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Precise control of inflammatory gene expression is critical for effective host defense

without excessive tissue damage. The principal regulator of inflammatory gene

expression is nuclear factor kappa B (NFκB), a transcription factor. Nuclear NFκB activity

is controlled by IκB proteins, whose stimulus-responsive degradation and re-synthesis

provide for transient or dynamic regulation. The IκB-NFκB signaling module receives

input signals from a variety of pathogen sensors, such as toll-like receptors (TLRs). The

molecular components and mechanisms of NFκB signaling are well-understood and

have been reviewed elsewhere in detail. Here we review the molecular mechanisms that

mediate cross-regulation of TLR-IκB-NFκB signal transduction by signaling pathways

that do not activate NFκB themselves, such as interferon signaling pathways. We

distinguish between potential regulatory crosstalk mechanisms that (i) occur proximal

to TLRs and thus may have stimulus-specific effects, (ii) affect the core IκB-NFκB

signaling module to modulate NFκB activation in response to several stimuli. We review

some well-documented examples of molecular crosstalk mechanisms and indicate other

potential mechanisms whose physiological roles require further study.

Keywords: NFκB, PAMPs (pathogen-associated molecular patterns), interferon-beta (IFNβ), signaling crosstalk,

immunoproteasome, TRIF, A20 (TNFAIP3), IκBs

INTRODUCTION

NFκB signaling mediates inflammatory and innate immune responses; the signaling components
that comprise the core signaling pathway are well-understood and have been amply reviewed,
for example by Mitchell et al. (1), Leifer and Medvedev (2), Pandey et al. (3), and Hayden and
Ghosh (4). Here, therefore, is only a brief summary. Of 15 possible NFκB dimers, the predominant
mediator of NFκB inflammatory gene expression is the ubiquitous RelA:p50 heterodimer (1). At
rest, inhibitors of κB (IκB)s sequester RelA:p50 in the cytoplasm by masking its DNA binding
region and nuclear localization signal (5–7). In response to stimuli, IκBs are phosphorylated by IκB
kinase (IKK), which triggers their ubiquitination and proteolysis (8, 9). Then, RelA:p50 translocates
from the cytoplasm to the nucleus, where it binds and activates promoters and enhancers of target
genes, such as nfkbia, which codes for IκBα (10, 11). Since IκBα synthesis is induced by RelA:p50, a
tightly coupled negative feedback loop emerges that regulates NFκB activity in a highly dynamic
and stimulus-specific fashion (11–13). To tune NFκB signaling, crosstalk mechanisms regulate
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signal transduction from TLRs to IκBs to NFκB (Figure 1). We
describe crosstalk mechanism at four levels: receptors, adaptors,
enzymatic complexes, and the IκB-NFκB signaling module
(Figure 2). Here, we focus on a few well-established crosstalk
mechanisms, and mention others that deserve further study.

To ensure effective host defense against pathogens and to
maintain tissue integrity, immune cells must integrate multiple
signals to produce appropriate responses (14). Cells of the
innate immune system are equipped with pattern recognition-
receptors (PRRs) that detect pathogen-derived molecules, such
as lipopolysaccharides and dsRNA (3). Once activated, PRRs
initiate series of intracellular biochemical events that converge
on transcription factors that regulate powerful inflammatory
gene expression programs (15). To tune inflammatory responses,
pathways that do not trigger inflammatory responses themselves
may modulate signal transduction from PRRs to transcription
factors through crosstalk mechanisms (Figure 1). Crosstalk
allows cells to shape the inflammatory response to the
context of their microenvironment and history (16). Crosstalk
between two signaling pathways may emerge due shared
signaling components, direct interactions between pathway-
specific components, and regulation of the expression level of a
pathway-specific component by the other pathway (1, 17). Since
toll-like receptors (TLRs) are the best characterized PRRs, they
provide the most salient examples of crosstalk at the receptor
module. Key determinants of tissue microenvironments are type
I and II interferons (IFNs), which do not activate NFκB, but
regulate NFκB-dependent gene expression (18–21). As such,
this review focuses on the cross-regulation of the TLR-NFκB
signaling axis by type I and II IFNs.

Whereas, IFNγ is the only type II IFN, the type I IFN family
consists of multiple forms of IFNα and IFNβ (22, 23). Type I
IFNs ligate interferon-α receptors (IFNAR), which leads to the
activation of Janus-activated kinase-1 (JAK1), tyrosine kinase
2 (Tyk2), and IFN-stimulated gene factor 3 (ISGF3) complex,
which consists of signal transducer and activator of transcription
1 (STAT1), STAT2, and IFN-regulatory factor (IRF)-9 (23). IFNγ

ligates IFNγ-receptor (IFNGR), which leads to the activation of
JAK1 and JAK2 and the subsequent STAT1 phosphorylation and
homodimerization (22).

