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The lymphatic vasculature plays a crucial role in regulating the inflammatory response

by influencing drainage of extravasated fluid, inflammatory mediators, and leukocytes.

Lymphatic vessels undergo pronounced enlargement in inflamed tissue and display

increased leakiness, indicating reduced functionality. Interfering with lymphatic expansion

by blocking the vascular endothelial growth factor C (VEGF-C)/vascular endothelial

growth factor receptor 3 (VEGFR-3) signaling axis exacerbates inflammation in a

variety of disease models, including inflammatory bowel disease (IBD), rheumatoid

arthritis and skin inflammation. In contrast, stimulation of the lymphatic vasculature,

e.g., by transgenic or viral overexpression as well as local injections of VEGF-C, has

been shown to reduce inflammation severity in models of rheumatoid arthritis, skin

inflammation, and IBD. Strikingly, the induced expansion of the lymphatic vasculature

improves lymphatic function as assessed by the drainage of dyes, fluorescent tracers or

inflammatory cells and labeled antigens. The drainage performance of lymphatic vessels

is influenced by vascular permeability and pumping activity, which are influenced by

VEGF-C/VEGFR-3 signaling as well as several inflammatory mediators, including

TNF-α, IL-1β, and nitric oxide. Considering the beneficial effects of lymphatic activation in

inflammation, administration of pro-lymphangiogenic factors like VEGF-C, preferably in a

targeted, inflammation site-specific fashion, represents a promising therapeutic approach

in the setting of inflammatory pathologies.

Keywords: lymphatic vessels, lymphangiogenesis, inflammation, inflammatory bowel disease, arthritis, psoriasis,

skin, inflammatory mediators

INTRODUCTION

Inflammation is a defensive reaction of the organism against pathogens or irritants. It is
characterized by the five cardinal symptoms of rubor (redness), calor (increased heat), tumor
(swelling), dolor (pain), and functio laesa (impaired function), which are mostly mediated by
the expansion and activation of blood vessels. Inflammation is commonly associated with the
formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels from the
pre-existing vascular networks. Interestingly, while the activation of the blood vasculature has been
reported to aggravate inflammation severity in a variety of disease models (1–3), lymphatic vessels
generally appear to exert beneficial effects, possibly by improving the clearance of extravasated fluid,
thus reducing edema formation and levels of pro-inflammatory mediators as well as numbers of
immune cells.
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This review provides an overview of studies investigating
the role of lymphatic expansion and function in common
inflammatory diseases such as skin inflammation, inflammatory
bowel disease (IBD) and rheumatoid arthritis (RA). In addition,
the known effects of inflammatory mediators on the lymphatic
vasculature and commonly used mouse models are described.

The lymphatic vasculature is a hierarchically structured,
one-way circuit composed of initial capillaries, which lack
a continuous basement membrane and smooth muscle cell
coverage, draining into larger, smooth muscle cell-covered
collectors and ultimately lymph nodes. In the setting of
inflammation, the lymphatic system is critically important, as
it is needed to ensure tissue fluid homeostasis by draining
the larger amounts of extravasated fluid originating from
increasingly leaky, inflammatory blood vessels. Indeed, an
increased interstitial fluid pressure has been found to lead
to the dilation of initial lymphatic vessels, thus facilitating
the entry of fluid and inflammatory cells into the lymphatic
vasculature and thereby removal from the inflamed tissue
(4). In addition, lymphatic vessels are crucial for immune
surveillance, as they serve as main transport routes for cells
and inflammatory mediators to lymph nodes, where immune
responses are mounted.

The most-thoroughly characterized signaling axis involved in
lymphatic expansion and development consists of the vascular
endothelial growth factor receptor 3 (VEGFR-3) and its ligands
VEGF-C and VEGF-D. VEGFR-3 is part of the receptor tyrosine
kinase family and is expressed widely in vascular endothelial cells
during embryonic development, but becomes strongly restricted
to lymphatic endothelial cells (LECs) in the adult organism under
physiological conditions (5).

VEGF-C is the main ligand of VEGFR-3 and induces
proliferation and migration of endothelial cells (6, 7). It
undergoes extensive post-translational proteolytic processing,
which also regulates the molecule’s binding properties. Fully
processed VEGF-C binds VEGFR-3 and, albeit with a lower
affinity, VEGFR-2 (8). A mutated form of VEGF-C in which the
cysteine 156 is replaced with a serine (VEGF-C156Ser) selectively
binds VEGFR-3 (9).

