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In this review we give an update on the mechanisms of naturally acquired immunity

against Streptococcus pneumoniae, one of the major human bacterial pathogens that is

a common cause of pneumonia, septicaemia, and meningitis. A clear understanding of

the natural mechanisms of immunity to S. pneumoniae is necessary to help define why

the very young and elderly are at high risk of disease, and for devising new prevention

strategies. Recent data has shown that nasopharynx colonization by S. pneumoniae

induces antibody responses to protein and capsular antigens in both mice and humans,

and also induces Th17 CD4+ cellular immune responses in mice and increases

pre-existing responses in humans. These responses are protective, demonstrating

that colonization is an immunizing event. We discuss the data from animal models

and humans on the relative importance of naturally acquired antibody and Th17 cells

on immunity to S. pneumoniae at three different anatomical sites of infection, the

nasopharynx (the site of natural asymptomatic carriage), the lung (site of pneumonia), and

the blood (site of sepsis). Mouse data suggest that CD4+ Th17 cells prevent both primary

and secondary nasopharyngeal carriage with no role for antibody induced by previous

colonization. In contrast, antibody is necessary for prevention of sepsis but CD4+

cellular responses are not. Protection against pneumonia requires a combination of both

antibody and Th17 cells, in both cases targeting protein rather than capsular antigen.

Proof of which immune component prevents human infection is less easily available,

but two recent papers demonstrate that human IgG targeting S. pneumoniae protein

antigens is highly protective against septicaemia. The role of CD4+ responses to prior

nasopharyngeal colonization for protective immunity in humans is unclear. The evidence

that there is significant naturally-acquired immunity to S. pneumoniae independent of

anti-capsular polysaccharide has clinical implications for the detection of subjects at risk

of S. pneumoniae infections, and the data showing the importance of protein antigens

as targets for antibody and Th17 mediated immunity should aid the development of new

vaccine strategies.
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INTRODUCTION

Streptococcus pneumoniae is a major cause of acute otitis
media, community-acquired pneumonia, bacterial sepsis, and
meningitis and is estimated to be responsible for over 800,000
deaths annually in children (1). S. pneumoniae strains causing
invasive infections are surrounded by a polysaccharide capsule
layer that inhibits innate and adaptive immune responses
to infection (2). The capsule has a varied biochemical
composition and antigenic structure between S. pneumoniae
strains, resulting in over 90 different capsular serotypes (3).
Serotype specific S. pneumoniae vaccines have been developed
using capsular antigen linked to carrier protein, termed
pneumococcal conjugated vaccines (PCVs), and these are highly
effective against the serotypes included in the vaccine (4–6).
However, there is still a high level of mortality and morbidity
due to S. pneumoniae infections due to the restricted serotype
coverage of PCVs resulting in serotype-replacement disease, and
their high cost leading to incomplete use of PCVs in low and
middle-income countries. In addition, PCVs are less effective at
preventing pneumonia compared to septicaemia and meningitis,
despite pneumoniamaking the largest contribution to the burden
of disease (1, 7, 8). Novel approaches are needed to overcome
the limitations of the present PCV. One way of identifying
new preventative strategies could be to define the mechanisms
of natural adaptive immunity to S. pneumoniae, which could
then be targeted to enhance immunity against infection in high-
risk groups such as children and older adults. In this review
we will discuss the evidence for naturally acquired adaptive
immunity to S. pneumoniae and the mechanisms by which this
maybe mediated.