RECEPTOR MODULES

Receptor Abundance and Localization
IFNγ is a well-described crosstalk mediator that enhances NFκB
signaling (Figure 3) (20). By upregulating the expression of TLRs,
IFNγ enhances the detection of pathogen-associated molecular
patterns (PAMPs) by TLRs in different cellular compartments. At
the plasma membrane, TLR2 and TLR4 recognize microbial cell
wall components, such as lipopolysaccharides and lipoproteins
(24). Similarly, endosomal TLRs, such as TLR3 and TLR9,
recognize double stranded RNA and CpG oligonucleotides (24).
IFNγ upregulates TLR2, TLR3, TLR4, and TLR9 at the mRNA
and protein levels (25–30). Similarly, the inflammatory cytokine,
tumor necrosis factor (TNF) upregulates the mRNA expression
of TLR2 (31). The significance of TNF-induced and IFNγ-
induced upregulation of TLR abundance on NFκB signaling

dynamics is unknown. In addition to recognizing PAMPs,
TLRs recognize host-derived molecules, such as extracellular
matrix proteins, heat-shock proteins, nucleic acids, and high
mobility group box 1 (32–37). Whereas, high TLR abundance
facilitates detection of pathogens and mobilization host defenses,
it may also increase susceptibility to autoimmune diseases and
sepsis (24).

Accessory Protein Abundance
In addition to upregulating TLR expression, IFNγ also
upregulates expression of TLR accessory proteins (Figure 3),
such as myeloid differentiation factor 2 (MD2) and CD14
(29, 38, 39). Both accessory proteins facilitate the binding
of lipopolysaccharide (LPS) to TLR4, in part by regulating
localization of TLR4 (40–42). In fact, MD2 is necessary for
localization of TLR4 to the plasma membrane, where it can
bind LPS and transduce signals to downstream components
(41, 43). After activation, TLR4 undergoes dynamin-mediated
endocytosis into endosomes, where it continues transmitting
signals (44). In the absence of CD14, endocytosis of TLR4
and subsequent signal transmission are attenuated. Further,
CD14 and MD2 promote the association of endosomal
TLR4 to downstream adaptors, which are critical for signal
transduction (41, 42). Although CD14 is primarily associated
with TLR4-mediated signaling, it also facilitates TLR2, TLR3,
and TLR9 signaling (45–47). Interestingly, accessory proteins
may contribute to inflammation in Alzheimer’s disease (AD)
and atherosclerosis (48). CD36, a scavenger receptor, recognizes
amyloid β and oxidized LDL, which contribute to pathogenesis
of AD and atherosclerosis, respectively (48). CD36 forms
a heterotrimeric complex with TLR4 and TLR6 to induce
production of inflammatory mediators (48). Further, IFNγ-
activated macrophages significantly upregulate the expression
CD36 in disease models of atherosclerosis (49).

Signaling Adapters
While IFNγ upregulates the expression of TLRs and
accessory proteins that promote inflammatory responses, it
also upregulates negative feedback regulators to maintain
homeostasis (Figure 3). To enable negative feedback, IFNγ,
TNF, and type I IFNs induce the expression of a family of E3
ubiquitin ligases, aptly named suppressors of cytokine signaling
(SOCS) (18, 25, 50). SOCS1 was reported as a negative regulator
of TLR4 signaling that is essential for the formation of endotoxin
tolerance (51). The putative mechanism by which SOCS1 inhibits
TLR signaling is through ubiquitin-mediated degradation of TIR
domain containing adaptor (TIRAP), which recruits myeloid
differentiation primary response gene 88 (MyD88) to TLR2 and
TLR4 by mitigating the effects of electrostatic repulsion (52).
The significance of SOCS1 is evident from the fact that SOCS1
deficiency causes neonatal lethality in mice due to overwhelming
inflammation (53). However, loss of IFNγ rescues socs1−/− mice,
which suggests that the primary role of SOCS1 is to restrain
IFNγ-dependent inflammation and pathology.

Since TLRs do not possess the catalytic activity to activate
NFκB directly, they engage adaptors such as MyD88 and
TIR-domain-containing adapter-inducing interferon-β (TRIF)
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FIGURE 1 | Signaling and crosstalk. (A) Regulatory crosstalk is defined here as the signal transduction within a pathway being altered by a second pathway that

affects the abundances or functions of signaling components. (B) Schematic of signaling crosstalk from IFNγ signaling to TLR4-NFκB signaling.

to propagate signals downstream (54, 55). The expression of
MyD88 may be controlled by IFNγ, since myd88 mRNA is
IFNγ-inducible (25). Furthermore, MyD88 degradation may also
be regulated by the anti-inflammatory cytokine, transforming
growth factor (TGF)β, through Smad6-dependent recruitment of
Smad ubiquitin regulatory factor (Smurf) 1/2 E3 ubiquitin ligases
(56). However, the physiological significance of these crosstalk
mechanisms remains to be fully elucidated.