VEGF-D has been reported to induce proliferation of
endothelial cells (10). In mice, VEGF-D exclusively binds
VEGFR-3, while fully processed human VEGF-D may also bind
VEGFR-2 (11).

In order to study the role of lymphatic vessels in different
pathologies, various mouse lines with a modified VEGFR-3
signaling axis have been generated. In K14-VEGF-Cmice, VEGF-
C is overexpressed under the control of the keratin-14 promoter,
resulting in elevated levels of the growth factor in the skin and
an enlarged dermal lymphatic vascular network (12). A similar
lymphatic hyperplasia has been observed in mice transgenic for
VEGF-D (K14-VEGF-D) (13). In contrast, mice overexpressing
a soluble form of VEGFR-3 in the skin (K14-VEGFR-3-Ig mice)
lack dermal lymphatic vessels and develop edema in the feet and
skin (14).

Apart from promoting or inhibiting lymphatic vascular
expansion, the clearance capacity of lymphatic vessels is subject
to regulation by various signals. Drainage performance is

influenced by vascular permeability and pumping activity of
lymphatic vessels. Mediators inducing increased lymphatic vessel
permeability include TNF-α, IL-1β, histamine, and the VEGF-
C/VEGFR-3 axis (15–17). Lymphatic contractions and thereby
pumping are negatively regulated by various inflammatory
mediators, including prostaglandins, histamine, and nitric oxide
(NO), while VEGF-C has enhancing effects (18–21). NO
regulates lymphatic vessel function via its effects on lymphatic
smooth muscle cells leading to vasodilation. It is produced
constitutively by the endothelial nitric oxide synthase (eNOS)
under physiological conditions. In inflammation, however, its
levels are elevated due to the higher expression of inducible
nitric oxide synthase (iNOS) on immune cells and inflamed
endothelium, which has been linked to reduced lymphatic
contraction frequency (22).

THE LYMPHATIC VASCULATURE IN
INFLAMMATORY DISEASES

Skin Inflammation
A wide range of skin pathologies including psoriasis, atopic
dermatitis, rosacea, and UV damage are characterized by
pronounced and often prolonged inflammation. The lymphatic
vasculature is often aberrant in inflamed skin; in human psoriatic
plaques for example, lymphatic vessels are dilated and tortuous
(23–25). Nevertheless, lymphatic dysregulation in the human
disease has attracted comparatively little attention.

Multiple mouse models have been established to facilitate the
study of these diseases in general and the role of the lymphatic
vasculature in particular. A common model are K14-VEGF-A
transgenic mice which overexpress VEGF-A under the control of
the keratin-14 promoter, resulting in chronically elevated levels of
said growth factor in the skin and a concomitant expanded, leaky
blood vasculature. Homozygous mice spontaneously develop a
chronic skin inflammation at the age of 6 months (26). In
hemizygous mice, a contact sensitizer (e.g., oxazolone) can be
used to trigger a contact hypersensitivity reaction (CHS), leading
to a similar chronic inflammatory skin disease (24).

In wild-type mice, skin inflammation may be elicited by
inducing CHS, exposure to UVB radiation, injection of bacterial
antigens like LPS or application of pro-inflammatory agents such
as tetradecanoylphorbolacetate (TPA) or imiquimod (27).

Using these models, skin inflammation has been extensively
studied in mice and the lymphatic vasculature has been
demonstrated to be functionally impeded in UVB-irradiated,
chronically inflamed ear skin. Evans blue injected into the
inflamed skin stained strongly dilated lymphatic vessels that were
extremely leaky, indicating reduced drainage capacity (1).

Stimulation of Lymphatic Vessels in Skin

Inflammation
Activating the lymphatic vasculature in the setting of skin
inflammation has been associated with reduced disease severity
(summarized in Table 1). In K14-VEGF-A mice that had
been crossed with K14-VEGF-C mice and were undergoing
chronic CHS of the ear skin, the lymphatic vasculature was
expanded and the inflammation, as assessed by edema formation,
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TABLE 1 | Effects of lymphatic vessel stimulation in inflammatory diseases.

