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Immune-mediated diseases, such as celiac disease, type 1 diabetes or multiple sclerosis,

are a clinically heterogeneous group of diseases that share many key genetic triggers.

Although the pathogenic mechanisms responsible for the development of immune

mediated disorders is not totally understood, high-throughput genomic studies, such as

GWAS and Immunochip, performed in the past few years have provided intriguing hints

about underlying mechanisms and pathways that lead to disease. More than a hundred

gene variants associated with disease susceptibility have been identified through such

studies, but the progress toward understanding the underlying mechanisms has been

slow. The majority of the identified risk variants are located in non-coding regions of the

genome making it difficult to assign a molecular function to the SNPs. However, recent

studies have revealed that many of the non-coding regions bearing disease-associated

SNPs generate long non-coding RNAs (lncRNAs). LncRNAs have been implicated in

several inflammatory diseases, and many of them have been shown to function as

regulators of gene expression. Many of the disease associated SNPs located in lncRNAs

modify their secondary structure, or influence expression levels, thereby affecting their

regulatory function, hence contributing to the development of disease.
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INTRODUCTION

Immune mediated disorders, such as celiac disease (CeD), inflammatory bowel diseases (IBD),
atherosclerosis, rheumatoid arthritis (RA), type 1 diabetes (T1D) or multiple sclerosis (MS) among
others, are a group of clinically heterogeneous diseases caused by dysfunction of the immune
system. These disorders, share underlying pathogenic mechanisms that are not totally understood,
although the general belief is that they develop due to an imbalance in the interaction between
genetic and environmental factors (1, 2).

Immune mediated disorders share dysregulation of many key regulatory pathways and
techniques, such as genome wide association studies (GWAS) coupled with next generation
sequencing (NGS), have significantly increased our knowledge of genetic factors underlying such
diseases (3). In the past decade or so, hundreds of risk alleles, both common and disease specific,
have been identified by GWAS. Moreover, using the Immunochip platform in which 200,000
polymorphisms in 186 immune disease related regions were analyzed, additional immune disease
associated variants were identified that revealed common susceptibility loci for several of these
diseases (4–7). While these studies have helped identify immune disease conferring gene variants,
the progress toward the understanding of the underlying mechanisms has remained limited. This
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difficulty is particularly exacerbated by the fact that around
90% of the SNPs associated with these diseases are located in
non-coding regions, making it difficult to link them to specific
biological pathways (8–10).

Advances in the sequencing and annotation of the human
genome have revealed that many non-coding regions of
the genome encode long non-coding RNAs (lncRNAs). The
importance of lncRNAmolecules in different biological processes
is beginning to be appreciated although there is much that
remains to be understood. LncRNAs are RNA molecules longer
than 200 bp in length with no protein-coding potential. LncRNA
expression is generally cell-lineage specific and they have diverse
and still not very well-characterized mechanisms of action. The
emerging view is that lncRNAs are fundamental regulators of
transcription as they have been shown to control every level
of the gene expression program. LncRNAs have been shown to
control processes like protein synthesis, RNA maturation, and
transport to regulate genes post-transcriptionally and they are
also involved in transcriptional gene silencing through regulating
the chromatin structure (11–13).

Many lncRNAs are enriched for disease-associated SNPs,
suggesting that these SNPs might alter the function of lncRNAs
e.g., by altering their secondary structures (14). Moreover,
expression profile analyses of lncRNAs located in autoimmune
disease-associated regions showed that lncRNAs are enriched
in these loci, suggesting that lncRNAs may be crucial for
interpreting GWAS findings (15). Disease associated SNPs can
modify the lncRNA sequence or alter their gene expression levels,
affecting their regulatory capacity, and alterations in the structure
and function of lncRNAs have been associated with several
immune-mediated diseases. However, the precise mechanism by
which lncRNA variants contribute to the pathogenesis of disease
remains unknown in the majority of cases (16).

