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Mammals co-exist with resident microbial ecosystem that is composed of an incredible

number and diversity of bacteria, viruses and fungi. Owing to direct contact between

resident microbes and mucosal surfaces, both parties are in continuous and complex

interactions resulting in important functional consequences. These interactions govern

immune homeostasis, host response to infection, vaccination and cancer, as well

as predisposition to metabolic, inflammatory and neurological disorders. Here, we

discuss recent studies on direct and indirect effects of resident microbiota on

regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We

review mechanisms by which commensal microbes influence mucosa in the context

of bioactive molecules derived from resident bacteria, immune senescence, chronic

inflammation and cancer. Lastly, we discuss potential therapeutic applications of

microbiota alterations and microbial derivatives, for improving resilience of mucosal

immunity and combating immunopathology.
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INTRODUCTION

Mammals harbor a highly diverse microbiome of at least 1000 species, and an astounding number
of 10–100 trillion microbial cells, co-existing in a remarkable balance with the host immune
system. Healthy human microbiome is mostly bacteria although other microbial domains such as
archaea, viruses, and eukaryotes (principally fungi and protists) are also present (1). While these
microbes are distributed in skin, and mucosa of ocular, nasal, oral, eye, and reproductive organs,
gastrointestinal (GI) tract mucosa is themajor reservoir of resident microbes in terms of abundance
and species diversity (2, 3). The human colon harbors approximately 3.8 × 1013 microorganisms,
followed by skin in the range of ∼1011(4). Since the resurgence of microbiome research in recent
years, there has been a sharp increase in understanding of how resident microbiome shapes
immunity, health and disease of humans. Only a perennial holiday on a lonely island could excuse
an immunologist’s incognizance on intimate interrelationships between intestinal microbiota and
immune balance. Direct crosstalk between resident microbes and host immune cells in mucosa
emerges as a pivotal determinant of such an immune balance. Dysbiosis of resident microbes
has strong association with a number of immunological disorders, including opportunistic and
pathogenic infections (5–13).
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Mucosal immune system has not only evolved to protect the
mucosal barrier surface against external insults, it has also co-
evolved with residentmicrobes in an interdependent harmonious
relationship with them (14–21). The resulting immune balance
is crucial to drive optimal immune responses without causing
an over-exuberant inflammation (22–25). Past few decades have
seen that an increase in hyper-hygiene mentality, mindless use of
antibiotics and diet changes, have led to reduced diversity and
impaired resilience in resident microbiota (26). Consequently,
a disruption in aforementioned immune balance leads to
rise in autoimmune and inflammatory disorders. Therefore,
understanding the mechanisms of these mutualistic relationships
between resident microbiota and different components of innate
and adaptive immunity is vital to our understanding of immune
diseases. Although gut microbiota in laboratory mice and
humans differ significantly, murine models have provided a
powerful tool to explore host-microbiota-pathogen interactions
in mucosa (27, 28). Here we review the effects of resident
microbiota on Tregs and Th17 cells, important players in
determining immune balance, mucosal barrier integrity and host
protective functions in mucosa. These cells mucosa can develop
in mucosa independent of commensal microbiota. For example,
there is evidence in germ free mice that Treg cells can be induced
by dietary antigens from solid food (29). These Treg cells are
of limited life span, but are distinguishable from microbiota-
induced Treg cells and capable of repressing inadvertent immune
responses to ingested protein antigens. Similarly, in oral mucosa,
mechanical damage from mastication of food induces barrier
protective Th17 cells, independent of oral commensal microbiota
under homeostatic conditions (30). However, dysbiosis can lead
excessive Th17 cells and lead to periodontal inflammation (31).
Thus, while it is known that these cells can develop independent
of microbiota, resident bacterial dysbiosis is strongly associated
with alterations in these cells, causing mucosal inflammation
seen in many diseases including HIV immunopathogenesis (32–
41). Although other cells also play important roles in mucosal
tolerance and immunity, we will not review them here.

TREGS AND TH17 CELLS IN MUCOSA
UNDER STEADY STATE-CONDITIONS

Majority of the studies on mucosa-microbiota interactions
discuss GI tract. Indeed, GI mucosa harbors by far the largest
and most diverse microbiota, as well as abundant and dynamic
population of Tregs and Th17 cells. Tregs are defined by
the expression of CD25 and Foxp3, and are predominantly
known for their immunosuppressive properties. These cells
also express other molecules such as Cytotoxic T Lymphocyte
Antigen-4 (CTLA-4), PD-1, interleukin 10 (IL-10), transforming
growth factor beta 1(TGF-β1), and amphiregulin. Each of
the aforementioned proteins has been shown to be either
important, or dispensable for different mechanisms of Treg-
mediated immunosuppression. Divergent conclusions derived
from various Treg mechanism investigations have been strikingly
similar to those in the popular parable of the “Blind men and
an elephant.” It is now increasingly clear that suppressive and

non-suppressive functions of Foxp3+ cells are largely variable,
depending on local tissues, disease phenotypes, responding
effector cells, and cytokine milieu (42–49).