Animal model Inflammatory

stimulus

Method of lymphatic

vasculature activation

Effects References

SKIN INFLAMMATION

K14-VEGF-A mice Oxazolone Transgenic VEGF-C delivery

(crossed with K14-VEGF-C

mice)

Reduced inflammatory edema and cell infiltration

Expanded skin lymphatic vasculature

Normalization of skin blood vasculature, epidermal

differentiation and proliferation

Improved lymphatic drainage function

(28)

Local injection of

recombinant

VEGF-C156Ser

Reduced inflammatory edema

Expanded skin lymphatic vasculature

Normalization of skin blood vasculature

Reduced inflammatory cell infiltration

K14-VEGF-C mice Injections of LPS

or LTA and MDP

Transgenic VEGF-C delivery Expanded lymphatic skin and LN vasculature

Increased inflammatory cell migration to LNs

Reduced inflammatory edema and erythema

Faster antigen clearance

(29)

TPA Increased clearance of lymphatic-specific tracer (30)

UVB irradiation Reduced inflammatory edema and epidermal

thickening

Expanded lymphatic vasculature

Improved lymphatic drainage function

(31)

Oxazolone Reduced inflammatory edema and epidermal

thickening

Expanded lymphatic vasculature

Lower levels of IL-1β and VEGF-A

K14-VEGF-D mice UVB irradiation Transgenic VEGF-D delivery Reduced inflammatory edema and epidermal

thickening

Expanded lymphatic vasculature

Improved lymphatic drainage function

(31)

Oxazolone Reduced inflammatory edema and epidermal

thickening

Expanded lymphatic vasculature

Wildtype mice UVB irradiation Local injection of

recombinant

VEGF-C156Ser

Reduced inflammatory edema and cell infiltration

Expanded lymphatic vasculature

(32)

INFLAMMATORY BOWEL DISEASE

Wildtype mice DSS Adenoviral delivery of

VEGF-C

Reduced colitis severity and inflammatory cell

infiltration

Increased lymphatic vessel density and proliferation

Improved lymphatic drainage function

Increased inflammatory cell migration to LNs

(33)

IL-10 knockout

mice

Lack of

anti-inflammatory

IL-10

RHEUMATOID ARTHRITIS

TNF-α transgenic

mice

TNF-α

overexpression

Adeno-associated viral

delivery of VEGF-C

Expanded lymphatic vasculature

Reduced synovial volume, bone and cartilage

erosion and osteoclast numbers

Improved joint movement and lymphatic clearance

function

(34)

iNOS inhibition Improved lymphatic clearance function

Restored lymphatic contractions

(35)

DSS, dextran sulfate sodium; LN, lymph node; LPS, lipopolysaccharide; LTA, lipoteichoic acid; LV, lymphatic vessel; MDP, muramyl dipeptide; TPA, tetradecanoylphorbolacetate.

inflammatory cell infiltrate, and altered epidermal proliferation
or differentiation, was significantly reduced compared to
control inflamed K14-VEGF-A mice. Strikingly, the vascular
expansion was accompanied by an improved lymphatic clearance
function. Local injections of VEGF-C156Ser had similar

disease-alleviating effects, indicating that VEGFR-3- rather than
VEGFR-2-mediated signaling is mainly responsible for the
observed anti-inflammatory effects (28). In agreement with this
observation, local injections of VEGF-C156Ser also triggered a
strong lymphangiogenic response and reduced inflammatory ear
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TABLE 2 | Effects of lymphatic vessel inhibition in inflammatory diseases.

Animal model Inflammatory

stimulus

Method of lymphatic

vasculature inhibition

Effects References

SKIN INFLAMMATION

K14-VEGF-A mice Oxazolone Blocking antibody to

VEGFR-3

Reduced lymphatic vasculature

Increased inflammatory edema and epidermal

thickening

(28)

Wild-type mice Injections of LPS

or LTA and MDP

Adenoviral VEGFR-3

overexpression

Delayed inflammation resolution

Reduced lymphatic drainage and inflammatory

cell migration

(29)

UVB irradiation Blocking antibody to

VEGFR-3

Increased inflammatory edema and

inflammatory cell invasion

(36)

INFLAMMATORY BOWEL DISEASE

Wildtype mice DSS Blocking antibody to

VEGFR-3

Increased colitis severity

Reduced lymphatic vessel density, LV

proliferation, lymphatic drainage function and

cell migration to LN

(33)