As previously done with protein coding genes, intergenic
SNPs have been analyzed in the context of lncRNA expression
quantitative trait loci (eQTLs), namely, genetic variants that
would explain variation in the lncRNA expression levels (17).
More than 100 cis-eQTLs have been found in different tissues
that appear to regulate the expression of nearby lncRNAs. In
general, these eQTLs are lncRNA specific and do not regulate
the expression of neighboring protein coding genes, but since
lncRNAs can regulate the expression of protein-coding genes,
both, located close by or farther away in the genome, it is possible
that these SNPs also influence the function of protein-coding
genes. Moreover, a considerable number of the lncRNA cis-
eQTLs belong to disease-associated SNPs, making lncRNAs a
potential link between non-coding SNPs and the expression of
protein-coding genes (18–21) (Figure 1A).

Disease associated SNPs have been also suggested to be
involved in “splicing models,” in which the presence of different
alleles would influence the splicing of the lncRNA by regulating
exon skipping (22) (Figure 1B). In this way, different isoforms
of the lncRNA would present different affinity for their binding
partners affecting the regulation of downstream events. It has
been observed, that when human endothelial cells are stimulated
with lipopolysaccharide (LPS) several lncRNAs show splice
variant-specific expression at different stimulation time points

FIGURE 1 | Possible effects of a disease associated SNP on lncRNA

regulation and function. Red dots represent disease associated SNPs.

(A) A SNP in the promoter region of a lncRNA can change the amount of

transcribed lncRNA (cis-eQTL) by altering the binding of transcription factor

binding sites (TFBS) or the chromatin accessibility altering downstream effects.

(B) An intronic SNP in a lncRNA can influence the splicing of the lncRNA

generating different isoforms that will act differently. (C) A SNP in the exonic

sequence of a lncRNA can change its secondary structure altering the binding

to the molecular partners.

(23), underlining the importance of SNP regulated splicing in
lncRNA function.

As it is generally believed that lncRNA molecules adopt
specific secondary and tertiary structures to execute their
functions, it is likely that disease associated SNPs have an impact
on lncRNA structure (Figure 1C). The analysis of secondary
structures has largely been performed using computational tools,
and several tools can predict changes in lncRNA structures
caused by the presence of different alleles of a certain SNP
(24–26). For example, GWAS SNPs associated with IBD and
T1D have been shown to disrupt the structure of an lncRNA
implicated in the pathogenesis of both diseases, which associates
with the BACH2 gene (27). However, this field is still in its infancy
and the principles that underlie the impact of SNPs on lncRNA
structure and function remains to be fully established.

In this article, we have reviewed the link between four
intergenic GWAS variants that are located within lncRNA
sequences, which have been associated with inflammatory
diseases, and we discuss the studies that have been carried
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FIGURE 2 | Schematic representation of the function of inflammation associated SNP harboring lncRNAs. (A) Lnc13 harbors a CeD associated SNP that changes the

secondary structure of the lncRNA modifying its binding with the proteins hnRNPD and HDAC1 and regulating the expression of disease related inflammatory genes.

(B) LINC00305 interacts with the transmembrane protein LIMR facilitating the binding of this protein to AHRR that in turn induces the translocation of the latter to the

nucleus inducing NFκB and subsequent inflammatory gene expression. Atherosclerosis patients present higher levels of this lincRNA which could be influenced by a

SNP located in the promoter region of LINC00305. (C) IFNG-AS1 is closely located to IFNG gene. Activation of its transcription leads to induction of IFNG by WDR5

mediated H3K4me3 methylation. IBD patients present higher levels of IFNG-AS1 that could be related to a disease associated SNP located in the enhancer region of

the lncRNA. (D) Suggested SNP related splicing model for ANRIL mediated inflammation regulation. The inflammation associated allele will affect ANRIL splicing

generating a linear ANRIL that will interact with a member of the PRC1 complex mediating an epigenetic transcriptional repression of the INK4a gene via H3K27me3.

out to characterize their contribution to the development of
disease pathogenesis. As of now, these four inflammatory-disease
associated SNPs are the best mechanistically characterized in the
context of lncRNA function.

LNC13 AND CELIAC DISEASE
SUSCEPTIBILITY

Celiac disease is a complex, chronic, immune-mediated disease
that affects ∼1% of the population and develops in genetically
susceptible individuals in response to ingested gluten proteins
from wheat, barley, and rye (28). The strongest genetic
association, around 40% of the genetic risk (29), maps to the
human leukocyte antigen (HLA) region in chromosome 6p21,
and virtually all CeD patients carry HLA-DQ2 or HLA-DQ8
heterodimers (30, 31).