While CD4+ effector T cell responses contribute to overt
intestinal inflammation, Tregs are associated with controlling
immunopathology (42, 43, 50). It is well known that Tregs are
also pivotal for commensal tolerance (51–53). There have been
contentions regarding the Tregs found in colon mucosa (colon
Tregs; cTregs); whether they develop in thymus (thymic Tregs;

tTregs), or periphery (peripheral Tregs; pTregs). The usage of Nrp-1
and Helios as markers of tTregs, and the extent to which the TCR
repertoire of cTreg overlaps with that of tTregs have been debated
(54, 55). Nevertheless, it is well established that cTregs require the
presence of microbiota for their development, sustenance and
function (56–58). There is also evidence that mucosal sites are
the primary sites of development and maintenance of pTregs (59–
61). First formal proof for the requirement of microbiota for the
induction and maintenance of intestinal Tregs was provided by
studies using germ-free (GF) animal models. GF mice show a
several-fold reduction in the frequency of Helios− Tregs, when
compared with conventionally housed specific pathogen free
(SPF) mice. Association of individual bacterial isolates or defined
consortia in GF mice is sufficient to induce intestinal Tregs

(56, 57). Even antibiotic treated mice, which show depletion in
resident microbiota correlating with a drastic reduction in the
frequency of Tregs, lend further credence to the positive role
of microbiota in sustenance of Tregs (53, 55, 62). In addition
to commensal tolerance, mucosal Tregs have been shown to
regulate excessive immune responses during infections (43, 63–
65). Recently, they are also shown to accumulate in other
tissues and provide functions such as non-suppressive tissue
repair functions in muscle (66). While Tregs play diverse and
often opposite roles in mucosal infections (Table 1), effects of
microbiome on Tregs during these infections are largely ignored
in many studies.

Th17 cells are RORγt+, CCR6+, IL-17A+, IL-17F+, with
some cells expressing IL-21 and IL-22, and have been implicated
both in mucosal barrier functions. Th17 cells are an important
subset of effector T cells that are protective during extracellular
bacterial and fungal invasion (83, 88–91). However, excessive
Th17 responses are also associated with a variety of pathogenic
conditions, depending on the pro-inflammatory cytokines they
co-produce (30, 91–95). Littman and colleagues showed for the
first time that commensal microbiota play important roles in
the development of intestinal Th17 cells (22, 53, 96–100). Th17
development and differentiation is controlled by cytokine and
epigenetic regulation (91, 92, 101, 102), but the mechanistic
details of microbiome dependent control of Th17 development
during mucosal infection is largely unclear.

IMPACT OF MICROBIOME ON TREGS AND
TH17 CELLS DURING GI INFECTION AND
INFLAMMATION

“Healthy” GI microbiota is mainly composed of the phyla
Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
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TABLE 1 | Foxp3+Treg functions in mucosal infections.

Pathogen Treg manipulation Outcome

BACTERIA

Listeria monocytogenes Tregs cause increased pathogen burden (67) Detrimental

Salmonella enterica Foxp3+ cell ablation accelerates bacterial clearance (68) Detrimental

Aggregatibacter actinomycetemcomitans Tregs attenuate experimental periodontitis progression (69) Protective

Yersinia Enterocolitica Tregs reduce pathogenic burden and attenuate inflammation (70) Protective

VIRUSES

HIV Early interference with the Treg’s suppressive function worsened infection and inflammation (71, 72) Protective

Tregs are preserved in elite controllers in humans (73) Protective

Tregs suppress anti-viral CD8 responses (74) Detrimental

Foxp3+ cell ablation accelerates mortality and increases viral load (197) Protective

Herpes simplex virus 2 Foxp3+ cell ablation increases mortality (75) Protective

West Nile virus

PARASITES

Toxoplasma gondii Loss of Foxp3+ Treg cells results in fatal pathology (76) Protective

Toxoplasma gondii Loss of Foxp3+ Treg cells results in pathology (77) Protective

Toxoplasma gondii Loss of Foxp3+ Treg cells results in pathology (78) Protective

Heligmosomoides polygyrus No changes in pathogen burden with Treg ablation (79) No effect

Leishmania major Tregs promote increased pathogen burden (80). Detrimental

Schistosoma mansoni CD4+CD25+ depletion increases inflammation (81) Protective

FUNGUS

Candida albicans CD4+CD25+Tregs regulate immunopathology in Th1 mediated gastrointestinal/disseminated

Candidiasis (82)

Protective

CD4+CD25+Foxp3+Tregs promote Th17 antifungal immunity and dampen immunopathology

(41, 83)

Protective

Tregs regulate immunopathology (84)

Tregs suppress pulmonary hyperinflammation (85)

Aspergillus fumigatus Protective

Pneumocystis carinii Protective

MYCOBACTERIA

Mycobacterium tuberculosis Selective depletion of Tregs reduces pathogen burden (86). Detrimental

Foxp3+ cells induce resistance to TB lesions (87) Protective

Proteobacteria, and Verrucomicrobia. Small intestine is
dominated by Enterobacteriaceae and Lactobacillaceae, whereas
colon contains the members of Bacteroidaceae, Lachnospiraceae,
Prevotellaceae, Rikenellaceae, and Ruminococcaceae respectively
(3). A number of factors including diverse environmental
conditions, intake of diet and medication, as well as host genetic
factors determine the dynamic composition of gut microbiota in
individuals (103–107). Gut microbiota are capable of restraining
the mucosal colonization by enteric pathogens, a process
defined as colonization resistance (108). Thus, administration
of antibiotics, and altering the resident microbiota during a
mucosal infection is known to lead to post-antibiotic expansion
of the pathogens. Loss of overall diversity, or even deficit in single
group of bacteria can alter the susceptibility to gastrointestinal
infections. For example, Clostridium difficile (C. difficile)
infection, the most common cause of nosocomial diarrhea is
often preceded by antibiotic usage. Colonization of C. difficile
in healthy mice in fact requires a pre-exposure to a cocktail of
antibiotics to alter the microbiota composition (109). However,