IL-10 knockout

mice

Lack of

anti-inflammatory

IL-10

Blocking antibody to

VEGFR-3

Increased colitis severity

Reduced lymphatic vessel density, LV

proliferation, lymphatic drainage function and

cell migration to LN

(33)

Increased colitis severity and edema

Enlarged lymphatic vessels

(37)

RHEUMATOID ARTHRITIS

TNF-α transgenic

mice

TNF-α

overexpression

Blocking antibody to

VEGFR-3

Reduced lymphatic vessel numbers and

lymphatic drainage

Smaller draining LNs

Increased joint inflammation

(38)

DSS, dextran sulfate sodium; LN, lymph node; LPS, lipopolysaccharide; LTA, lipoteichoic acid, LV, lymphatic vessel; MDP, muramyl dipeptide.

swelling and CD11b-positive immune cell infiltration in UVB-
irradiated ear skin inflammation (32).

These findings are in line with a different study investigating
the role of macrophages and lymphatic vessels in cutaneous
inflammation. K14-VEGF-C mice that were subjected to
lipopolysaccharide (LPS)- or lipoteichoic acid (LTA)/muramyl
dipeptide (MDP)-induced skin inflammation presented with an
expanded dermal and lymph node lymphatic vasculature. In
addition, inflammatory tissue swelling and skin reddening were
reduced. While no difference in FITC-dextran clearance was
found, inflammatory cell migration to the draining lymph nodes
and the drainage of fluorescently labeled antigen was significantly
accelerated in K14-VEGF-C mice. These effects appeared to be
dependent on macrophages, as clodronate-mediated depletion of
these cells reduced lymphangiogenesis and delayed inflammation
resolution (29). An enhanced lymphatic drainage function due
to lymphatic stimulation has also been reported in other studies,
e.g., after repeated application of TPA to the back skin of K14-
VEGF-C transgenic mice, in which a lymphatic-specific, near-
infrared tracer was cleared more rapidly than in wild-type mice
(30). Similarly, in a study of acute skin inflammation, both K14-
VEGF-C and, to a lesser extent, K14-VEGF-D transgenic mice
had improved clearance of Evans blue out of UVB-irradiated
ear skin (31). Moreover, these mice also had less inflammatory
edema and reduced epidermal thickening in oxazolone- and
UVB-induced skin inflammation. The reduction in inflammation
was generally more pronounced in VEGF-C transgenic mice

than in VEGF-D transgenic animals, indicating stronger anti-
inflammatory effects of VEGF-C (31).

Inhibition of Lymphatic Vessels in Skin Inflammation
In contrast to stimulation of the lymphatic vasculature, inhibiting
lymphatic vessels has been shown to aggravate skin inflammation
in several studies (summarized in Table 2). Antibody-mediated
blocking of VEGFR-3 strikingly reduced the number of lymphatic
vessels in the inflamed ear skin of K14-VEGF-A mice during
a CHS reaction. At the same time, tissue swelling, epidermal
thickening, keratinocyte proliferation and the numbers of
CD8- and CD11b-positive cells were significantly increased,
indicating a more severe inflammatory phenotype. Interestingly,
blocking VEGFR-2 alone or in combination with VEGFR-
3 alleviated inflammation, indicating that VEGFR-2-mediated
inhibition of blood vessels is beneficial in skin inflammation
and outweighs the detrimental effects of VEGFR-3 inhibition
(28). Similarly, adenoviral overexpression of a soluble VEGFR-
3 strongly reduced lymphangiogenesis in mice undergoing
LPS- or LTA/MDP-induced skin inflammation, resulting in
delayed inflammation-resolution, slower clearance of FITC-
dextran as well as FITC-labeled LPS, and reduced migration
of inflammatory cells from the skin to the draining lymph
nodes (29). Systemic, antibody-mediated inhibition of VEGFR-
3 also led to increased edema formation and CD11b-positive cell
numbers in UVB-irradiated ear skin (36).
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Inflammatory Bowel Disease
The term inflammatory bowel disease (IBD) comprises Crohn’s
disease (CD) and ulcerative colitis (UC), which are characterized
by a chronic inflammation of the digestive tract. While
UC generally affects the colon and presents with superficial
ulcerations of the mucosa and submucosa, CD may occur at any
location in the gastrointestinal tract and often causes transmural
inflammation. As in the case of skin inflammation, research
has long been focused on changes in the blood vasculature
and VEGF-A has been suggested as an important mediator of
IBD (39, 40).

