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Immunotherapy is a clinically validated treatment for many cancers to boost the

immune system against tumor growth and dissemination. Several strategies are used

to harness immune cells: monoclonal antibodies against tumor antigens, immune

checkpoint inhibitors, vaccination, adoptive cell therapies (e.g., CAR-T cells) and cytokine

administration. In the last decades, it is emerging that the chemokine system represents

a potential target for immunotherapy. Chemokines, a large family of cytokines with

chemotactic activity, and their cognate receptors are expressed by both cancer and

stromal cells. Their altered expression in malignancies dictates leukocyte recruitment

and activation, angiogenesis, cancer cell proliferation, and metastasis in all the stages

of the disease. Here, we review first attempts to inhibit the chemokine system in cancer

as a monotherapy or in combination with canonical or immuno-mediated therapies. We

also provide recent findings about the role in cancer of atypical chemokine receptors that

could become future targets for immunotherapy.

Keywords: immunotherapy, cancer related inflammation, atypical chemokine receptor, chemokine receptor,

chemokine

ROLE OF CHEMOKINES IN TUMORS

Inflammation is an essential component of the tumor microenvironment and one of the hallmarks
of cancer (1, 2). Chemokines, are a family of small, secreted, and structurally related cytokines
with a crucial role in inflammation and immunity (3). They are also key mediators of cancer related
inflammation being present at tumor site for pre-existing chronic inflammatory conditions but also
being target of oncogenic pathways (4). Initially identified with a prominent role in determining the
composition of tumor stroma, they were found able to directly affect cancer cell proliferation and
metastasis (5, 6).

Leukocyte Recruitment
The proper movement of immune cells is orchestrated by the spatial and temporal expression
of chemokines. Inflammatory CC (CCL2, CCL3, CCL5) and CXC (CXCL1, CXCL2, CXCL5,
CXCL6, and CXCL8) chemokines recruit at the tumor site CCR2+ monocytes and CXCR2+

neutrophils that differentiate into tumor associated macrophages (TAMs) and tumor associated
neutrophils (TANs), exerting pro- or anti-tumoral role (7–10). Some chemokines present at tumor
site can modify leukocyte activation, for instance CXCL16 acting on CXCR6 induces macrophage
polarization toward a pro-tumoral phenotype in solid tumors (11, 12). CXCL9 and CXCL10 are
strongly associated with Th1 immune response by recruiting NK cells, CD4+ Th1 and CD8+

cytotoxic lymphocytes, which can elicit antitumoral responses (13, 14). Moreover, potent attractant
of dendritic cells (DC) are CCL20, CCL5, and CXCL12 (15); CCL21 and CCL19 recruit CCR7+ DC
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but also regulatory T cells (Tregs) (16, 17). CCL17 and CCL22
acting on CCR4 can directly recruit Tregs and Th2 lymphocytes,
that promote tumor growth and proliferation (18).

Angiogenesis
Both CC and CXC chemokines play a critical role in
tumor angiogenesis, essential for tumor growth and metastatic
spreading (19, 20). CXC chemokines, based on the presence of
glutamic-leucine-arginine (ELR) motif at the N-terminal, can
be divided in ELR+ chemokines with angiogenic and ELR−

chemokines with angiostatic effects. CCL2, CCL11, CCL16,
CCL18, and CXCL8 promote tumor angiogenesis and endothelial
cell survival (21, 22). Moreover, CXCL16 interacting with
CXCR6, acts as a potent angiogenic mediator (23). CXCL12
and CCL2 can promote angiogenesis and inhibit apoptosis of
endothelial cells by directly binding their receptor (CXCR4 and
CCR2, respectively) expressed on tumor vessels or indirectly
promoting the recruitment of leukocytes (24, 25). On the
contrary, chemokines, such as CCL21 and ELR− chemokines
(CXCL4, CXCL9, CXCL10, and CXCL11) inhibit angiogenesis
and endothelial cell proliferation (26).

Tumor Growth and Proliferation
Chemokines produced by tumor itself, cancer-associated
fibroblasts and infiltrating leukocytes (27, 28), through the
binding of chemokine receptors expressed by tumor cells,
directly promote cancer cell proliferation activating different
signaling pathways, such as PI3K/AKT/NF-κB and MAPK/ERK
pathway (29–31). Additionally, they can promote tumor cell
survival by preventing their apoptosis and regulating the balance
between pro- and anti-apoptotic molecules (e.g., downregulation
of Bcl-2 expression or inhibition of caspase-3 and caspase-9
activation) (32, 33).