mono-colonization of GF mice with a murine isolate from
the family Lachnospiraceae could limit the colonization of
C. difficile, suggesting that individual bacterial species are
sufficient to confer colonization resistance to C. difficile (110).
Enhanced susceptibility toward other infections after antibiotic-
mediated disruption of the intestinal microbiota composition has
also been reported for vancomycin-resistant Enterococcus Spp
and Salmonella enterica serovar typhimurium (S. typhimurium)
(108, 111). Mechanistically, mucosal carbohydrates such as
fucose and sialic acid liberated by resident microbiota have been
shown to control the growth of enteric pathogens. Antibiotics
cause spikes in sugars that can worsen S. typhimurium and
C. difficile infections (112). Microbiota alterations reduce the
numbers of germinal centers in IL21-receptor knockout mice,
resulting in diminished IgA+ B cells and reduced activation-
induced cytidine deaminase in Peyer’s patches. These events lead
to the expansion of Tregs and Th17 cells, and higher bacterial
burdens, but dampening of Citrobacter rodentium-induced
immunopathology (113). Resident microbiota at mucosal
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interfaces can govern transmission and progress of parasitic
protozoan infections such as Toxoplasmosis and Amoebiasis
(114). In the case of Toxoplama gondii infection in mice,
reduction of microbiota in the gut by prolonged antibiotic
treatment leads to impaired Toll like receptor (TLR)-11 and
Myeloid differentiation response 88 (MyD88) signaling and
subsequent deficit in Th1 immunity, substantiating that gut
commensals serve as natural molecular adjuvants during
T. gondii infection (115). In a mouse model of Giardia
duodenalis infection, antibiotic induced alteration of the
microbiome prevents CD8T cell activation by G. duodenalis.
Conversely, GI infection can also modulate microbiota specific
adaptive immunity (116). For example, a pathogenic GI
infection, in parallel to specific immune reactions against the
pathogen, induces immune responses to commensals and
generates long-lived commensal-specific T cells. Thus an
adaptive response against commensals is an integral component
of mucosal immunity. However, such a commensal specific-
adaptive response in a dysbiosis setting can also contribute to
excessive inadvertent inflammation. In the context of HIV-1
infection, damages in GI tract and gut microbial translocation
(Proteobacterial species) are associated with reduction of
systemic and gut/rectal mucosal Th17 cells and Tregs (despite
increased Treg/Th17 ratio) (36, 71, 72, 117, 118). A large body
of evidence suggests that increased Tregs in circulation correlate
to reduced immune activation in HIV+ patients, underlining
the anti-inflammatory protective roles of Tregs in patients (71–
73, 118–125). While combined anti-retroviral (cART) therapy
in HIV+ patients generally ensures immune reconstitution in
the peripheral blood, dysbiosis and Treg/Th17 abnormalities
persist in gut and other mucosae (41, 126–132). This can present
residual inflammation and heightened morbidities in cART
treated HIV+ patients. However, in cART-treated HIV+ patients
with elevated levels of immune activation, it is not clear whether
altered levels and function of mucosal Tregs/Th17 cells are
associated with local microbial dysbiosis (131), and if these
alterations contribute to residual inflammation in HIV disease.
Collectively, these findings highlight the role of microbiota in
restraining pathogens and inflammation by having significant
impact on Tregs and Th17 cells.

Alterations in resident microbiota and host immune cells,
caused by host geneticmakeup also play a role in the pathogenesis
of inflammatory bowel diseases (IBD). One of the adaptive
arms of immunity that is impacted by such changes is Tregs

(133). Bacteroides fragilis for example, has been found to invade
mucosa and cause excessive activation of the host intestinal
immune response in genetically susceptible patients (134), while
under steady-state conditions the same bacterium can enhance
Treg differentiation and ensure intestinal homeostasis. Loss of
autophagy protein ATG16L1 in Tregs results in aberrant type 2
responses and spontaneous intestinal inflammation (135). It is
unclear whether microbiota directly induce the expression of
ATG16L1 in Tregs, but it is evident that ATG16L1 and autophagic
process directly promote Treg survival and metabolic adaptation
in the intestine. Similarly, other genetic risk variants associated
with IBD such as: NOD2, CARD9, ATG16L1, IRGM and FUT2
significantly influence the gut microbiota changes (136). For

example, a decrease in Roseburia spp (known acetate to butyrate
converters), Clostridiaceae family, the genera Bifidobacterium,
Ruminococcus and Faecalibacterium has been observed in
patients with IBD. Although many of these communities are
strongly implicated in Treg maintenance, direct mechanisms
of Treg regulation in the context of these genetic variants
and IBD are unclear. Combined deficiency of MyD88 and JH
gene, which disrupts innate interactions of immune cells with
intestinal microbiota and IgA responses respectively, causes
overt inflammation, highlighting the requirement of Treg-IgA
mediated mechanism in tolerance (51, 137). It has also been
shown that microbiota-specific Foxp3+ Treg cells can convert
to interferon-γ-producing Foxp3+ T cells that have a potential
to establish mucosal tolerance (138). Disruption of TLR/MyD88
signaling in Foxp3-deficient mice protect them from excessive
inflammation at the environmental interfaces of skin, lungs, and
intestine, showing that Tregs normally also restrain commensal
dependent tonic MyD88-dependent pro-inflammatory signals
(139). Mice lacking CLEC7A gene (Dectin-1), thus having dys-
regulated interactions with fungal microbiome (mycobiome)
show an increased susceptibility to dextran sulfate sodium (DSS)
induced colitis (140). The role of Th17 cells and Tregs in this
model is unknown. Certain proportion of intestinal Tregs co-
expresses RORγt, the master transcription factor of the Th17
lineage, with up to 35% in small intestine and 65% in colon (141–
143). Some of these RORγt+ Treg co-produce IL-17A (Treg17),
and are substantially diminished in GF or antibiotics-treated
mice. Mono-association of GF mice with a panel of 22 bacterial
species from the human gastrointestinal tract shows that a
number of microbes, not only Clostridiales, are capable of induce
colonic RORγt+ Tregs (142). Segmented filamentous bacteria
(SFB) were only mediocre inducers of RORγt+ Tregs in that
study (142). These studies demonstrate that intestinal RORγt+