In human patients suffering from IBD, lymphangiogenesis,
lymphatic vessel obstruction, dilation, and submucosal edema are
commonly observed (41–44) and abnormalities in the lymphatic
vasculature had already been recognized during the original
characterization of CD (45). In addition to morphological
alterations, the functionality of IBD-associated lymphatic vessels
is reduced. A study in patients with CD employed injections
of the lymphatic-vessel-staining Patent Blue V dye in the
inflamed colon and demonstrated morphological aberrations
and functional impairment of the lymphatic vasculature, which
could be correlated with disease severity. Strikingly, following
surgical intervention and inflammation regression, lymphatic
vessel appearance reverted back to normal, indicating that
lymphatic vessel function may be involved in IBD pathogenesis
in humans (46). In line with this, a lower density of lymphatic
vessels could be linked to an increased risk of CD recurrence (47).

A multitude of studies have been performed in mouse models
of IBD, the two most-commonly used being IL-10 knockout
mice and dextran sulfate sodium (DSS)-induced colitis. IL-10-
deficient mice spontaneously develop colitis at the age of 10–
12 weeks, most likely due to the lacking anti-inflammatory and
immunosuppressive activity of IL-10 (48, 49).

DSS-induced colitis relies on administration of the detergent
DSS in drinking water, which damages the intestinal epithelium,
most strongly in the distal colon, and compromises its barrier
function, making the underlying tissue accessible to bacteria and
associated substances. In order to model acute inflammation,
mice are commonly given DSS for a certain amount of time (e.g.,
a week), for chronic inflammation, mice receive multiple cycles
of DSS and intermittent regular drinking water (50, 51).

Stimulation of Lymphatic Vessels in Inflammatory

Bowel Disease
Akin to skin inflammation, inducing the lymphatic vasculature
is generally correlated with a reduction in inflammation severity
(summarized in Table 1).

In IL-10 knockout mice as well as in animals undergoing
DSS-induced colitis, adenoviral delivery of VEGF-C significantly
increased lymphatic vessel density and was associated with a
reduction in bodyweight loss and disease severity as assessed
by stool consistency and presence or absence of fecal blood.
Moreover, histological analyses revealed decreased submucosal
tissue edema and inflammatory cell infiltration, while the
proliferation of LECs was greatly increased. Quantification
of Evans blue clearance out of inflamed distal colon tissue
revealed an enhanced lymphatic drainage function, which was

also reflected in an improved clearance of fluorescently labeled
antigen-coated beads and an augmented inflammatory cell
migration from the inflamed tissue to the draining lymph nodes.
Similar to the observations in skin inflammation, depletion
of macrophages by clodronate largely abolished the protective
effects of VEGF-C (33). It has been suggested that VEGF-
C may influence the cytokine balance in the inflamed colon.
Indeed, in vitro experiments have shown VEGF-C to induce
the upregulation of IL-10 by bone marrow-derived macrophages
(33). In line with this, increased levels of IL-10 in combination
with a reduction of IL-9, which is associated with intestinal
barrier disruption, have been reported upon treatment with
adenovirally delivered VEGF-C inmice undergoingDSS-induced
colitis (52, 53).

Inhibition of Lymphatic Vessels in Inflammatory

Bowel Disease
Blocking VEGFR-3 resulted in a worsened colitis in IL-10
knockout mice as well as DSS-treated animals in terms of the
histological score (summarized in Table 2). Animals of both
models presented with strongly reduced lymphatic vessel density
and LEC proliferation upon VEGFR-3 inhibition. At the same
time, lymphatic clearance of Evans blue and bacterial antigen
as well as inflammatory cell mobilization to the draining lymph
nodes were significantly reduced (33).

In a different, independent study, IL-10 knockout mice were
treated with a blocking antibody to VEGFR-3. This resulted in
enlarged and tortuous lymphatic vessels in the colon, increased
submucosal edema and a higher leukocyte infiltration in the
inflamed tissue as well as a higher disease severity score (37).

