R2, are associated with susceptibility
to IBD (83). In a lately case-control study, SNPs in NLRP3
(rs10754558) have been significantly associated with UC, as
“GG” genotype of rs10754558 was 2.48 times more common
among UC patients (P = 0.04), while “CG” genotype was more
frequently found in healthy subjects (84). These results suggest
that the polymorphisms of NLRP3 gene may lead to a decrease
in the expression of the NLRP3 inflammasome and affect genetic
susceptibility to IBD. Nevertheless, IL-18 has been found to be
elevated in patients with CD and to play a role in promoting
pathogenic T helper 1 (TH1) responses (85). And recent clinical
studies also showed an increased expression of proinflammatory
cytokines IL-1β secreted from colonic tissues and macrophages
of patients with IBD, and the increased IL-1β level is correlated
with the diseases severity of IBD (86, 87). Besides, a current
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FIGURE 2 | Polymorphisms of NLRP3 inflammasome related gene that affect genetic susceptibility to IBD.

study has reported a subtle difference between CD and UC in
the activation of NLRP3 inflammasome, which suggested that
NLRP3 inflammasome was activated in 60% of CD patients
compared to 28.6% of controls (p = 0.042) after peripheral
blood mononuclear cells stimulation, whereas no significant
difference was detected between UC and controls, and among
UC patients, NLRP3 activation was associated (p = 0.008) with
long-standing disease (>1.5 years), implying a differentiation
in the UC immunological profile during the progression of the
disease (88).

Animal Studies
Despite no model can perfectly imitate all clinical manifestations
and mechanisms of human IBD, various mice models of
experimental colitis have been developed to study the
mechanisms of human IBD. The dextran sodium sulfate
(DSS) model has been extensively used to explore immune
mechanisms of colitis. Oral administration of DSS can directly
damage the colonic epithelium and trigger inflammation by
destroying the compartmentalization of commensal bacteria in
the gut. This model exhibits some clinical features including
loss of weight, diarrhea, rectal bleeding and even mortality,
and the histopathological analysis shows extensive crypt and
epithelial cell damage, significant infiltration of macrophages
and neutrophils, tissue edema and ulceration (89), which are
similar to the pathological findings in IBD patients. Early studies
employing mutant mice confirmed that activated caspase-1
was crucial for DSS-induced inflammation, as mice deficient
in caspases-1 or NLRP3 experienced significantly less severe
pathology than wild-type (WT) mice, which was correlated
with reduced levels of IL-1β and IL-18, indicating that excessive
production of IL-18 could aggravate the DSS induced colitis
(90–92). Several articles have demonstrated that administration
of CAI, oroxylin A, or wogonoside could alleviate the severity
of experimental colitis, suppress the mucosal inflammation,
which might be attributed to its inhibition of NF-κB and NLRP3
inflammasome activation (93, 94). Remarkably, data are claiming

that the compound MCC950 can significantly suppress the
release of proinflammatory cytokines IL-1β, IL-18, and IL1-α,
contribute to inflammatory effects resulting from canonical
and non-canonical NLRP3 inflammasome activation in colitis
(93, 94). In contrast, recently a number of researches suggested
that NLRP3 inflammasome has the function of maintaining gut
homeostasis and aiding in protecting from colitis, which have
changed past views, suggesting its protective role in intestinal
inflammation. Mice deficient in NLRP3, Casp1/11, ASC, and
IL-1β have all demonstrated an increased susceptibility to
DSS-induced colitis, disease exacerbation and more frequent
mortality when compared to WT mice (62, 67, 95–97). Zaki
et al. (67) reported that after oral administration of DSS, mice
deficient in NLRP3 led to a loss of epithelial integrity, resulting
in systemic dispersion of commensal bacteria, massive leukocyte
infiltration in the colon and more severe colitis, and indicated
that the protective effect of NLRP3 inflammasome on colitis was
that it could promote the secretion of IL-18, and an injection
of exogenous recombinant IL-18 could partially alleviate the
inflammatory symptoms of DSS induced colitis. In addition,
Hirota et al. (95) reported that the protective anti-inflammatory
cytokines IL-10 and TGF-β decreased in the colon of NLRP3−/−

mice, whereas inflammation scores and MPO activity which
can reflect macrophage and neutrophils infiltration increased
as compared with WT mice, and mice deficient in NLRP3
also showed a decline in the ability to resist microbes, which
might be related to decreased B-defensins levels. Meanwhile,
once the NLRP3 inflammasome was activated, the production
of IL-1 β and IL-18 decreased in mice deficient in NLRP3,
further might hinder the repair mechanisms and increase the
permeability of intestinal epithelium (89). Noteworthy, one
recent study from Japan reported that after the induction of
oxazolone-induced colitis (a mouse UC model), NLRP3−/−

or Caspase-1−/− mice exhibited a higher sensitivity with an
enhanced expression of Th2 cytokine (including IL-4 and
IL-13) and a decreased production of mature IL-1β and IL-18
as compared to WT mice, and either exogenous IL-1β or
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IL-18 ameliorated the colitis (66). Besides, some studied have
showed that upon infection with the attaching/effacing intestinal
pathogen Citrobacter rodentium, mice deficient in NLRP3
and ASC displayed an increased bacterial colonization and
dispersion, more severe weight loss and exacerbated intestinal
inflammation as compared to WT mice, indicating an early
activation of NLRP3 in intestinal epithelial cells could limit
pathogen colonization and prevent subsequent pathology and
intestinal inflammation, and ascribed this protective effect to
the production of cytokines IL-1β and IL-18 (56, 98). These
findings reinforce the concept that innate immune recognition
at the epithelial barrier has a crucial function in the initiation
of protective immunity. Taken together, the consensus seems
that NLRP3 inflammasome activation likely triggers beneficial
responses following impairment of intestinal epithelial integrity,
and then promotes the replacement of damaged enterocytes,
which are involved in intestinal tissue repair mechanisms
following injury, at least in the initial stage of disease (part 2
of Figure 1).