Tregs are highly microbiota-dependent and have functions in
promoting host immunity (62). Yet, RORγt is not a perfect
marker for pTregs, because recent reports show the existence
of RORγt+ tTregs, particularly developing under inflammatory
conditions (143–145).

While most studies have focused on in-depth characterization
of mechanisms by which microbiota engage to counter-regulate
their immunostimulatory properties, the reciprocal effect of Tregs

on the composition and function of the intestinal microbiota
was largely ignored (53, 56, 99, 146, 147). Very recently,
analysis of mice harboring a reduced number of TGF-β-
dependent pTregs demonstrated numerous underrepresented
metabolic processes and a limited overall diversity of the
microbiome, including a significant reduction of Lactobacillus
johnsonii and Mucispirillum schaedleri (148). Mechanistically,
it was confirmed that the impaired pTreg generation could
adversely affect the microbiota niche by elevating type 2
immune responses in the host, thereby declining the microbiota
abundance during the process of community assembly. In
conclusion, the presence of pTregs in the intestinal immune
system has a strong impact on the composition and function
of the intestinal microbiota. Similarly, IL-17F deficiency induces
Treg cells in the colon and modifies the composition of the
intestinal microbiota and mediates protection against colitis
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(149). Taken together, two-way interactions between resident
microbiota and host intestinal immunity confer intestinal
tolerance and immunomodulation.

IMPACT OF MICROBIOTA ON TREGS AND
TH17 CELLS IN ORAL MUCOSA

Oral microbiome is vital to maintaining both oral and systemic
immune homeostasis because oral mucosa is the primary
gateway for the GI tract, the biggest component of the immune
system (150). While a vast majority of microbiota studies has
focused on intestinal mucosae and their interactions with gut
microbiota, little is known about oralmucosalmicroenvironment
colonized with a large array of resident microbes, which is
structurally and functionally distinct from the GI tract (151–
160). Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
and Proteobacteria are the major phyla accounting for ∼96–
99% of the oral microbiome, while SR1, TM7, Cyanobacteria,
Spirochaetes, Synergistetes, and Tenericutes, are also found
(<1% distribution). It is well established that oral-resident
microbiota in poly-microbial interactions and soft-tissue biofilms
avert oral diseases, but direct effect of such interactions on
host oral immune cells is less clear (161–166). Oral mucosa
maintains subsets of dendritic cells (DC), which produce
immunomodulatory cytokines such as IL-10, TGF-β1 and
Prostaglandin E2, and are predominantly tolerogenic (89, 167–
169). These cells may be in intimate cross-talk with oral mucosal
Tregs (58, 62, 170, 171), albeit details of such interactions between
these cells are unexplored in oral mucosa. However, alterations
in Tregs and Th17 functions have been implicated in human
oral Candida infections and periodontitis (36, 38, 40, 69, 172–
176). We and others have shown the presence of oral mucosal
Foxp3+ Tregs with protective functions during local infection
(89, 158, 169, 170). The interrelationship between these cells
and oral commensals during an oral infection was also explored
(58, 170). In the context of oropharyngeal candidiasis (OPC)
infection, Treg cells play a critical role in reducing fungal
burden and establishing homeostasis during post anti-fungal
response (177). Tregs play rather an unconventional role of
enhancing the Th17 cell response and neutrophil infiltration
during early acute response, but are associated with reduced
TNF-α expression in CD4T cells at resolution phase (83, 91, 178).
Candida infection in mice by itself increases the proportion
of Foxp3+Tregs, in a TLR2/MyD88 dependent manner in oral
mucosal tissues and draining cervical lymph nodes (58, 83, 91).
A small proportion of those Foxp3+ cells co-express RORγt
and IL-17A (Treg17). Antibiotic mediated depletion of resident
bacteria significantly diminishes the frequency of Foxp3+Treg