Metastasis
Chemokine receptors expressed by cancer cells promote their
migration to metastatic sites (34). Chemokines and chemokine
receptors involved in this phenomenon are several: CCR7
mediates the migration of tumor cells to lymph nodes where
their ligands, CCL19 and CCL21, are produced (34, 35).
The CCR10/CCL27 axis facilitates the adhesion and survival
of melanoma cells during metastatic spreading (36). CCL28
promotes breast cancer growth andmetastasis spreading through
MAPK/ERK pathway (37). Finally the chemokine receptor
CXCR5 and its ligand CXCL13 support bone metastases in
prostate cancer (38). However, the main player of this process is
the CXCL12/CXCR4 axis. In several tumors, CXCR4 expression
endows cancer cells with the ability to migrate and metastasize
into organs secreting high levels of CXCL12 (6, 39).

CHEMOKINES IN CANCER THERAPY

Targeting the immune system represents a concrete approach
against cancer (40–42). Starting from Coley’s toxin development
in 1893, many strategies have been set to enhance the antitumor
activity of leukocytes (42, 43). Given that chemokines and their
receptors have been found involved in several aspects of cancer

biology, their possible targeting was evaluated inmany preclinical
studies and clinical trials (Table 1 and Figure 1). Actually, a
monoclonal antibody (anti-CCR4 mAb, Mogamulizumab) and
a chemokine receptor inhibitor (CXCR4 antagonist AMD3100)
are already in the clinical practice for hematological malignancies
(see below).

CCR1
Inhibition of CCR1 reduces cancer growth and metastatization
mainly by targeting myeloid cells. In mouse models of Multiple
Myeloma (MM) the CCR1 antagonist CCX721 reduced tumor
growth and osteolysis targeting osteoclasts and their precursors
(44, 45). The same effect was also given by blocking the
CCR1 ligand CCL3 that is highly produced by MM cells
(95). In a murine model of colon cancer liver metastasis, the
CCR1 antagonist BL5923 inhibited metastasis by limiting the
recruitment of immature myeloid cells (46). The CCR1 receptor
antagonist CCX9588 was recently used in combination with
anti-PD-L1 in a murine model of breast cancer showing a
synergistic antitumoral effect by reducing the myeloid infiltrate
(47). Due to the fact that CCR1 antagonists did not show
adverse effects when used in autoimmune disease patients (96),
they are ideal candidates to modulate the myeloid infiltrate in
combination treatments.

CCR2 and CCL2
Interference with the CCL2/CCR2 axis exerts antitumoral
activity in many cancers for the reduced recruitment of
monocytes with pro-tumorigenic and pro-metastatic activities.

Many data are available in the context of pancreatic tumors.
In a preclinical model, the oral CCR2 inhibitor PF-04136309
reduced the number of TAMs and exerted a modest effect on
tumor growth when used alone, while it acted synergistically
with the chemotherapeutic drug Gemcitabine (GEM) (48).
Encouraging results of a Phase Ib/II trial with pancreatic
cancer patients, in which PF-04136309 is used in combination
with nab-Paclitaxel [(PTX), a nanoparticle albumin-bound
formulation of PTX able to induce TAM activation toward an
M1 like phenotype] (97), and GEM, were recently published
(NCT02732938) (49). The same inhibitor was used in another
clinical trial (NCT01413022) performed on borderline resectable
or locally advanced pancreatic ductal adenocarcinoma patients
in combination with the standard chemotherapy FOLFIRINOX
(FX). Preliminary results demonstrated that the combination
therapy increased the percentage of objective responses (51).
Another CCR2 inhibitor, CCX872, is really promising in
the context of pancreatic tumors. In a preclinical setting,
it improved the efficacy of the anti-PD-1 treatment (50)
and positive results were also obtained in a clinical trial
(NCT02345408) when used in combination with FX (53).
In murine models of hepatocellular carcinoma (HCC), CCR2
targeting with the antagonists RDC018 or 747 in combination
with Sorafenib, reduced tumor growth and metastasis with
a corresponding decrease in macrophage infiltration (52, 54).
In prostate and breast cancer, CCR2 was found expressed by
tumor cells and to promote cancer growth and migration (98,
99). However, targeting CCL2 with the humanized monoclonal
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TABLE 1 | Chemokine and chemokine receptor inhibitors in preclinical models and clinical trials.