CLINICAL AND EPIDEMIOLOGICAL
EVIDENCE FOR ADAPTIVE IMMUNITY TO
S. PNEUMONIAE

S. pneumoniae

Nasopharyngeal Colonization
Unlike some major bacterial respiratory pathogens such as
Mycobacterium tuberculosis, S. pneumoniae is also a ubiquitous
human commensal of the upper respiratory tract, specifically
of the nasopharynx. Colonization of the nasopharynx occurs in
the first years of life and repeatedly thereafter (9–11). Successive
episodes of colonization with different pneumococcal strains
occur in children up to 2 years of age (9, 10), with the point
prevalence of nasopharyngeal carriage estimated at 27–65%
among infants. This colonization prevalence decreases with age
to <10% during adult life (12–14), and even lower rates in
the elderly (15). This decline in colonization seems to have
a multifactorial nature, one element of could be maturation
of the immune system with age. The main nasopharyngeal
reservoir for the spread of S. pneumoniae is in children, and
consequently vaccination of children with PCV (which prevents
nasopharyngeal colonization) has resulted in significant herd
immunity against adult S. pneumoniae pneumonia (12).

Epidemiological Evidence for Naturally
Acquired Adaptive Immunity to
S. pneumoniae
Subjects with defects of their adaptive immune response
are more susceptible to S. pneumoniae infections. These
groups include people with genetic or acquired defects in
immunoglobulin production, and those who have severe defects
of adaptive immunity due to stem cell transplantation or
HIV infection (16–18). In addition, subjects with deficiencies
in the classical pathway of complement activation have a
massively increased incidence of pneumococcal septicaemia,
meningitis, and bacterial pneumonia (19). Although this will
reflect weakened complement-mediated innate immunity to
S. pneumoniae (20), the classical complement pathway is also
vital for antibody mediated killing of S. pneumoniae (2), and
hence the susceptibility of subjects with classical pathway defects
will partially reflect weakened antibody mediated immunity.
Furthermore, the incidence of S. pneumoniae infection with
age has a pronounced U shaped curve with the highest
incidence in infants and the elderly (21), a pattern that suggests
there is an adaptive immune response to S. pneumoniae
that improves in children with maturity then perhaps wanes
due to immunosenescence in the elderly. The frequency of
S. pneumoniae septicaemia associated with pneumonia is also
higher in infants than adults, indicating that in adults the
immune system is able to prevent spread to the blood from
the lungs. Overall, these epidemiological data indicate that there
is significant naturally acquired adaptive immunity that helps
prevent S. pneumoniae infections. Importantly, the incidence
of infection with all serotypes falls at the same time (22),
an epidemiological observation that suggests naturally acquired
resistance to S. pneumoniae infections is mediated by serotype
independent mechanisms rather than anticapsular antibody.

This evidence of naturally acquired adaptive immunity to
S. pneumoniae leads to the question of how this has developed?
Only a small proportion of humans have been exposed to
S. pneumoniae during invasive diseases such as septicaemia
and meningitis, and although many more humans will have
had an episode of S. pneumoniae pneumonia this would have
been with a single strain and capsular serotype. In contrast,
almost all humans have been exposed to S. pneumoniae via
nasopharyngeal colonization events onmultiple occasions and by
many different strains. Hence, if most (if not all) humans have
a naturally acquired serotype-independent adaptive immunity
to S. pneumoniae then this must have occurred because of
colonization rather than active infectious disease.

Evidence That S. pneumoniae

Nasopharyngeal Colonization Is an
Immunizing Event
Data obtained during natural and experimental human infection
and from mouse models have now shown conclusively that
colonization of the nasopharynx by S. pneumoniae is indeed
an immunizing event. Multiple longitudinal studies of serum
antibody responses in infants show the development of antibody
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responses to S. pneumoniae capsular and protein antigens
in serum and saliva after human colonization events (11,
14, 23, 24). In murine models, several authors have shown
both antibody and T-cell mediated immune responses develop
after a colonization event with S. pneumoniae or exposure
to S. pneumoniae antigens in the nasopharynx (25–32). In
addition, after successful experimental human colonization with
S. pneumoniae pre-existing antibody responses (33, 34) and
S. pneumoniae-specific blood and lung IL-17 producing CD4+

memory cells are increased (35), providing enhanced humoral
and cellular immunity. These data confirm that colonization
is an immunizing event, and this is supported by data from
infants showing gradual increases in anti-protein antigen IgG
responses with age and correlations between colonization events
and increases in anti-capsular antibody for several serotypes (11).