IL-17A− and Treg17 cells, as well as conventional Th17 cells
not expressing Foxp3. Reduction of these cells is concomitant
with an increase in tissue pathology and fungal burden in oral
mucosa, demonstrating that resident bacteria are important for
controlling Foxp3+ cells and Th17 cells, as well as mucosal
immunity (Figure 1). Interestingly, Candida can also promote
Th17 and Treg responses in oral mucosa (83, 179, 180). The
impact of oral resident microbiome in periodontal inflammation,

which is now considered a “resident microbial perturbation”
rather than a disease caused by a single pathogen, is well known
(181). Resident bacterium P. gingivalis, the keystone pathogen
contributes to altering the abundance and composition of other
normal microbiota. Shift and accumulation of gram-positive
aerobes to gram-negative anaerobes such as P. gingivalis, T.
denticola, F. nucleatum, and Prevotella sp. are strongly associated
with damage in gingival barrier, loss of immune balance and
destruction of oral tissue in periodontal disease (150). During this
process, bacterial antigens from skewed microbiota can access
connective tissues causing abnormal activation and expansion of
inflammatory CD4+CD69+CD103− memory T cells and Th17
cells (182). Another recent study showed that periodontitis-
associated expansion of Th17 cells required both IL-6 and
IL-23, and was dependent on the local dysbiotic microbiome
(31). Shift in resident microbiota can also include increase
in C. albicans, a part of resident mycobiome in ∼50–70% of
healthy humans, which can rapidly transition to a pathogen and
cause infections in immune-compromised and cancer patients.
C. albicans is also shown to heighten P. gingivalis accumulation,
worsening the series of inflammatory events associated with
periodontitis severity (183, 184). It is known that Treg17 cells exist
in periodontitis lesions and could be involved in inflammatory
responses against periodontopathic bacteria (185). While there
may be only small changes in oral microbiome in HIV+
individuals, underlying mechanisms causing dysbiosis and its
association with HIV associated periodontitis during SIV/HIV
infection are unclear (117, 186, 187). Precise events defining Th17
and Treg dysfunctions in the context of underlying dysbiosis and
aggravating oral inflammation in HIV disease and periodontitis
remain to be seen.

MICROBIOME IN MUCOSAL IMMUNITY
AND INFLAMMATION IN
OTHER MUCOSAE

Lung, previously thought to be sterile, is now known to
harbor a complex and dynamic microbial community of ∼500
species, with a high resemblance to oral microbiome (188,
189). Lung microbiome strongly influences the development
and progression of allergic responses and asthma (190).
Disrupting the normal microbiome with childhood antibiotic
exposure increases the risk of childhood asthma. Proteobacteria
abundance in lower airway secretions correlates with pro-
inflammatory Th17 cell proportions in asthmatic individuals
(191, 192). Similarly, in cystic fibrosis patients, alterations of
some groups in the polymicrobial community significantly affect
the disease progression. Also, in chronic obstructive pulmonary
disease (COPD) patients, microbial dysbiosis associated with
mucus hyper-secretion and reduced airway clearance results in
chronic aberrant inflammation and airway damage (193). Lung
microbiota alterations are also associated with differences in
pneumococcal clearance (194).

Multiple genera of microbiota exist in vaginal mucosa,
often dominated by species of Lactobacillus, and a diverse
array of anaerobic microorganisms, including Atopobium,
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FIGURE 1 | Controlled commensal bacteria/Treg/Treg17/Th17 cell interplay functions as a switch between protective immunity and overt inflammation in oral mucosa.

OPC, Oropharyngeal candidiasis; SCFA, short chain fatty acid; CLN, cervical lymph node; APC, antigen presenting cells.

Anaerococcus, Corynebacterium, Eggerthella, Gardnerella,
Mobiluncus, Peptoniphilus, Prevotella, Sneathia, and Finegoldia
genera (195). Lactobacilli largely impact the susceptibility to
T. vaginalis infection in women. Although mechanisms are
still under investigation, there is precedence that Th17 cells
and Tregs can have protective and anti-inflammatory effects
during T. vaginalis infection (196). During a vaginal herpes
simplex virus-2 (HSV-2) infection, mice lacking Tregs fail to

timely accumulate HSV-2-specific CD4T cells and control the
infection. This finding underscores the protective role of Tregs

in facilitating productive mucosal immunity in vaginal mucosa

(197, 198). However, mechanisms of direct control of vaginal
microbiome on Tregs and Th17 cells and infection responses
remain to be seen. In ocular mucosa, Corynebacterium mastiditis
induces commensal specific IL-17 response γδ T cells, recruiting
neutrophils and protecting the ocular mucosa from pathogenic

infections (199). In nasal mucosa, on the one hand there is

evidence that butyric acid-producing microorganisms associate
with an impaired olfactory function (200–202). On the other,

nasal microbiome is structured by IL-17 Signaling that that
supports resistance to S. pneumoniae colonization in the nasal
mucosa of mice (203). Collectively, while mcrobial dysbiosis and
Tregs/Th17 changes are associated with many of these infections,
detailed mechanisms remain to be investigated.

MOLECULAR MECHANISMS OF
MICROBIOTA-ASSOCIATED ALTERATIONS
OF TREG/TH17 CELLS IN MUCOSAE

Resident microbes have a variety of mechanisms for conferring
mucosal colonization resistance (17, 204–207). They include:
(1) directly competing for shared metabolites, (2) expression
of inhibitory bacteriocins, (3) induction of protective mucus
layer, and (4) priming of protective immune responses (208,
209). Some of the examples include commensal dependent
metabolism of secondary bile acids to deoxycholate, production
of organic acids, induction of antimicrobial peptides in Paneth
cells, and promoting elevated antibacterial T cell responses
preventing colonization and dissemination of pathogens (210–
213). Although resident bacteria are known to modulate energy
metabolism producing pyruvic acid, citric acid, fumaric acid
and malic acid (214), how pH changes determine the mucosal
immunity and T cells warrants further investigation. Resident
microbiota employ multiple mechanisms that contribute to
coordination of Treg/Th17 axis and safeguarding of mucosa
(Figure 2). For example, microbiota dependent TLR signaling in
host is one of the important mechanisms by which microbiota
control inflammation and tolerance. TLR2/MyD88signaling is
required for generation and expansion of Nrp1low Foxp3+