Two GWA studies, together with the Immunochip project,
have identified a total of 39 non-HLA loci associated with the
genetic risk of CeD (32–34). Only 3 of the CeD associated
SNPs are linked to protein-altering variants located in exonic
regions, although some potentially causative coding genes have
been proposed, mainly related to the immune response, due to
the existence of signals near their 5′ or 3′ regulatory regions.
Although some lncRNAs have been related to celiac disease
pathogenesis due to the location of an associated SNP within
their transcriptional region, and differential expression found in
samples from CeD patients (35, 36), the exact mechanism by
which they contribute to disease development is not understood.

The only functionally characterized lncRNA harboring a CeD
associated intergenic SNP so far has been found linked to the
NF-κB pathway (37), which is known to be constitutively active in
the CeDmucosa (38, 39). This lncRNA, named lnc13, harbors the
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SNP rs917997 and it is located in the associated region 2q12, with
the sense sequence overlapping the coding gene IL18RAP that
had been proposed, but never firmly confirmed, as the functional
candidate gene in the region (40–42).

This lncRNA is expressed in different human cells and
tissues, including mononuclear cells in the lamina propria,
where it was observed to be localized in the nucleus. Lnc13
quantification in small intestinal biopsy samples from celiac
patients and controls showed markedly lower levels of this
lncRNA in CeD samples, contrary to the expression of the
coding mRNA, IL18RAP (42). In fact, it is known that IL18RAP
expression is induced in response to inflammation via NF-
κB in certain immune cells (43). The characterization of the
regulation, function and mechanisms of action of lnc13 revealed
that under basal conditions lnc13 represses the expression of
certain CeD related genes (STAT1, MYD88, IL1RA, and TRAF2)
via its interaction with hnRNPD (Heterogeneous Nuclear
Ribonucleoprotein D), a nuclear AU1 rich RNA binding protein,
and HDAC1 (Histone Deacetylase 1), a histone deacetylase which
negatively regulates transcription, proteins on the chromatin
(Figure 2A). In response to inflammatory stimuli, lnc13 is
degraded by Decapping enzyme 2 (DCP2), releasing the protein
complex from chromatin and allowing the expression of the
proinflammatory genes (37).

Although the GWAS disease association has been generally
attributed to the SNP rs917997 (33), located 1.5 kb away from
the coding gene, linkage analysis of the lnc13 region revealed
that there are a total of six SNPs in total linkage disequilibrium
within the lncRNA sequence. The nucleotide changes in lnc13
cause a disruption of the secondary structure of this lncRNA
decreasing its affinity to bind hnRNPD and chromatin, resulting
in higher expression of the proinflammatory genes (37). Thus,
patients with the risk haplotype have a higher basal expression
of CeD related inflammatory genes, thereby increasing their
predisposition to develop the disease (Figure 2A).

The SNPs in lnc13 have also been associated with other
inflammatory diseases, such as T1D, Crohn’s disease or
rheumatoid arthritis (44–46). Interestingly, while the risk signal
in CeD corresponds to the T allele, the C allele is the risk
allele in T1D, suggesting that the function of the lncRNA may
be cell specific, but equally affected by the SNPs in different
inflammatory diseases.

In summary, it is known that lnc13 and the CeD associated
SNP rs917997 contribute to the pathology of celiac disease by
regulating expression of certain immune related genes that play
a role in the development of inflammation in the intestinal
epithelia. However, other cell-type and allele specific functions
cannot be excluded, due to the association of this SNP with other
inflammatory conditions.

LINC00305 AND INFLAMMATORY
RESPONSE IN ATHEROSCLEROSIS

Atherosclerosis is a complex, chronic disease of the arterial
wall triggered by multiple factors including amongst others,
inflammation and lipid metabolism (47). Monocyte-mediated

inflammation plays a critical role in atherosclerosis due to the
secretion of proinflammatory cytokines and amplification of local
inflammation (48).