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory disease
affecting the joints and characterized by episodic flares
(54). In its chronic stage, RA is commonly associated with
lymphadenopathy and a decrease in lymphatic drainage function,
as shown for example by tracking the drainage of intradermally-
injected, radioactively labeled albumin from the forearm (55).
Lymphangiogenesis is also commonly observed in the joints of
human RA patients and has been reproduced in mouse models
of the disease (56, 57).

Commonly used mouse models of rheumatoid arthritis
include TNF-α transgenic mice and K/B × N mice. The former
overexpress human TNF-α and spontaneously develop chronic
progressive joint inflammation at the age of ∼4 weeks (58). K/B
× N mice model the autoimmunity aspect of RA and are based
on a mouse line transgenic for a T cell receptor specific for
bovine ribonuclease. After breeding onto the NOD background,
accidental recognition of a NOD-derived antigen triggers the
onset of joint inflammation at 4 weeks after birth (59).

Lymphatic function has mainly been studied in these animals
and a two-phase model has been proposed [reviewed in (60)].
In an initial “expansion” phase during joint inflammation,
lymphangiogenesis and popliteal lymph node expansion with
or without increased lymphatic vessel contractions limit the
inflammatory response (57, 61, 62). During the following
“collapse” phase, popliteal lymph nodes shrink and lymphatic
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vessel contractions as well as lymphatic drainage function
decrease significantly. At the same time, the joint inflammation
increases in severity (61, 63–65). Blocking TNF-α signaling
resulted in increased lymphatic contractions and reduced joint
inflammation (66).

Similar changes in lymph node characteristics have also been
reported in human patients, where lymph node hypertrophy
could be observed in the vast majority of patients suffering from
active RA, while healthy individuals and patients in remission
showed no lymph node alterations (67).

Stimulation of Lymphatic Vessels in Rheumatoid

Arthritis
Stimulating the lymphatic vasculature has been associated with
reduced disease severity in animal models of RA (summarized
in Table 1). Adeno-associated viral (AAV) delivery of VEGF-
C in the inflamed ankle joints of 6-week-old TNF-α transgenic
mice partially reversed the inflammation-associated increase
in synovial volume and significantly improved leg mobility.
Histological analyses revealed that mice treated with VEGF-C
had less cartilage and bone destruction than animals injected
with a control vector. In chronic arthritis (mice at 5 months of
age), lymphatic drainage of indocyanine green (ICG) out of the
footpad was strongly decreased in TNF-α transgenic compared to
wild-type mice. AAV-mediated delivery of VEGF-C significantly
improved the clearance of ICG out of the paws and increased
the number of lymphatic vessels in the pannus of the inflamed
joint (34).

In an alternative approach, based on the observation that
increased levels of NO in inflammation reduce lymphatic
pumping, lymphatic vessel function was studied using inhibition
of NOS. Local application of L-N6-(1-iminoethyl)lysine 5-
tetrazole-amide (L-NIL), amoderately selective inhibitor of iNOS
(68), in TNF-α transgenic mice with collapsed lymph nodes
restored lymphatic contractions and strongly improved ICG
transport from the footpad to popliteal lymph nodes, while Nω-
nitro-l-arginine methyl ester (L-NAME), an unspecific inhibitor
of both eNOS and iNOS was not associated with beneficial effects
(35). Although the impact on disease severity in these mice was
not assessed in the study, it provides evidence that selective
inhibition of iNOS might offer an alternative and clinically
relevant approach for RA therapy.

Inhibition on Lymphatic Vessels in Rheumatoid

Arthritis
Inhibiting the lymphatic vasculature led to worsened
inflammation in mouse models of arthritis (summarized in
Table 2). Injecting TNF-α transgenic mice that had developed
joint inflammation with a VEGFR-3-blocking antibody for 2
months significantly reduced the number of lymphatic capillaries
in the draining popliteal lymph nodes and inflamed ankles.
Blocking VEGFR-3 also aggravated inflammation of the knee
and ankle joints, as the increase in synovial volume over time as
well as its absolute size were elevated in these animals compared
to IgG-treated controls. Similarly, histological analyses of
hematoxylin-eosin-stained sections revealed exacerbated
inflammation after VEGFR-3 inhibition. Akin to the effects

observed in chronic skin inflammation, blocking VEGFR-2 was
associated with a reduced inflammatory reaction, as assessed by
synovial volume and histological scoring. Lymphatic drainage
function, as assessed by tracking the ICG signal in paws and
draining popliteal lymph nodes following injection into the
footpad, was dramatically reduced upon blocking VEGFR-3 (38).