Mechanisms of Naturally Acquired
Adaptive Immune Protection Against
S. pneumoniae Infection
The data discussed above demonstrate that humans do
develop naturally acquired adaptive immune responses against
S. pneumoniae in response to nasopharyngeal colonization and
that these responses are likely to be protective. The adaptive
response to nasopharyngeal colonization by S. pneumoniae
includes acquisition of anti-capsular (14, 36, 37) and anti-protein
antibodies (38–40), as well as CD4+ cellular immune responses
targeting protein antigens alone (39, 41). The observation of
CD4+ cellular immune responses is important, as Th17 CD4+

responses are a common mechanism for pathogen clearance
at mucosal surfaces via rapid recruitment of neutrophils to
the site of infection, improved epithelial barrier function, and
increased secretion of antibacterial peptides (42, 43). However, to
effectively utilize these findings to design preventative strategies
against S. pneumoniae it is necessary to go one step further
and identify which of these responses actually protect against
S. pneumoniae infections.

All currently licensed pneumococcal vaccines use
polysaccharide capsular antigen, and capsular antibodies
against the capsule are highly protective against infection caused
by that serotype (5, 44, 45). As a consequence, historically
the literature has also emphasized the role of anti-capsule
antibodies as the mechanism for naturally acquired immunity
against S. pneumoniae (46). This is supported by the early
data showing that sera from survivors of severe S. pneumoniae
provided serotype-specific protection when used as a passive
antibody treatment (47–51). However, as mentioned above
the epidemiological evidence suggests that naturally acquired
immunity has a significant serotype-independent component.
Analysis of datasets from several countries (e.g., USA, Finland
and Israel), demonstrated a decrease in incidence of invasive
disease with age independent of increases in serotype-specific
antibody levels, suggesting a different mechanism of protection
such as acquired immunity to non-capsular antigens or
maturation of non-specific immune responses (22). Theoretical
modeling also suggested that only 30–60% of the reduction
in recolonization is led by anti-capsular immunity generated

during previous colonization events (52). Animal model data has
shown that antibody and more recently cell mediated immune
responses targeting protein rather than capsular antigens can
protect against S. pneumoniae infections, providing proof of
principle that these capsular-antigen independent mechanisms
could mediate naturally acquired immunity to S. pneumoniae
in humans (25, 26, 38, 53). Which proteins dominant the
human antibody response to S. pneumoniae protein antigens was
recently defined by Croucher using a proteome microarray that
displays more than 2,000 potential S. pneumoniae antigens. Of
these, 208 had significant IgG responses in sera obtained from
35 healthy US adults. About half of these antigens were allelic
variants of the highly variable surface proteins PspA, PspC,
ZmpA, and ZmpB expressed by different S. pneumoniae strains
(54). The remaining proteins recognized by human sera were
more conserved between strains and were enriched in motifs for
adhesion or degradation, cell wall metabolism, or solute binding
for transport. These results are consistent with a previous screen
reverse vaccinology approach that identified proteins recognized
by antibody in human sera which identified the proteins PspC
and PspA, along with PcsB and StkP (55). There are only limited
data on the identification of S. pneumoniae antigens that induce
Th17 CD4+ cell responses as this is technically difficult. The
available data was obtained in mice by screening of an expression
library containing >96% of predicted pneumococcal protein
and identified several proteins (including ABC transporter
lipoproteins) that induce Th17 responses after exposure to whole
pneumococci and as purified protein antigens, with little overlap
between with antibody-inducing protein antigens (56).