Although a locus in the 9p21.3 region is the strongest
genetic factor for atherosclerosis described so far, GWAS have
led to the identification of a substantial number of additional
genetic loci associated with atherosclerosis and atherosclerosis-
related complications (49). Analysis of atherosclerosis GWAS
SNPs, revealed that the SNP rs2850711 is located within an
intronic sequence of a long intergenic non-coding RNA named
LINC00305. This lincRNA was found to be overexpressed in
atherosclerotic plaques and in peripheral blood mononuclear
cells (PBMCs) from patients, supporting its role in the disease.
Analysis of LINC00305 in the cell types that composed the
plaques revealed that monocytes are the primary cell type
expressing this lncRNA and that its expression was induced in
response to stimulation with lipopolysaccharide (LPS). Further
functional studies, demonstrated that LINC00305 interacts with
the transmembrane protein LIMR (Lipocalin-1 Interacting
Membrane Receptor) enhancing its interaction with AHRR
(Aryl-Hydrocarbon Receptor Repressor) which at the same time
promotes NF-κB activation and subsequent inflammatory gene
expression (Figure 2B) (50).

The development of atherosclerotic plaques is induced by
the change in phenotype of the vascular smooth muscle cells
in response to the cytokines secreted by inflammatory cells
(51). To investigate the functional significance of LINC00305
in the pathogenesis of atherosclerosis, the lincRNA was stably
overexpressed in human monocytes and these were co-cultured
with human aortic smooth muscle cells. It was observed that
those muscle cells that were cultured in the presence of the
monocytes overexpressing LINC00305 showed less expression of
their basal markers, thus suggesting that they were switching to
the pathogenic phenotype (50). Independent studies, have shown
that overexpression of this lincRNA induces apoptosis in hypoxia
induced endothelial cells (52). Further analysis of the role of this
lincRNA in the regulation of apoptosis, revealed that it acts as
an endogenous sponge for miR-136 which had been previously
related to apoptosis in the context of atherosclerosis (52, 53).

Although it is quite clear that LINC00305 plays a functional
role in development of atherosclerosis by inducing production
of inflammatory cytokines in monocytes, and by regulating
apoptosis via miR-136, the role of the associated SNP in
the function of the lincRNA remains to be elucidated.
The GWAS SNP rs2850711 is transmitted in a linkage
disequilibrium (LD) block of a total of 16 SNPs, all of
which are located within introns, and hence probably do
not influence the secondary structure of the lincRNA.
Although there are no in vitro molecular studies evaluating
this possibility, it is noteworthy that one of the associated SNPs
lies within an experimentally confirmed USF2 (Upstream
Transcription Factor 2) binding region (54). As USF2
is a protein that has been associated with cholesterol
metabolism and atherosclerosis development (55), further
mechanistic studies assessing the contribution of the SNP
alleles in the function and regulation of the lincRNA are
necessary to understand how the SNPs in non-coding regions
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identified by GWAS influence the inflammatory environment
in atherosclerosis.

IFNG-AS1 (NEST OR TMEVPG1) AND
ULCERATIVE COLITIS

Inflammatory bowel diseases (IBD) are chronic common
inflammatory gastrointestinal disorders clinically comprised
of Crohn’s disease (CD) and ulcerative colitis (UC) (56).
These diseases are believed to develop due to inappropriate
inflammatory responses to intestinal microbes and foreign
antigens in genetically susceptible individuals (57, 58).

Meta-analyses of multiple GWAS have implicated 163 genetic
loci in IBD susceptibility. Although functional analysis of
the associated SNPs have revealed multiple pathophysiological
mechanisms, the function for many of the genes in close
association with these loci are yet to be determined (59, 60). It has
been observed that several lncRNAs are differentially expressed
in inflammatory bowel disease, and that the expression profiling
of lncRNAs can be useful to stratify IBD patients from healthy
controls (27, 61, 62).

When comparing the genomic location of differentially
expressed lncRNAs with those of IBD susceptibility loci, IFNG-
AS1 (also called NeST or Tmevpg1) was found to fulfill both
criteria (61). The IBD associated SNP rs7134599 is located
in the region 12q15 in close proximity to the inflammatory
cytokine IFNG. This SNP is in total LD with 10 other SNPs
within the lncRNA gene. Additionally, IFNG-AS1 is significantly
overexpressed in intestinal samples of ulcerative colitis patients
and its expression appears to correlate with the elevated levels
of IFNG, IL1, IL6, and TNF-α observed in patients (61).
Increased expression level of this lncRNA has also been related
to other inflammatory diseases, such as Hashimoto’s thyroiditis
or Sjögren syndrome (63, 64) although the mechanisms by which
it contributes to development of these diseases remain unclear.