NLRP3 INFLAMMASOME AND GUT
MICROBIOTA

More than 500 different species of bacteria live in human gut
and the number of bacteria is up to 1014 (99), this intestinal
microflora serves various roles including metabolic, protective,
and immunological functions (100). Indeed, microbiota itself
is a non-immune component of mucosal immunity, but it can
interact with the immune components of microbial immunity
such as immune cells and soluble factors. Dysregulation or
alterations in the microbiota composition may be involved
in the pathogenesis of IBD (101). In general, UC patients
have higher overall bacterial counts than CD patients. The
latter, however, exhibits a higher proportion of unclassified
Bacteroidetes spp. (102). Recent studies have suggested a key
role for NLRP3 inflammasome in shaping the composition
of the intestinal microbiota. Alterations in the quantity and
composition of the microbiota were also observed in NLRP3−/−

mice. Initially, it was found that there were more bacteria
in the colon of mice deficient in NLRP3 than that of WT
mice, and the analysis of colonic bacteria showed that these
increased bacteria in mice deficient in NLRP3 belonged to S.
thuringiensis, including different Clostridium, Rod bacteria, and
Proteobacteria (97). Besides, NLRP3−/− mice with an increased
susceptibility to colitis showed that altered B-defensins levels
were most likely due to an altered microbiota composition in
gut (95). Moreover, oral administration of DSS was thought to be
directly toxic to colonic epithelial cells and could trigger intestinal
inflammation by disrupting the composition of microbial in
gut (103). Additional studies subsequently speculated that the
results of different experiments might have been an artifact
of the differential constitution of microbiota between the WT
and knockout mouse lines. Further support comes from the
recent finding by Yao et al. using the gain of function NLRP3
R258W mice and monitoring their microbiota shift. They have
dissected a complex crosstalk between NLRP3 inflammasome

and gut microbiota. They also found that the hyperactive NLRP3
inflammasome, which led to a local over-production of IL-1β,
could maintain gut homeostasis and confer a strong resistance
to experimental colitis through a remodeled gut microbiota with
an enhanced anti-inflammatory capacity due to an increased
induction of regulatory T cells (48). Notably, it is recently
reported that intestinal commensal microbes can stimulate
excessive or persistent inflammation in genetically susceptible
individuals, which sheds light on the elucidation of the etiology
of IBD (104).

CONCLUSION

A properly mounted immune response is crucial for the body
to recognize and eliminate danger, and acute inflammation is
often self-limiting and is normally attenuated if stimuli are
removed, and then homeostasis can be restored and tissue
repair is initiated. But unresolved inflammation may result in
chronic autoimmune diseases, such as IBD (105). Population-
based studies have identified some potential risk polymorphisms
associated with IBD. The dysregulation of NLRP3 inflammasome
and its importance in maintaining intestinal health and mucosal
immune response have been demonstrated by mice models of
colitis. Undeniably, all studies have clearly indicated that NLRP3
inflammasome plays a key role in the pathogenesis of colitis
although the results are still controversial. Increasing evidence
suggested that its activation could exert an effective response
when the intestinal epithelial integrity was impaired, which
could promote a repairment and regeneration of the intestinal
mucosa, at least in the early stages of the disease. The different
results that might depend on variations in mouse/human
genetic backgrounds, differences in the composition of the gut
microbiota, choice of colitis models or approaches to induce
colitis (percentage of DSS, duration of DSS administration
and number of cycles) and so on. For instance, NLRP3
inflammasome will manifest as damage factor when 2% DSS
is administrated for 9 days, while it shows a protective effect
when classic 3–5% DSS is administrated for 5 days. Likewise,
different kinds of mice may cause different results too, most
studies about NLRP3 inflammasome were made in C57 mice,
while some researchers used BALB/C mice, these slightly
differencemight contribute to different experimental results. And
the composition of the intestinal microflora can significantly
influence disease severity in IBD models comparing WT and
NLRP3−/− mice. This may partially explain contradictory results
in different labs. Furthermore, studies of inflammasome in
CD and UC are not always consistent (82, 88). Another
explanation for the different results is that the activation of
NLRP3 inflammasome has a characteristic of location-specificity,
Lissner et al. (106) suggested that the activation of NLRP3
inflammasome in intestinal epithelium plays a protective role, as
it would maintain homeostasis through regulation of commensal
microbiota and eradication of harmful bacterial, and defensin
synthesis. However, once the epithelial barrier was disrupted (as
occurs in IBD patients and DSS-induced colitis models), the
microbiota would infiltrate into the lamina propria and recruit
immune cells, in such a case, its activation might well have a
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deleterious effect on mucosal inflammation. It is thus likely that
the activation of NLRP3 inflammasome in IBD leads to two
possibilities. First, the inflammasome enhances inflammation,
resulting in aggravation of colonic damage. Second, in response
to inflammation, the inflammasome ameliorates colitis and
then prevents further damage. Further studies are warranted to
define the precise role of NLRP3 inflammasome in non-inflamed
mucosa under steady state conditions and in IBD. The role of
NLRP3 inflammasome in IBD is just beginning to be clarified,
much is still unknown, and the differences between animal
and human experiments are waiting on further researches.
Undoubtedly, a clear understanding of both the basic physiology
and precise mechanisms of the NLRP3 inflammasome will guide
the development of future effective therapeutics for IBD.
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