Overall, the data from human and animal studies show
colonization induces both anti-capsule and anti-protein antibody
responses, and in addition cell mediated immunity to protein
antigens. The anatomy, associated immunological tissues, and
interactions with soluble immune effectors in mucosal lining
fluid or in the plasma all vary between the common anatomical
sites of S. pneumoniae infection, creating potential variations
in the relative efficacy of different immune effectors for
controlling S. pneumoniae infection between anatomical sites.
Hence the following discussion of whichmechanisms of naturally
acquired adaptive immunity protect against S. pneumoniae is
divided into three representative sites of infection; (i) the
nasopharynx as a mucosal site colonized by S. pneumoniae; (ii)
the blood as a site of systemic invasive infection; and (iii) the
lungs as a deep site of mucosal infection intimately associated
with the systemic circulation, and also the site responsible for
the biggest burden of severe infections globally. In general, data
from animal studies (mainly inmice) can clearly define protective
mechanisms but is of more limited utility due to potential
differences in immune function between species. However, after
early childhood all humans have had multiple episodes of
S. pneumoniae colonization each of which will stimulate some
degree of immune response, and this background situation of
considerable prior exposure to S. pneumoniae over many years
is difficult to replicate in mouse models. Human data is directly
relevant but it is usually only possible to provide potential
correlations rather than direct proof between a specific immune
effector and protection against disease.
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Prevention of Subsequent Colonization
Mouse Data

Whether antibodies have an important role in controlling
a primary episode of nasopharyngeal colonization by
S. pneumoniae was investigated by McCool and Weiser
using murine models of infection and mice knock out strains
affecting specific aspects of antibody mediated immunity (38).
They established a murine model of colonization in xid mice,
which have a poor antibody response to polysaccharide capsule.
S. pneumoniae clearance from the nasopharynx was similar
in xid mice compared to wild-type mice. These results were
corroborated using uMT mice, which lack B cell and antibody
responses, which were also still able to clear S. pneumoniae
nasopharyngeal colonization. These results demonstrate that
antibody responses do not aid clearance of primary colonization
events, and have been confirmed by other studies (57). Instead,
protection against recolonization was lost in mice deficient in
CD4+ cells, highlighting the requirement of cellular immunity
rather than antibody in protection against recolonization
(58). Similar data were obtained using administration of the
S. pneumoniae antigen cell wall polysaccharide intranasally,
which inhibited subsequent colonization independent of
antibody but dependent on CD4+ cells (29). In addition, these
authors confirmed for the first time an important role for IL-17
in preventing colonization, although the exact mechanism by
which this cytokine provided protection was not determined.
Vaccination with killed unencapsulated S. pneumoniae also
induced Th17 CD4+ immunity which prevented nasopharyngeal
colonization with a heterologous S. pneumoniae serotype
(27, 59).

The data obtained from these studies indicated an important
role of CD4+ cells rather than antibodies for prevention of

a second episode of S. pneumoniae colonization, and this has
been confirmed by more detailed investigation in mice. Zhang
et al. demonstrated that the clearance of both the initial and
second episode of S. pneumoniae colonization in adult mice was
dependent on cellular responses rather than humoral immunity
(58, 60). Clearance of the initial episode of colonization involved
recruitment of monocytes/macrophages into the upper airway
lumen via a TLR2-dependent mechanism which required an IL-
17 secreting CD4+ cell population (57, 60). Prevention of a
second episode of colonization also required IL-17 and CD4+

cells, and was mediated by rapid neutrophil recruitment to
the nasopharynx. These findings are supported by other data
showing CD4+ cells and IL-17 are required for protection against
colonization and mediate the protective effect of immunization
with whole cell vaccines against colonization[28, 29, 31].

Overall, the murine data demonstrate that Th17 responses
to protein antigens are critical for controlling S. pneumoniae
colonization after a previous episode of colonization; subsequent
work has identified several protein antigens that are able to
induce Th17 mediated immunity but whether these antigens are
the same for different S. pneumoniae strains is not known (56).
These data do not preclude a potential role for vaccine induced
antibody for prevention of colonization after vaccination, and in
mice vaccination with protein antigens elicits protection against
S. pneumoniae colonization (61, 62) and passive immunization
with anticapsular antibodies prevents both colonization and
transmission between littermates (63, 64).