IFNG-AS1 gene was first related with the immune response in
the context of susceptibility to persistent Theiler’s virus infection.
It was observed that IFNG-AS1 is expressed in immune cells of
mouse and human origin and it was speculated that this lncRNA
may regulate the expression of IFNG (65). Further studies,
demonstrated that IFNG-AS1 contributes to IFNG expression
regulation as part of the Th1 differentiation program and that
T-bet guides epigenetic remodeling of the lncRNA enhancers,
leading to recruitment of stimulus-inducible transcription
factors, such as NF-κB (66, 67). More recently, it was observed
that different mouse strains with different genotype composition
of IFNG-AS1 were sufficient to confer disparate immune-related
phenotypes. Specifically, certain alleles, derived from SJL/J mouse
strain, were responsible for the failure to clear Theiler’s virus,
but at the same time they conferred resistance to lethal infection
with Salmonella enterica Typhimurium and induced synthesis of
Ifng in CD8+ T cells. Functional analysis performed in this same
study, showed that IFNG-AS1 is a nuclear lncRNA that can act in
trans. IFNG-AS1 binds WDR5, a component of active chromatin
remodeling complexes increasing H3K4me3 methylation which

in turn programs an active chromatin state that induces Ifng gene
transcription (68) (Figure 2C).

Although IFNG-AS1 is differentially expressed in IBD samples
and harbors a disease associated SNP (61) the exact impact of
the different alleles in the development of the disease has not
been assessed so far. In silico interaction evaluation of human
IFNG-AS1 lncRNA and WDR5 protein using CatRapid (69), an
algorithm that estimates the binding propensity of protein-RNA
pairs, states that these two molecules are also able to interact,
suggesting that it may act in a similar way as described in mice.
Analysis of the location of the SNPs that are in LD with the
associated SNP rs7134599 reveals that all of them are located in
intronic regions, suggesting that they will most likely not affect
the secondary structure of the RNA molecule. However, analysis
of the region using HaploReg v4.1 (70) shows that 4 of the SNPs
are located within enhancer histone marks and all of them are
predicted to disturb a protein binding motif that could change
the regulation of the lncRNA expression, thereby influencing the
levels of IFNG.

Thus, INFG-AS1 is clearly involved in the immune response
and inflammatory processes involved in disease, and although
in silico data point to a disturbance of lncRNA expression
regulation mediated by the IBD associated SNPs uncovered
by GWAS, the true relevance of these SNPs have still to be
experimentally confirmed.

ANRIL AND INFLAMMATION

The antisense non-coding RNA in the INK4 locus or ANRIL
was first described in melanoma patients (71) and since its
discovery it has been shown to be involved in several types
of cancers (72). This lncRNA is located in the 9p21 region,
that has been associated by GWAS not only to cancer but also
to other diseases that are related with inflammation, such as
coronary artery disease (73) or type 2 diabetes (T2D) (74).ANRIL
is expressed as either linear or circular forms, that have been
observed to have opposing effects in disease development (75),
making the deciphering of the functionality of this lncRNA and
the involvement of its related SNPs highly complicated.

ANRIL has been described to interact withCBX7 (Chromobox
7), one of the members of the polycomb repressive complex 1
(PRC1). CBX7 binds both, ANRIL and H3K27me3 to mediate
an epigenetic transcriptional repression of the INK4a (Inhibitor
of CDK4) gene, which is located adjacent to the ANRIL gene
(Figure 2D) (76). INK4a is a cell cycle inhibitor that is lost
in a wide spectrum of cancers (77), but it has been also been
reported to act as an anti-inflammatory molecule that is able to
suppress the production of IL-6 in macrophages (78). ANRIL
itself has been also shown to regulate the inflammatory response
by its interaction with the YY1 (Yin Yang 1) protein (79),
a transcription repressor involved in cancer development and
immune processes (80).