The Effect of Inflammatory Mediators on
the Lymphatic Vasculature
Inflammatory lymphangiogenesis is mostly mediated by VEGF-
A and VEGF-C which are produced by keratinocytes and stromal
cells like fibroblasts as well as immune cells, most importantly
macrophages (69–71). Indeed, several inflammatory mediators
have been found to induce VEGF-C transcription (72–74).

Macrophages are of critical importance, as demonstrated
in a model of IBD and LPS-induced skin inflammation,
where depletion of macrophages aggravated the inflammation
(29, 33). While VEGFs are important for inflammation-induced
lymphangiogenesis, there are many additional factors at play.
IL-17, a crucial cytokine in the pathogenesis of psoriasis for
example, has been shown to induce lymphangiogenesis in vitro
and in cornea micropocket assays (75), and IL-8 promoted
lymphangiogenesis in cell culture experiments and in an
animal model of lymphedema (76). Similarly, inhibition of
TGF-β, which mediates anti-inflammatory effects, supported
lymphangiogenesis in a mouse model of peritonitis and in
lymphedema (77, 78). In line with this, cytokines characteristic
for TH2 cells like IL-4 and IL-13, which are often linked
to inflammation resolution, inhibited lymphangiogenesis
(79). Interestingly, several inflammatory mediators have
anti-lymphangiogenic activity. Interferon-γ (IFN-γ), which
is produced by activated T cells, decreased lymphatic vessel
formation of both human and murine lymphatic endothelial
cells in vitro as well as in mouse lymph nodes (15, 80). Likewise,
TNF-α inhibited capillary formation and proliferation of mouse
LECs, while IL-1β had no consistent effects on proliferation, but
reduced barrier function of LECs (15). Indeed, inflammatory
mediators not only influence lymphangiogenesis, but also impact
lymphatic function more directly. Prostaglandins, IL-1β, IL-6,
and TNF-α reduced lymphatic pumping frequency (81, 82).
Similarly, inflammatory mediators affect lymphatic vessel
permeability, as demonstrated in vitro by assessing the effect
of a wide array of inflammatory mediators on rat lymphatic
endothelial cell monolayers, where IL-6, TNF-α, and IFN-γ
strikingly increased the permeability, probably by reducing
vascular endothelial (VE)-cadherin expression (83). Few studies
have addressed lymphatic vessel permeability in vivo, but
results of those that have showed impaired barrier function
as well as pronounced leakiness and reported VEGF-A as
important mediator of these effects, possibly by signaling via
VEGFR-2 (1, 84).

It is important to consider that cytokines and growth factors
often have pleiotropic effects, making it challenging to distinguish
between direct and indirect mechanisms. IL-17 for example has
been reported to induce VEGF-D expression, thereby triggering
lymphangiogenesis indirectly (75). The wide array of signaling

Frontiers in Immunology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 308

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Schwager and Detmar Inflammation and Lymphatic Function

FIGURE 1 | Effects of lymphatic vessel stimulation or inhibition on skin inflammation. Inflamed skin presents with epidermal thickening, edema and infiltration by

inflammatory leukocytes (e.g., CD8-positive cells or macrophages and granulocytes). Stimulation of the lymphatic vasculature alleviates inflammation, reducing

edema, epidermal thickening and inflammatory infiltration while improving lymphatic drainage, thus lowering the numbers of inflammatory cells in the inflamed skin.

Inhibition of the lymphatic vasculature aggravates inflammation and reduces lymphatic clearance.

molecules involved in inflammation as well as their different
and often pleiotropic effects on the lymphatic vasculature
result in a highly complex network of signals which is still
incompletely understood.

CONCLUSIONS

The lymphatic vasculature represents a crucial, although
often under-appreciated, player in inflammation. Lymphatic
vessels serve as the main transport route for inflammatory
mediators, fluid, antigen and immune cells, thus playing
a pivotal role in inflammation initiation and resolution.
Indeed, it has been controversial whether expansion of
the lymphatic endothelium contributes to inflammation by
facilitating transport of leukocytes to lymph nodes and mounting
of immune responses, or whether lymphatic vessels support
inflammation resolution by draining inflammatory mediators
and cells from the site of inflammation. However, in recent
years, a number of studies detailed above have reported alleviated
inflammation severity following activation and/or expansion
of the lymphatic vasculature (depicted for skin inflammation
in Figure 1), thus indicating that promoting the lymphatic
vasculature supports inflammation resolution and may represent
a valid therapeutic approach. It should be considered, however,
that VEGF-C/VEGFR-3 signaling itself might also account for
some of the anti-inflammatory effects observed in VEGF-C
transgenic mice, as it has been shown to reduce the production

of pro-inflammatory cytokines and protect mice from septic
shock (85).