Frontiers in Immunology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 426

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pandiyan et al. Microbiome and Mucosal Tregs and Th17 Cells

cells and Treg17 cells in oral and gut mucosa (58). In gut
mucosa the capsular polysaccharide A of the Bacteroides fragilis
stimulates production of IL-10 by Foxp3+ cells in a TLR2
dependent manner, thus facilitating mucosal tolerance (215).
Recently it was found that this commensal also delivers
immunomodulatory molecules to immune cells via secretion of
outer membrane vesicles through a non-canonical autophagy
pathway for inducing IL-10 expressing Foxp3+ cells. This
mechanism requires the expression of host genes ATG16L1
and NOD2, whose polymorphisms are known to be associated
with IBD (216). Selective deletion of Atg16l1 in T cells in
mice also results in loss of Foxp3+ Treg cells and spontaneous
intestinal inflammation characterized by aberrant Th2 responses.
These data indicate microbiota-host interactions intimately
involve the processes of autophagy and Treg differentiation.
Moreover, loss of MyD88-STAT3 signaling in Tregs causes
loss of mucosal Tregs and impaired T follicular regulatory
cell interactions, resulting in poor IL-21 and anti-microbial
IgA responses (217). Failure of this pathway results in over-
growth of pathobionts, overt Th17 cell expansion and intestinal
inflammation. However, the requirement of resident microbiome
induced MyD88 signaling specifically in Tregs, to promote Treg

sustenance and intestinal tolerance is still debated (217–219).
Similar to B.fragilis, colonic Clostridium rhamnosus also potently
induces IL-10+Tregs in a TGF-β1 dependent manner, which
is correlated to increase in systemic IgE and resistance to
colonic inflammation (56, 99). Similarly, microbiota and immune
cell networks are known to control the production of IgA,
which is central for mucosal barrier and intestinal tolerance.
For example, Mucispirillum spp. and SFB have been directly
implicated in production of intestinal IgA (137, 220, 221). Tregs

are also known to promote IgA secretion, and maintenance of
diversified and balanced microbiota, which in turn facilitates
their expansion through a symbiotic regulatory loop, and prevent
overt inflammation (222, 223). Moreover, RORγt+ Th17 cells,
as well as IL-17A from other cells also promote epithelial
polymeric Ig receptor and intestinal IgA expression, further
contributing to intestinal homeostasis (224, 225). SFB also
control commensal tolerance and anti-microbial host responses
through intestinal epithelial cell fucosyl tranferase 2 expression
and fucosylation, a process that is dependent on RORγt+

group 3 innate lymphoid cells (ILC3s) and IL-22 expression
(226, 227). Loss of intestinal fucosylation results in increased
susceptibility to infection by Salmonella typhimurium. ILC3s can
also express major histocompatibility complex class II (MHCII)
and mediate intestinal selection of CD4+ T cells in order to
limit commensal bacteria-specific CD4 T-cell responses (228).
Although IL-6, induction of Tregs, or Th17 cells were shown
to be not required for ILC-mediated tolerance, alterations in
Treg17 and Th17 cells in the context of fucosylation remain
to be studied. Treg/Th17 cell differentiation and expansion are
also independently controlled by specific members of anaerobic
bacteria producing short chain fatty acids (SCFAs), such as
acetate, propionate and butyrate (229, 230). Some of these
bacteria include Bacteroides, Bifidobacterium, Feacalibacterium
genera, and Enterobacteriaceae family, Porphyromonas gingivalis,
Fusobacterium nucleatum (mouth), Clostridium cochlearium,

Eubacterium multiforme (intestine), and Anaerococcus tetradius
(vagina). These bacteria ferment indigestible oligosaccharides
and cell surface fucosylated proteins by anaerobic glycolysis,
resulting in SCFA production. SCFAs are present in the intestinal
lumen at a total concentration of ∼100mM at a ratio of ∼6:3:1,
for acetate, propionate and butyrate respectively. Although
this ratio hinges on carbohydrate availability, microbiota
composition and intestinal transit time, acetate and butyrate
appear to be the highest and least in abundance respectively
(231). Emerging data show that SCFAs contribute to immune
homeostasis in mucosa, although excessive and suboptimal
levels of SCFAs are often associated with inflammation and
cancer. Intestinal SCFAs have been shown to potentiate Foxp3+