Preclinical models Clinical trials

Target Inhibitor Tumor model References Inhibitor Tumor type References

CCR1 CCX721 Multiple myeloma (44, 45)

BL5923 Colon cancer liver

metastasis

(46)

CCX9588 + anti-PD-L1 Breast cancer (47)

CCR2 PF-04136309 + GEM Pancreatic cancer (48) PF-04136309+nab-

PTX+GEM

Pancreatic cancer NCT02732938; (49)

CCX872 + anti-PD-1 Pancreatic cancer (50) PF-04136309 + FX Pancreatic ductal

adenocarcinoma

NCT01413022; (51)

RDC018 Hepatocellular carcinoma (52) CCX872 +FX Pancreatic cancer NCT02345408; (53)

747 + Sorafenib Hepatocellular carcinoma (54)

iCCR2 Ovarian cancer (55)

CCL2 CNTO 888 + radiotherapy Breast cancer (56) CNTO 888 Solid tumors NCT00537368

CNTO 888 Metastatic prostate

cancer

NCT00992186;

(57, 58)

CCR4 Anti-CCR4 CAR-T cells T cell malignancies (59) Mogamulizumab Relapsed/refractory

Affi 5 Renal tumor (61) ATL (60)

AF399/420/1802 Melanoma, lung tumor and

CRC

(62) Mogamulizumab CTL NCT01728805; (63)

CCR5 Maraviroc CRC (64) Maraviroc +

chemotherapy

CRC NCT01736813; (64)

CCR7 siRNA Metastatic CRC and

prostate cancer

(65, 66)

MSM R707 Metastatic T- ALL (67)

CXCR2 Cxcr2−/−
+ PTX Breast cancer (68) AZD5069 Pancreatic cancer NCT02583477

Navarixin + anti-MEK Melanoma (69) Reparixin + PTX Breast cancer NCT02370238; (70)

SB225002 + Sorafenib Ovarian cancer (71)

Reparixin + 5-fluorouracil Human gastric cancer (72)

Cxcr2−/− Pancreatic cancer (73)

Cxcr2−/−
+ anti-PD-1 Pancreatic cancer (74)

SB225002+RS504393+FX Pancreatic cancer (75)

SB265610 + Docetaxel Prostate cancer (76)

CXCR4 AMD3100 + Ara-C AML (77) AMD3100 Relapsed AML NCT00512252; (78)

LY2510924 AML (79, 80) LY2510924 CRC, lung, breast,

prostate cancer

NCT02737072; (81)

BKT140 + Rituximab NHL (82) BMS-936564 AML NCT01120457; (83)

AMD3465 GBM and Medulloblastoma (84) PF-06747143 Hematologic

malignancies

NCT02954653

POL5551 + anti-VEGF GBM (85, 86) USL311 + Lomustine Solid tumors and GBM NCT02765165

AMD3100 Ovarian cancer (87) Balixafortide + Eribulin HER2− metastatic

breast cancer

NCT01837095; (88)

AMD3100 + anti-PD-L1 Pancreatic cancer (89) AMD3100 Recurrent GBM NCI2012-00149;

AMD3100 + VIC-008 Mesothelioma (90) NCI2013-02012

PRX177561+Bevacizumab+

Sunitinib

GBM (91)

ACKR2 Ackr2 −/− Metastatic breast cancer

and melanoma

(92, 93)

ACKR3 X7Ab + Temozolomide GBM (94)

CCL2 neutralizing antibody CNTO 888 in a phase I trial
(NCT00537368) in solid tumors and in a phase II trial
(NCT00992186) in metastatic prostate cancer, was unsuccessful
due to ineffectiveness of CNTO 888 in reducing CCL2 serum

level (57, 58). More recent preclinical data indicated that
in breast cancer models inhibition of CCL2 improved the
response to radiotherapy (100) and was effective in preventing
metastasis (56), but its discontinuation caused a rebound in
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FIGURE 1 | Chemokine receptor inhibitors in cancer. Inhibitors of CC- and CXC-chemokine receptors tested in different tumor types in preclinical models and clinical

trials (*). GEM, Gemcitabine; PTX, Paclitaxel; FX, FOLFIRINOX.

the number of circulating monocytes increasing metastatic
spreading. Finally, in ovarian cancer, a CCR2 inhibitor enhanced
peptide vaccination (55). All these data suggest that targeting the
CCL2-CCR2 axis could be effective especially in combination
therapies but attention has to be given to fluctuations in the
number of circulating monocytes that can produce controversial
effects (56).