Interestingly, the lymphatic vasculature is also affected
by established standard therapies used for the treatment of
inflammatory diseases, e.g., in RA, where blocking TNF-
α resulted in an increased lymphangiogenic response and
increased lymphatic contractions in the inflamed tissue
(66, 86). Other therapies aimed at blocking certain cytokines
(e.g., IL-17 in psoriasis) may also exert parts of their anti-
inflammatory effects by modulating the lymphatic vasculature.
Curiously, some anti-inflammatory agents have been associated
with anti-lymphangiogenic activity. Glucocorticoids reduced
lymphangiogenesis in cornea inflammation and chronic
airway inflammation mediated by M. pulmonis infection
(87, 88). In addition, prostaglandin E2, whose biosynthesis is
inhibited by cyclooxygenase (COX)-blocking non-steroidal
anti-inflammatory drugs (NSAIDs), has been reported to
induce VEGF-C expression and lymphangiogenesis in the
setting of lung cancer (73). Coherently, inhibition of COX-2
reduced tumor-induced lymphangiogenesis (89). A possible
explanation for these findings could be that potent therapeutic
agents inhibit inflammation strongly enough to also reduce
the concomitant inflammation-induced lymphangiogenesis.
Moreover, while prostaglandin E2 interferes with lymphatic
expansion, it has also been reported to inhibit lymphatic function
(81). Therefore, glucocorticoids and NSAIDs may improve
lymphatic clearance despite reducing lymphangiogenesis.
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However, further studies are needed to thoroughly investigate
these possibilities.

It is important to consider that immunomodulatory
properties of the lymphatic endothelium, which have received
increasing attention over the last decade, may explain the
observed anti-inflammatory effects of lymphatic vessel induction
at least partially. A good example is the receptor D6, which is
highly expressed by lymphatic endothelial cells and scavenges
inflammatory cytokines. Mice deficient for D6 suffered from
more severe skin inflammation and colitis compared to
wild-type animals (90, 91), hence, lymphatic expansion may
increase the levels of D6 and accordingly lower the levels of
inflammatory mediators in the inflamed tissue, resulting in
reduced disease severity. However, the immunomodulatory
roles of the lymphatic vasculature are outside the scope of
this review.

Although VEGF-C has been associated with anti-
inflammatory effects in a variety of diseases as described
above, its biological roles are highly complex and may be
organ- and disease-dependent. In the setting of experimental
obesity for example, transgenically overexpressed VEGF-C
induced pro-inflammatory macrophage chemotaxis, increased
weight gain and worsened metabolic parameters such as insulin
resistance (92). In contrast, blockade of VEGF-C and VEGF-D
by overexpression of a soluble form of VEGFR-3 reduced
macrophage infiltration and improved insulin sensitivity in
diet-induced obesity (93). Similarly, in tumor studies, VEGF-C
has been reported to induce tumor lymphangiogenesis and
stimulate the migration of macrophages (94), which may explain

the observed increase in tumor metastasis in VEGF-C transgenic
mice (95).

Applying VEGF-C in these diseases might be counter-
productive and these findings therefore highlight the complexity
of VEGF-C biology and emphasize the necessity of thoroughly
evaluating possible beneficial and detrimental effects of VEGF-C
in individual pathologies.

Considering all available data, the induction of
lymphangiogenesis and activation of the lymphatic vasculature
in the setting of inflammation appears to represent a potent
therapeutic approach. It is therefore striking that this strategy has
not been explored more thoroughly, let alone exploited clinically.
A major obstacle has been the lack of clinically feasible delivery
systems of lymphangiogenic factors. In a recent study, however, a
targeted F8-VEGF-C fusion protein that specifically accumulates
in the inflamed tissue was characterized and shown to reduce
inflammation in two mouse models of skin inflammation,
possibly filling this therapeutic gap (96).
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