cell differentiation and immunomodulatory activity in the
colon (53, 99, 147, 232). Mechanistically, in addition to direct
histone deacetylase (HDAC) inhibition, SCFAs can induce the
expression of retinal aldehyde dehydrogenase 1 family member
1a (Aldh1a) and TGF-β1 in intestinal epithelial cells and DCs
(100, 221, 233, 234). Aldh1a could further convert vitamin
A into its metabolite retinoic acid in G protein–coupled
receptor43 (GPCR43) and Gpr109a manner, which is capable
of facilitating Treg induction. These tolerogenic DCs express
CD103, sample antigens in the intestinal lamina propria, and
migrate to the draining mesenteric lymph node (MLN) to
induce immunomodulatory T cells (235–237). Whether SCFA
mediated induction and or sustenance of mucosal Tregs require
these aforementioned processes is unclear and remain to be
studied. However, antibiotics precipitously decrease the oral
SCFAs in saliva, showing that in the oral resident bacteria-
derived-SCFA is functionally involved in controlling oral
mucosal immunity and inflammation (62). Lending credence
to this tenet, antibiotics treated mice show not only increased
oral inflammation, but also intestinal immunopathology, when
infected with oral Candida. Mechanistically, antibiotic treatment
results in reduced Tregs, Th17 and Treg17 cells in oral mucosa
and tissue draining cervical and axillary lymph nodes in infected
mice. Intestinal inflammation in oral Candida infected mice is
characterized by an increase in IFN-γ producing Th1 cells and
co-producers of IFN-γ and IL-17A (Th1∗) cells. Although the
exact mechanism of antibiotic mediated reduction of Tregs, Th17
cells and Treg17 cells is unclear, administration of SCFA partially
restored these populations and reduces oral immunopathology
during the infection. SCFA administration however, only
moderately ameliorates the intestinal inflammation. Therefore,
the mechanism of Th1-mediated gut inflammation during oral
Candida infection in the context of altered microbiota remains
to be addressed. Recently, Atarashi et al. showed that oral
bacterium Klebsiella spp. isolated from the salivary microbiota
elicits a severe Th1 gut inflammation in the context of intestinal
dysbiosis, in a genetically susceptible host (238). This finding
underscores the role of oral resident microbes such as Klebsiella
spp. and C. albicans in modulating T cells, possibly translocating
to gut and causing overt inflammation in the gut in the context
of resident microbial dysbiosis. Supporting this tenet, post oral
gavage of C. albicans-infected mice pre-treated with antibiotics
showed significantly altered composition of intestinal microbiota
as well as CD4+ T cell mediated lung inflammation, following
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aerosol introduction of an allergen. However, mice without any
antibiotics pre-treatment did not develop an allergic response
in the airways (239, 240). Whether changes in SCFA, or Treg

and Th17 cells in the lung contribute to the inflammation
is unknown.

Mechanistically, SCFAs also cause acetylation of p70 S6
kinase and phosphorylation rS6, promoting the mTOR activity.
mTOR activity was shown to be required for generation of
Th17 (T helper type 17), Th1, and IL-10+ T cells (241).
Moreover phosphoinositide 3-kinase and mTOR pathways play
pivotal roles in integrating growth signals in CD4+ T cell
differentiation (242–249). Multiple studies support the role of
mTORC1 and mTORC2 proteins in regulating Th17 and Treg

fate decisions (247, 250, 251). mTORC1 signaling is constitutively
active in Treg cells, and disruption of mTOR protein as
well as unrestrained mTOR hyper-activation, both have been
shown to cause autoimmunity by impairing Foxp3 expression
and Treg functions (252–260). Another study has also shown
that mTORC1 and its downstream target hypoxia-inducible
factor-1α (HIF-1α) are needed for Foxp3 induction, Treg lipid
and cholesterol biosynthesis from glucose, and proliferation
and suppressive function in vivo (244, 254). Taken together,
while direct role of SCFA in mediating mTOR activation and
subsequent Treg induction in mucosa is unclear, these studies
highlight the importance of how immunologically relevant
microbiome can control Tregs and mucosal homeostasis through
multiple mechanisms.

MICROBIOTA AND TREG/TH17 CELL
REGULATION OF IMMUNE SENESCENCE
AND CHRONIC INFLAMMATION

While resident microbes have aforementioned protective
functions in mucosa, they can also trigger and sustain
inflammation during aging and other chronic inflammatory
conditions. Some studies demonstrate direct relationship
between aging and changes in microbiota, albeit the mechanisms
remain largely unstudied. Aging causes increased accumulation
of gut Enterobacteria, Streptococci, and yeasts but declining levels
of Akkermansia muciniphila, Bifidobacteria and Bacteroides
(261–266). Reduced Akkermansia muciniphila is associated with
reduced butyrate and impaired intestinal barrier. Consequently,
aged mice display endotoxin leakage, and triggering of 4-1BB
receptor signaling and insulin resistance. In oral mucosa,
aging causes higher levels of RANKL+ cells, and increased
inflammatory Th17 cell accumulation, with concomitant loss
of alveolar bone, which are dependent on the presence of
commensal microbiota (30, 267, 268). In contrast, these events
do not occur in in germfree mice periodontium, showing
potentially pathogenic roles of commensal microbiota in aging
associated dysbiosis setting. Similarly, resident microbiota have
been implicated in the onset and progression of experimental
autoimmune encephalomyelitis (EAE) (269). GF mice exhibit
lower levels of the pro-inflammatory cytokine IFN-γ and
IL-17A producing cells, and a reciprocal increase in Tregs

in the intestine and spinal cord. These changes in GF mice

correlate with a significantly attenuated EAE, compared with
conventionally raised mice. Remarkably, intestinal colonization
with SFB alone can promote Th17 cells in the gut and in the
central nervous system (CNS), enhancing disease progression
(270). Furthermore, partial elimination of intestinal microbiota
ameliorates established collagen-induced arthritis by dampening
Th17 responses in mice (271). Some bacteria also provide
inflammatory signals resulting in chronic inflammation and
tumorigenesis, likely by inducing genetic and epigenetic changes
in host cells. For example, Fusobabacteria spp. has been
implicated in increased risk of IBD and colorectal cancer (272–
275). Also, in oral mucosa, the abundance of Fusobacterium
increases, while the number of Streptococcus, Haemophilus,
Porphyromonas, and Actinomyces decreases with cancer
progression in oral squamous cell carcinoma (276). Interestingly,
Fusobabacteria, and several other bacteria of oral mucosal
origin, including genera of Streptococcus, Staphylococcus,
Peptostreptococcus may translocate to intestine in the context
of gut inflammation and carcinogenesis (277–279), similar to
Klebsiella spp and C. albicans in susceptible host (62, 238). It is
tempting to speculate that loss of Treg functions in the context
of dybiosis, excessive SCFA and oral microbial translocation
may have contributed to exuberant intestinal inflammation and
predisposition to carcinogenesis in these studies (Figure 2).
However, whether the mouth- to -gut translocation is a cause,
or consequence of dysbiosis and intestinal inflammation, and
the underlying mechanisms still remain to be understood and
warrant further investigation.