CCR4
CCR4 is overexpressed in many hematologic malignancies
such as Adult T-cell leukemia (ATL) and Cutaneous T-
cell lymphoma (CTL). The human anti-CCR4 antibody
Mogamulizumab eliminates tumor cells via antibody-dependent
cellular cytotoxicity (ADCC) and is actually in use in Japan
for the treatment of relapsed/refractory ATL (60). It is also
considered the best therapy for previously treated CTL patients
according to an international phase III trial (63). In addition, in
preclinical studies, CAR-T cells generated against CCR4, were

found effective in the treatment of a wide spectrum of T cell
malignancies (59).

CCR4 is also considered a promising target for solid tumors
for its activity in modulating leukocyte infiltrate, in particular
for depleting Tregs. In a preclinical model of renal cancer,
Affi 5, a CCR4 blocking mAb, reduced tumor growth affecting
the phenotype of myeloid cells and increasing the number of
infiltrating NK cells (61). CCR4 is now considered a target
for renal carcinoma patients (101). However, there are major
concerns about the safety of the use of mAbs against CCR4
especially in patients previously subjected to allogenic bone
marrow (BM) transplant. Anti-CCR4 mAbs are also depleting
Tregs for few months, increasing the risk of graft-vs-host disease
(102). For this reason, small molecule antagonists of CCR4 with
less harmful side effects are in development and one of them,
AF399/420/1802, considerably improved the efficacy of cancer
vaccines in different preclinical tumor models (melanoma, lung,
and colon cancer) by preventing Tregs induction (62).
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CCR5
The role of CCR5 in cancer remains still controversial; depending
on the cell type on which it is expressed it can have a pro-
or anti-tumoral role. When expressed by tumor cells it drives
their growth and metastatization, while when expressed by T
cells potentiates anti-tumoral responses (103). For instance in
breast cancer, a dual role of the receptor has been reported
in promoting antitumor immune responses, but being also
associated with cancer progression and metastasis (104). More
recent data indicate that CCR5 induces the mobilization of
myeloid cells with pro-tumoral activity (105) and results obtained
with preclinical and clinical models of colorectal cancer (CRC)
indicate that targeting CCR5 with the negative allosteric inhibitor
Maraviroc promoted the polarization of macrophages toward an
antitumoral state. Very interestingly, objective partial response
was reported in three out of five patients who received a
combination of Maraviroc (NCT01736813) and chemotherapy
(64). These data suggest that targeting CCR5 could have a major
antitumoral effect on tumors that are CCR5 positive and have
a prevalent myeloid infiltrate with immunosuppressive activity,
while in other tumors CCR5 activity on T cells needs to be
preserved for the correct development of the immune response.

CCR7
The therapeutic application of CCR7 inhibitors is also extremely
promising. CCR7 is overexpressed by many tumors driving
both tumor growth and metastatization. By the use of siRNA
technology, CCR7 inhibition resulted in decreased number of
metastasis in a model of colon carcinoma (65) and inhibited
the growth of prostate cancer (66). Moreover, reduction of
CCR7 expression in breast cancer inhibited metastasis (106) and
single-chain antibodies blocking CCR7 (MSM R707) were found
able to inhibit brain metastasis of T-cell acute lymphoblastic
leukemia (107).

CXCR2
CXCR2 is expressed by many tumor cells and is involved
in the chemotherapy resistance in different preclinical models
of cancer. In breast cancer cells, CXCR2 deletion resulted in
better response to Paclitaxel (68). In a melanoma model, the
CXCR2 inhibitor Navarixin synergized with MEK inhibition
(69) whereas, in an ovarian tumor model, the CXCR2 inhibitor
SB225002 improved the antiangiogenic therapy Sorafenib (71).
Finally, in human gastric cancer, Reparixin, a CXCR1 andCXCR2
inhibitor, enhanced the efficacy of 5-fluorouracil (72).

CXCR2 targeting inhibits tumor growth also because it affects
myeloid cell infiltration. In pancreatic tumors, CXCR2 inhibition
prevented the accumulation of neutrophils unleashing the T cell
response (73), resulting in inhibition of metastatic spreading
and improved response to anti-PD-1 (74). Interestingly, the
combined treatment of CXCR2 and CCR2 inhibitors limited the
compensatory response of TAMs, increased antitumor immunity
and improved response to FX (75). Finally, in a prostate cancer
model, CXCR2 inhibition by SB265610, decreased recruitment
of myeloid cells and enhanced Docetaxel-induced senescence,
limiting tumor growth (76).