Human Data

As discussed above longitudinal studies have demonstrated that
antibodies to both protein and capsule antigens develop after
episodes of S. pneumoniae colonization. As a consequence adult

FIGURE 1 | Summary of what is known about the mechanisms of naturally acquired (as opposed to vaccine-induced) adaptive immunity to S. pneumoniae in mice

and humans for three representative sites of infection, the nasopharynx, the lungs, and in the blood. The references relevant for each statement are as shown.
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sera contains antibodies to multiple capsular S. pneumoniae
serotypes and one hundred or so protein antigens (11, 54). In
addition, different studies have identified Th17 CD4+ responses
to S. pneumoniae in adenoid tissue (65, 66), bronchoalveolar
lavage (35), and blood (31, 35, 67). Evidence for which of
these naturally acquired immune mechanisms can prevent
colonization in humans is less readily obtained. The impressive
reduction in S. pneumoniae vaccine serotype prevalence as
nasopharyngeal commensals in populations vaccinated with
PCV demonstrates that high levels of anti-capsular antibody
do prevent colonization (5–7). Recent data obtained using the
experimental human pneumococcal carriage model (EHPC)
and murine models suggest anticapsular antibody inhibits the
establishment of colonization by serotype-specific agglutination
of S. pneumoniae (63, 68). Whether the lower levels of anti-
capsular antibody induced by natural colonization rather than
vaccination with a PCV is enough to prevent colonization is
not clear.

The most important data on immune mechanisms that
prevent colonization in humans has been obtained using the
EHPC model. In this experimental human infection model,
human volunteers are inoculated intranasally with a serotype
6B strain leading to successful nasopharyngeal colonization
in approximately half of subjects (34). Previous colonization
prevented recolonization with the same strain (34). In this
model, all recruited subjects had detectable IgG levels to
S. pneumoniae antigens prior to nasopharyngeal administration
of S. pneumoniae, but anti-pneumococcal IgG levels did not
correlate with whether colonization was successful or not (34).
In contrast, a previous EHPC model suggested that antibodies
to the S. pneumoniae surface protein PspA correlated with
prevention of successful colonization, providing some evidence
that anti-protein antibody may prevent colonization (33).
Exposure to serotype 6B or 23F strains increased antibody
responses to multiple S. pneumoniae proteins (e.g., PspA, PspC,
PsaA, and PdB), with the highest increases in carriage positive
subjects (33, 34, 69). Systemic anti-capsule antibodies were
only detected in subjects that developed carriage after challenge
(34). S. pneumoniae specific IL-17 secreting CD4+ cells were
found in the lung prior to exposure to the 6B strain but were
increased in bronchoalveolar fluid 17-fold and in blood 8-fold in
volunteers in which colonization was successful (35, 69). Overall
these data confirm that pre-existing antibody and local CD4+

cellular immunity to S. pneumoniae are significantly boosted by
colonization events, and that this seems to prevent recolonization
for at least a period of several months. However, the data
are unable to define which of these immune mechanisms was
important for the prevention of recolonization.

Prevention of S. pneumoniae Septicaemia
and Meningitis
Mouse Data

Mouse data also clearly demonstrates that colonization of the
nasopharynx promotes protection against invasive disease, but
in contrast to prevention of colonization this is dependent on
antibody mediated immunity, not CD4+ cells. Cohen et al.