The influence on gene expression of the variants within
ANRIL region have been analyzed in a variety of tissues and
cells, but the results have been inconsistent (75). Several SNPs
have been described to be involved in alternative splicing
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events, and modifying ANRIL structure has been suggested to
lead to changes in its function and consequent regulation of
downstream inflammatory genes (Figure 2D) (22). Although
the exact mechanism by which the SNPs within ANRIL confer
susceptibility to disease has not been firmly established, it seems
clear that the disease associated SNPs are related with ANRIL
expression, suggesting that modulation of its expressionmediates
disease susceptibility.

One example of SNP-dependent ANRIL related inflammation
is the correlation between the lead periodontitis associated SNP,
rs1333048, and the levels of the C-reactive protein. Periodontitis
is a complex, chronic inflammatory disease associated with
increased concentration of high-sensitive C-reactive protein
(hsCRP), a marker for systemic inflammation. It was found that
AA-genotype of ANRIL rs1333048 is associated with significantly
elevated hsCRP plasma levels in patients with periodontitis (81).
However, the functional relationship between the SNP, ANRIL
and the hsCRP molecule has not been clearly established.

Another disease in which ANRIL has been functionally
implicated is Type 2 diabetes (T2D). Although the major causes
of T2D are insulin resistance and beta cell dysfunction, recent
evidence implicates the immune system in the pathogenesis
of this disease that can be considered as an autoinflammatory
disease (82). T2D associated SNPs in the ANRIL locus were
evaluated, and it was observed that the risk genotype was
correlated with increased levels of ANRIL expression. Moreover,
although the associated SNPs did not seem to influence insulin
secretion, it was observed that they affect human beta cell
proliferation index, with homozygous risk alleles showing
approximately half of the proliferation capacity observed in
the presence of the protective alleles (83). Although this study
suggests that ANRIL lncRNA may play a role in human islets
and uncovers a link between T2D associated SNPs and beta cell
proliferation, once again, the functional relationship between the
SNPs and the biological process is still not understood.

Additionally, ANRIL is significantly downregulated in the
inflamed intestinal mucosa of Crohn’s and inflammatory bowel
disease patients (84). At the same time its reduced levels in
rats have been related to prevention of coronary atherosclerosis
due to lower expression of inflammatory factors (85) which are
upregulated in patients with coronary artery disease (86).

It therefore seems clear that disease associated SNPs in ANRIL
lncRNA influence its function in the context of inflammatory
diseases. However, the involvement of ANRIL in inflammation
and the influence of the GWAS SNPs in the function of the
different isoforms of ANRIL needs further investigation.

CONCLUDING REMARKS

Although our knowledge about the genetic variants contributing
to immune mediated diseases has increased considerably in the
last decade, the intergenic location of the great majority of the
associated SNPs has made it difficult to decipher their functional
roles in disease development. As disease associated SNPs are
enriched within lncRNAs, and as many of these RNA molecules
have been implicated in the regulation of inflammatory processes,

a new field of study focused on the influence of disease-associated
SNPs in the function of inflammation-related lncRNAs has been
opened. Interestingly, such lncRNAs have been linked to major
immune-mediated diseases as celiac disease, type 1 diabetes or
rheumatoid arthritis. The experimental approaches utilized so
far have been mainly focused on the expression analysis of
the SNP harboring lncRNA in diseased tissues, but functional
studies evaluating the contribution of each allele to lncRNA
function, and thus to disease development, is mostly missing. In
general, the function of the lncRNA itself, and themechanisms by
which they contribute to inflammatory disease development, are
mostly uncharacterized. Analyzing the position and the linkage
disequilibrium block of the associated SNP within the lncRNA
sequence can help predict the functional impact of the allelic
variant. Associated SNPsmay not only affect the expression of the
lncRNA itself, but also their splicing, their secondary structure
or their ability to regulate expression of downstream genes.
Thus, approaches that evaluate the functional differences of the
lncRNA alleles are necessary in order to understand how the
disease-associated SNPs affect the function of such inflammation
related lncRNAs.

As our knowledge about the molecular mechanisms by
which the inflammation related lncRNAs exert their biological
functions increases, so will our understanding of how the disease
associated SNPs influence lncRNA function thereby opening
up the possibility for targeting such lncRNAs for diagnostic
and therapeutic purposes.
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