Following these promising preclinical results, a phase
II clinical trial with the CXCR2 inhibitor AZD5069 is

ongoing in pancreatic cancer patients (NCT02583477). In
addition, the safety of using Reparixin in combination with
Paclitaxel was assessed (70) and a double-blind study with
these drugs for metastatic triple-negative breast cancer is in
progress (NCT02370238).

CXCR4
The CXCR4 antagonist AMD3100 (Plerixafor) is clinically
approved for themobilization of hematopoietic stem cells (HSCs)
for transplantation in patients with Non-Hodgkin’s lymphoma
(NHL) or MM (67). Beside the HSCs mobilization effect,
many preclinical data and clinical trials with AMD3100 or
other CXCR4 inhibitors are now suggesting their effectiveness
in tumors.

Referring to hematological malignancies, some CXCR4
antagonists, like AMD3100 and the derivative AMD3465,
enhanced the efficacy of conventional therapies inducing the
mobilization of cancer cells from the protective environment
of the BM. In murine models of AML, AMD3100 improved
the efficacy of chemotherapy with Ara-C (77). Similar results
were obtained in a phase I/II study in patients with relapsed
AML (78). The CXCR4 antagonists LY2510924 was also able
to suppress the proliferation and progression of AML used as
monotherapy (79). Another CXCR4 antagonist, BKT140 had an
anti-leukemic effect in a murine model of NHL and its action
was synergic with Rituximab (82). Phase I trials are ongoing
to evaluate the safety and tolerability of the anti-CXCR4 mAbs
BMS-936564 in AML patients (NCT01120457) and PF-06747143
in hematological malignancies (NCT02954653) (83).

CXCR4 inhibitors have strong antitumor and anti-metastatic
effects also in solid tumors. In glioblastoma (GBM), CXCR4
expression is higher in more aggressive tumors and is
further upregulated by anti-angiogenic therapies (85). AMD3465
reduced the growth of xenografts of glioblastoma multiforme
and medulloblastoma cell lines (108) and the CXCR4 antagonist
PRX177561, increased the antitumor effects of Bevacizumab
and Sunitinib in subcutaneous or orthotopic xenografts of
glioblastoma models (91). The CXCR4 antagonist POL5551
inhibited GBM growth and dissemination after anti-VEGF
therapy (86). Current clinical trials with AMD3100 in newly
diagnosed or recurrent GBM patients are evaluating the safety
and efficacy of daily subcutaneous injection (NCI2012-00149)
or 2 weeks continuous intravenous infusion (NCI2013-02012).
A phase I/II study of the CXCR4 antagonist USL311 alone
and in combination with Lomustine is ongoing in patients
with advanced solid tumors and relapsed/recurrent glioblastoma
multiforme (NCT02765165).

In addition to brain tumors, AMD3465 and LY2510924 have
been found to inhibit tumor growth and metastatization in many
preclinical models (80, 84). LY2510924, tested in a phase I trial
(NCT02737072), was found clinically safe and well-tolerated in
advanced solid cancers (colorectum, lung, breast, and prostate)
(81). A phase I trial (NCT01837095) of the CXCR4 antagonist
Balixafortide plus Eribulin in HER2-negative metastatic breast
cancer has given promising results (88).

Notably, CXCR4 inhibition is not only acting on tumor
cells but is also promoting antitumoral T cell responses. In
a pancreas tumor model, AMD3100, blocking the interaction
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of CXCR4 positive tumor cells with CXCL12 producing
fibroblasts, unleashed a rapid accumulation of T cells and
acted synergistically with anti-PD-L1 (89). In a mesothelioma
model, AMD3100 increased the efficiency of the vaccine against
mesothelin (VIC-008) by inhibiting PD-1 expression on CD8T
cells and by converting Tregs in T helper like cells (90). The
inhibition of Tregs infiltration and the promotion of antitumoral
T cell response by AMD3100 were also demonstrated in a mouse
model of ovarian cancer (87).

THE ATYPICALS IN THE
IMMUNOTHERAPY LANDSCAPE

Atypical chemokine receptors (ACKRs) are emerging as crucial
regulatory components of the chemokine network in a wide
range of homeostatic and pathological conditions (109, 110). In
this section, we reported preclinical observations and clinical
data that provide evidences on their importance in cancer biology
suggesting the possibility to validate them as new targets for
innovative immunotherapies.