showed that a previous episode of colonization with the
S. pneumoniae D39 strain was highly protective against
subsequent lethal invasive pneumonia, with the major effect
being prevention of septicaemia (70). CD4+ depleted mice
were still protected against septicaemia, whereas no protection
was seen in antibody deficient mice, and passive transfer of
serum from colonized mice into immune naïve mice also
protected against S. pneumoniae septicaemia. Similarly, Bou
Ghanem et al found that previous colonization protected
against S. pneumoniae pneumonia with septicaemia caused by
the TIGR4 strain, with the most profound effect seen on
blood colony forming units (CFU) (71). Repeated episodes of
nasopharynx colonization in antibody deficient mice did not
induced any protection whereas protection persisted after CD4+

cell depletion, and the authors proposed long-lived antibody
secreting CD138+ cells were responsible for the protective effect
of prior colonization. These data demonstrating the important
role of antibody are perhaps not surprising as protection against
septicaemia in mice is dependent on soluble mediators such as
complement and naturally and induced antibody working in
concert with the reticuloendothelial system, especially the spleen
(72–74), rather than CD4+ Th17 mediated mechanisms.

Human Data

It was commonly accepted for many years that the major
mechanism of natural immunity against invasive pneumococcal
disease (IPD) was anti-capsular antibodies generated by previous
episodes of either colonization or infection (44, 48, 50).
However, this assumption has been progressively threatened
by epidemiological data as discussed above. More recently
experimental data by Wilson et al. has demonstrated that
antibody to protein rather than capsular antigen is a major
mechanism of naturally acquired immunity to S. pneumoniae
septicaemia and IPD (75). To do so the authors used Intravenous
Immunoglobulin (IVIG) which is used to prevent infections
in individuals with primary antibody deficiency (76, 77). IVIG
contains the pooled IgG from the plasma of approximately
a thousand donors who are unlikely to have been vaccinated
against S. pneumoniae due to their lack of risk factors, and
therefore contains the naturally acquired antibody repertoire
for the population from which the donors are obtained.
Antibodies to both S. pneumoniae capsule and multiple proteins
were detected in IVIG. Immunoblots against lysates from
different pneumococcal strains demonstrated a highly conserved
pattern of protein targets recognized by IVIG, including
major pneumococcal surface proteins such as choline binding
proteins and lipoproteins. Importantly, opsonophagocytosis of
S. pneumoniaewas improved against unencapsulated bacteria but
reduced when anticapsular antibody was depleted from the IVIG
preparation. IVIG was highly protective against S. pneumoniae
septicaemia inmousemodels, even after depletion of anticapsular
antibody. These data demonstrate there is a high level of naturally
acquired antibody to S. pneumoniae protein antigens in adult
sera that promotes bacterial clearance during sepsis. In addition,
passive vaccination of mice with sera obtained from human
EHPC subjects colonized with the serotype 6B strain conferred
protection against the D39 serotype 2 strain in a pneumonia
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model in which lethality is driven by septicaemia (34). The data
from these two studies provide direct proof that antiprotein
antibody is an important mechanism of naturally acquired
immunity to S. pneumoniae systemic infection.

Prevention of S. pneumoniae Pneumonia
The nasopharynx represents a mucosal site of infection, and
septicaemia a systemic site, whereas the commonest site of
serious infection, the lungs, represents a combination of the
two. In the early stages of pneumonia infection is limited to
interactions with the mucosal surface, which are similar to those
found in the nasopharynx. As the infection develops there is
a breakdown in the epithelial/endothelial barrier function and
cellular recruitment to the alveoli, recruiting systemic soluble
and white cell-mediated immune mechanisms to the alveoli.
Hence, both mucosal and systemic mechanisms of adaptive
immunity could potentially have roles in protection against
S. pneumoniae pneumonia.

Mouse Data

Several studies have examined the role of colonization-induced
immunity for protection against pneumonia in murine models.
In a murine model of asymptomatic carriage with the D39
strain the number of CFU recovered from lung was reduced
compared to control mice after a lethal pneumonia invasive
challenge suggesting that colonization does improve local lung
immunity against S. pneumoniae pneumonia (26). The authors
also showed increased levels of IL-17A and CD4+ cells in
lungs of previously colonized mice, indicating a potential role
for T cell mediated immunity for prevention of pneumonia.
These data were developed by Wilson et al. using a non-
invasive S. pneumoniae serotype 19F strain that only causes
lung infection without sepsis to allow lung immunity to be
assessed separate to protection against systemic infection (25).
Prior colonization protected against subsequent pneumonia,
with a marked reduction in lung CFU. Additional experiments
demonstrated that B cells, CD4+ and IL-17 were each necessary
for protection against S. pneumoniae pneumonia caused by
the 19F strain. These results suggested that naturally acquired
protective immunity to S. pneumoniae pneumonia required
a combination of both humoral immunity and Th17 CD4+