THERAPEUTIC APPLICATIONS OF
MICROBIOTA ALTERATIONS AND
MICROBIOTA DERIVED METABOLITES

As we discussed above, studies on patient cohorts, mechanistic
studies on mice and epidemiological studies have led to a
better understanding of howmicrobiota changes impact mucosal
immunity, and vice versa. Mechanistic “proof-of principle”
studies using disease models have opened ways to manipulate
these processes, providing therapeutic approaches. Some of
the widely used approaches include administration of sodium
butyrate and pre- and pro-biotics, and transplantation of
fecal microbiota (280–283). However, there are hurdles in
pro-biotic and microbiota transplantation approaches. Existing
microbiota, whether it is healthy or dysbiotic is largely stable
over time in an individual. Without profound perturbation
of the existing microbiota, it is challenging to introduce
microbiota exogenously. The effects of exogenous bacteria
introduced by probiotic and transplant approaches are greatly
influenced by existing microbiota in a competitive niche, and
are inconsistent. Therefore, approaches to target these niches in
favor of exogenous bacteria are being studied (283, 284). Direct
administration of microbial derivatives appears to be a promising
venue. Butyrate has been shown to alleviate high-fat-diet induced
non-alcoholic fatty liver disease. It potently down modulates
peroxisome proliferator-activated receptor α-mediated activation
of β oxidation, causing reduced inflammation (285). For cART
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FIGURE 2 | Cross talk between microbiota and immune cells during homeostasis and dysbiosis–Role of Th17 cells and Tregs in oral and intestinal mucosa. During

homeostatic conditions, normal microbiota promote the stimulation of epithelial cells, Th17 cells and Tregs, and maintain barrier function and commensal tolerance. In

oral mucosa, Th17 cells are induced by mastication induced mechanical damage, independent of commensals. However, in both mucosae SCFA mediated induction

of Tregs is key for mucosal barrier function and immunomodulation. During inflammation and cancer, excessive SCFAs can increase inflammatory Th17 cells and Treg
population that may be dysfunctional. The nature of their interaction with Th17 cells, tumor associated M2-type macrophages and other cells remain unclear.

treated HIV+ individuals, aside from cART treatment, probiotics
have been studied to combat persistent systemic inflammation.
This approach in the context of cART may lead to improved and
holistic management of inflammatory events and higher cancer
susceptibility in HIV+ patients. Application of probiotics has
also shown positive effect on the course of pneumonia, acute
exacerbation of bronchial asthma and COPD in mice models,
but warrants further studies in humans (286). SCFA has been
shown to have therapeutic potential in microbiome-targeted
interventions in anti-aging medicine. Butyrate and dietary fibers
have been shown to promote anti-inflammatory effects in the
context of aging associated neuro-inflammation in mice (287).
Adult and aged mice fed with 5% inulin (high fiber) diet for 4
weeks show an altered gut microbiome and increased butyrate,
acetate, and total SCFA production, coinciding with a reduction
in neuro-inflammation. High fiber supplementation in aging is a
non-invasive strategy to increase butyrate levels, and these data
suggest that an increase in butyrate through added soluble fiber

such as inulin could counterbalance the age-related microbiota
dysbiosis, potentially leading to neurological benefits (287, 288).
Similarly, dietary fiber also suppresses colon carcinogenesis in
polyposis mice (289).Mechanistically it has been shown to inhibit
colorectal cancer cell migration through micro-RNA regulation
(290). In summary, alterations of mechanisms of microbiota-host
interactions are proving to hold promise for treating a variety of
disorders in humans.

CONCLUSION

It is now well established that resident microbes provide
enormous advantages to the host, while dysbiosis can trigger
acute and chronic inflammatory conditions. One of the
mechanisms by which these microbes regulate immunity id
through controlling Tregs and Th17 cells. These cells present in
various mucosal locations and share various signaling pathways
for their development and sustenance, as stated above. However,
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signals modulating these subsets unique to each mucosal
environment in different epithelial cell contexts are unclear.
Most mechanistic studies showing Treg/Th17 developmental
regulation were performed using the in vitro cultures using
cells isolated from blood (human), spleen and lymph nodes
(mice). While there is enough evidence to show that these cells
could be regulated by overlapping signaling mechanisms, cells
from these mucosae were not directly compared for similarities
and differences in their development and functions. Such
studies are warranted to get further insights in to homeostatic
and dysbiotic conditions in different mucosae. Such studies
in the context of microbial manipulation approach will offer
new avenues to manipulate their interactions with the host
for treating immune-mediated and metabolic disorders. While
mono-association of certain genera in GF mice have proven to
alter mucosal Tregs and Th17 cells and offer some beneficial
effects in some experimental settings (98), from a therapeutic
perspective, the field is still at its infancy and warrants intense

mechanistic investigations. Taken together, further research in
microbiota targeted approaches will enable the field to take
the center stage in the management of health and disease
in humans.
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