ACKR1 is mainly expressed on post-capillary and small
collecting venular endothelial cells (ECs) and red blood cells
(111), but also in many tumors such as GBM, hemangiosarcoma,
erythroleukemia, breast, and colorectal cancers (112). It is able
to bind a broad panel of both CC and CXC inflammatory
chemokines acting as chemokine transporter. However, its role
remains unclear in cancer because when expressed by ECs
promotes tumor growth generating a chemokine gradient that
sustains leukocyte infiltration (113). On the contrary, ACKR1
was reducing tumor growth in a model of prostate cancer
(114) through the binding of angiogenic ELR+ CXC-chemokines
that decreased angiogenesis and in a melanoma lung metastasis
model, interacting with the tetraspanin CD82/KAI that induced
tumor cells senescence (115). Finally, in breast carcinoma,
ACKR1 expression correlated with a more favorable prognosis
with less lymph nodes metastasis and better survival (116, 117).

ACKR2 plays a non-redundant role in the control of
inflammatory response by scavenging and degrading most
inflammatory CC chemokines, acting as agonists for receptors
from CCR1 to CCR5 (118). It is expressed by trophoblast cells
in placenta, lymphatic endothelial cells and at low levels by
subsets of leukocytes (92, 119, 120). ACKR2 acts as a tumor
extrinsic suppressor gene. Indeed, by dampening inflammation,
it has a protective role in different inflammation-driven tumor
models (121, 122). ACKR2 prevents tumor growth also when
it is expressed by Kaposi’s sarcoma cells where it is down-
regulated by the oncogenic pathway KRAS/BRAF/MEK/MAPK
(123), while in anaplastic thyroid carcinomas ACKR2
expression is downregulated by miR-146a (124). In both
tumors ACKR2 downregulation unleashes pro-tumoral
leukocyte infiltration.

On the contrary, ACKR2 has a tumor promoting role in
the Apc-Min model of CRC limiting mast cells infiltration and
activation of CD8+ T cells (125) and it has a pro-metastatic
function in breast and melanoma cancer models, by limiting
neutrophil and NK activity (92, 93).

ACKR3, is a high affinity receptor for CXCL12 and CXCL11
expressed by hematopoietic cells, mesenchymal cells, activated
ECs, and neurons. ACKR3 negatively regulates CXCL11 and
CXCL12 bioavailability and modulates CXCR4 expression and
function (126, 127). In cancer, ACKR3 was found expressed
on many tumor cells (such as renal carcinoma, breast cancer,
and glioblastoma) and by tumoral ECs. It promotes tumor cell
growth andmetastasis (128, 129) acting onmTOR pathway (130).
In lung adenocarcinoma, ACKR3 mediates TGF-ß1 promoted
epithelial to mesenchymal transition (EMT) and tumor growth
(131). ACKR3 is also expressed by aggressive prostate carcinoma
cells (132) and in renal carcinoma patients with decreased
survival and poor prognosis. In renal cell carcinoma, ACKR3
expressed by endothelial progenitor cells and tumoral ECs exerts
a proangiogenic role inducing their migration and survival (133).
In a glioblastoma murine model, mice treated with X7Ab against
ACKR3 in combination with Temozolomide (TMZ) showed
significant tumor reduction and longer survival, enhancing M1
macrophage activation (94).

The last member of the family, ACKR4 is a scavenger receptor
for CCL19, CCL21, CCL25, and CXCL13. It is expressed by
keratinocytes, thymic epithelium and bronchial cells (134). Some
papers indicated a protective role of ACKR4 in tumors. In HCC
tumors, it impaired chemotactic events associated with CCR7,
limiting tumor progression and metastasis (135). ACKR4 down-
regulation in human breast and colon cancer correlated with a
worse outcome (136, 137). However, in breast carcinoma ACKR4
had a pro-metastatic role regulating EMT (138).

CONCLUDING REMARKS

Being chemokines and chemokine receptors expressed by both
tumor cells and leukocyte infiltrate they represent an ideal target
for immunotherapy. However, better understanding of their roles
in different malignancies is still necessary to avoid potential side
effects. In hematological malignancies targeting of overexpressed
chemokine receptors directly kill tumor cells but can potentially
induce unwanted immune reactions (e.g., CCR4).

In the context of solid tumors, chemokine receptor inhibitors
are giving encouraging results when used in combination with
chemotherapy or with antibodies against immune checkpoints.
For this reason, it is possible to envisage that chemokine
receptor inhibitors will be used in the future to modulate the
stromal component, to overcome chemotherapy resistance and
to optimize the immune response of the patients.
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