cells. Protection also required neutrophils, presumably as the
main mechanism of bacterial killing, and previously colonized
mice seemed to have a more rapid influx of neutrophils into
the lungs during S. pneumoniae pneumonia compatible with
improved local Th17 immunity (58). There was no detectable
anti-capsular IgG responses after colonization. This suggested the
humoral component of protection against pneumonia required
anti-protein antibodies instead, and in agreement with previous
mouse and human colonization models (28, 31, 69) the authors
detected antibody responses to the important surface protein
antigens PsaA, PhtD, and PpmA.

Two additional papers have also demonstrated an important
role for Th17 CD4+ cells induced by prior exposure to
S. pneumoniae for protection against subsequent severe
S. pneumoniae pneumonia (78, 79). In both these papers
protection was seen against pneumonia caused by a different

capsular serotype, demonstrating that it was dependent on
recognition of protein antigens. Smith et al. used prior exposure
to S. pneumoniae through self-limiting lung infection rather
than colonization, and demonstrated that protection was specific
to S. pneumoniae and required administration of live rather
than dead bacteria, suggesting bacterial replication within the
respiratory tract was necessary. Importantly, they identified a
population of tissue resident memory T cells within the lungs that
mediated the antigen specific Th17 immunity to S. pneumoniae
and that was restricted to the lobe that had been previously
exposed to S. pneumoniae. It remains to be seen whether the low
quantities of bacteria that reach the lung due to microaspiration
from “pure” nasopharyngeal colonization are also sufficient to
induce this population of lung tissue resident memory T cells.

Human Data

The increased incidence of lung infection in patients with
immunoglobulin deficiencies (16, 80), HIV infection (81), or
inherited disorders affecting IL-17 pathways [e.g., hyperIgE
syndrome (82)], do indicate roles for both antibody and Th17
CD4+ cells for protection against S. pneumoniae pneumonia in
humans as well as mice. However, these data are confounded by
the presence of additional immune effects for each condition,
with even immunoglobulin deficiencies resulting in functional
impairment of S. pneumoniae-specific CD4+ cells (83). As
previously mentioned, data obtained using bronchoalveolar
lavage fluid has confirmed there are pre-existing CD4+ cells
present in the human lung that produce IL-17 (and often
TNFalpha) when stimulated with S. pneumoniae (36). The
authors demonstrated that IL-17 improved S. pneumoniae
killing mediated by either macrophages or neutrophils (31),
providing an additional mechanism by which IL-17 can assist
immunity to extracellular bacteria. BALF also contains antibody
to S. pneumoniae protein and capsular antigens (33, 34, 69).
Hence the human data has identified local pulmonary Th17
CD4+ and antibody specific for S. pneumoniae that are boosted
by nasopharyngeal colonization which could potentially assist
lung immunity to pneumonia as has been described in mouse
models. However, the additional step of identifying which
of these immune responses is actually protective against S.
pneumoniae lung infection in humans is not easily achieved.

Implications of Data on Naturally Acquired
Immunity to S. pneumoniae
As described above murine studies have defined how naturally
acquired immunity due to prior colonization can protect against
S. pneumoniae infections, and much of the data has been
reinforced by epidemiological and experimental data obtained
from humans. These mechanisms are summarized in Figure 1.
In this last section, we will discuss how the data on naturally
acquired infection may effect vaccination strategies and our
understanding of the mechanisms underpinning susceptibility to
S. pneumoniae in high risk groups.

In children, pneumococcal colonization events occur
frequently and as discussed above this is necessary for the
development of immunity against S. pneumoniae. During
adulthood, colonization rates hugely decrease (15, 36, 84), but
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the data from the EHPC model clearly show that a colonization
event still stimulates a boost to the pre-existing immune
responses (34, 35, 69). Hence colonization has significant
immune benefits to the host that could be affected if the
ecology of S. pneumoniae colonization is altered. Multiple
studies have indeed shown that routine PCV vaccination in
children has profound effects on S. pneumoniae colonization,
with hugely decreased carriage rates of the serotypes present in
the vaccine (5, 6). However, there has been a parallel increase
in colonization with non-vaccine serotypes reported to have
a lower invasive disease potential (85, 86), and this alteration
of carriage serotype ecology in favor or less invasive serotypes
should also maintain the beneficial effects of colonization
on natural mechanisms of immunity. If more aggressive
preventative strategies reduce overall S. pneumoniae carriage
rates then there might be a reduction in the strength of naturally
immunity, and potentially a paradoxical increase risk of infection
in adults.

The data on naturally acquired immunity should also
help identify why certain risk groups such as the elderly,
patients with chronic lung disease, or HIV infection are highly
susceptible to S. pneumoniae infections. Studies performed both
in mice and patients have highlighted the phenomenon of
immunosenescence (87, 88), including an increase in baseline
inflammation that seems to impair the development of immunity
against S. pneumoniae after colonization (88, 89). In the elderly
the reduced frequency of colonization events (15, 90) and
the decreased levels and activity of IgM memory B cells (91)
could also have an impact on colonization-induced immunity to
S. pneumoniae. Streptococcus pneumoniae specific CD4 responses
are dysregulated by HIV infection (92), and these may underpin
the greatly increased susceptibility of HIV positive subjects to
S. pneumoniae infections. How age and comorbidity affects
naturally acquired adaptive responses needs to be clearly defined
so that there is a much clearer understanding why these groups
are highly susceptible to S. pneumoniae. Effective methods
of measuring the strength of antiprotein and CD4+ cellular
immune response to S. pneumoniae could also considerable
improve our ability to measure susceptibility to this pathogen,
which at present depends on measuring anticapsular antibody
levels alone.

The recognition that there is a significant element on
natural adaptive immunity to S. pneumoniae should also provide
opportunities for new strategies of vaccination for prevention of
S. pneumoniae infections. Firstly, strategies could be developed
that boost existing naturally acquired immunity, especially
in high risk subjects. Secondly, by knowing the mechanisms
required for preventing specific diseases such as pneumonia these
could be targeted by novel vaccines, for example by aiming
to induce CD4+ cellular (mainly Th17) mediated immunity.
Furthermore, the recognition that protein antigens in humans
can provide significant immunity should boost research into
vaccines that induce immune responses to protein antigen.

SUMMARY

This review has discussed the induction and mechanisms of the
naturally acquired immune response to S. pneumoniae. Multiple
lines of evidence from animal experiments and in humans have
convincingly demonstrated that nasopharyngeal colonization
stimulates significant levels of naturally acquired immunity to
S. pneumoniae that helps prevent subsequent colonization events
as well as systemic and pulmonary infections. The mechanisms
involved in preventing infection depends on anatomical site,
with an emphasis on antibody during systemic infection and
on Th17 CD4+ cells for mucosal infection, with pneumonia
seemingly a combination of the two. In contrast to previous
assumptions, antibody to protein as well as capsular antigens
has an important role. Future work is required to delineate
which protein antigens are the most important for protective
immunity and whether there are important roles for other
cellular immune mechanisms [e.g., Tregs, which have been
shown to be important for innate immunity (93)] as well as
Th17 CD4+ cells. Overall, these findings may lead to a much
better understanding of why certain patient groups are at high
risk of S. pneumoniae infection and should help improve future
vaccine strategies.
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