ENZYMATIC COMPLEXES

Signal transduction from TLRs to NFκB involves recruitment of
several enzymes to the TLR signaling complex (3). The recruited
kinases and ubiquitin ligases allow for signal amplification while
providing pathway specificity (13, 57). The enzymes upstream
of the IKK signaling complex provide multiple avenues and
nodes for signal integration and crosstalk (57–59). Both the
catalytic activity and abundance of these enzymes can be
subject to cross-regulation (Figure 4). After engaging TLRs,
MyD88 forms an oligomeric complex with IL1R-associated
kinases (IRAK) called the Myddosome (60). Formation of the
Myddosome complex brings IRAK4 dimers and IRAK1/2 dimers
into close proximity for efficient signal transduction (61). In
response to IFNγ stimulation, immune cells upregulate the
expression of IRAKs and MyD88 (25, 29, 62). In contrast, TNF
stimulation upregulates the expression of negative regulators
of TLR signaling, such as IRAK-M (63). The expression of
IRAK-M in macrophages abrogates signaling downstream of
IRAKs, inhibits TLR-induced NFκB activation, and mediates
endotoxin tolerance (64). As limiting components in TLR signal
transduction, MyD88, and IRAKs form critical junctures for
regulatory control of inflammatory responses (60, 65). During
endotoxin tolerance, the abundance of IRAKs and the association

of TLRs withMyD88 are reduced (62). Therefore, crosstalk at this
module can serve a dual purpose: priming and tolerance.

Similar to TNF receptor 1 (TNFR1), TRIF engages the adaptor
protein tumor necrosis TNFR1-associated death domain protein
(TRADD) and the kinase receptor-interacting protein (RIP)1 (66,
67). NFκB activation through TRIF-RIP1 signaling is dependent
on Pellino-1, which is an E3 ubiquitin ligase that is essential for
the formation of ubiquitin scaffold on RIP1 (68); however, the E3
ubiquitin ligase activity of Pellino-1may be dispensable for TRIF-
dependent activity (69). Whereas, loss of Pellino-1 expression
abolishes TRIF-dependent RIP1 ubiquitination, loss of Pellino-
1 E3 ubiquitin ligase activity does not affect RIP1 ubiquitination
(68, 69). Although the inducible expression of Pellino-1 mRNA

(Peli1) is dependent on IFN-regulatory factor 3 (IRF3), evidence

suggests Peli1 is also a target gene of ISGF3, which is induced

by type I IFNs (70). Whether type I IFNs enhance TRIF-NFκB
in a Pellino-1-dependent manner is unknown. Since the loss

of Pellino-1 confers resistance to septic shock in response to
TLR3 and TLR4 activation, it is possible that type I IFNs cross-
regulate TRIF-NFκB through Pellino-1 to regulate septic shock
(68). However, direct evidence is lacking.

The primary E3 ubiquitin ligase that transduces signals from
MyD88 to IKK is TRAF6 (71–73). Downstream of IRAKs,
TRAF6 facilitates the formation of K63-linked ubiquitin scaffold
and the recruitment of IKK to the TLR signaling complex (73).
TLR-NFκB signaling is regulated by ubiquitin editing enzymes,
such as A20 and cylindromatosis (CYLD) (74, 75). We will focus
the next section on A20 though it is not IFN-controlled but
provides important signaling crosstalk (Figure 4).

A20 is a highly inducible NFκB target gene that attenuates
cytokine- and pathogen-mediated inflammatory signaling (76,
77). Loss of A20 is lethal, due to excessive inflammation,
cachexia, and organ failure (78, 79). Furthermore, dysregulated
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FIGURE 2 | NFκB signaling pathway. The major signaling components of the NFκB signaling pathway include receptors, adaptors, enzymatic complexes, and the

IκB-NFκB complex. Upon ligand recognition, cognate receptors engage adaptor proteins that recruit kinases and ubiquitin ligases to the signaling complex. TLR

signaling employs adaptor proteins MyD88 and TRIF; both of which contain TIR domains. Sorting adaptor proteins such as TIRAP and TRAM facilitate MyD88 and

TRIF association with the signaling complex. MyD88 engages an enzymatic complex that includes IRAK4, IRAK1, IRAK2, TRAF6, Ubc13, TAB2/3, and TAK1. TRIF

engages a similar enzymatic complex, which includes RIP1 instead IRAK4,1,2. The enzymatic complexes facilitate the recruitment and activation of IKKβ, which

induces the degradation of IκBs and subsequent nuclear translocation of NFκB. Navy blue, TLRs; yellow, adaptors; green, kinases; dark purple, E3 ligases; light

purple, E2 conjugases.

A20 signaling contributes to the pathogenesis of atherosclerosis
and rheumatoid arthritis (80–82). A20 is an essential negative
feedback regulator and terminator of TLR signaling (77). It edits
ubiquitin tags on TRAF6 and RIP1 (75, 83). A20 removes K63-
linked ubiquitin chains from RIP1 and may add K48-linked
ubiquitin chains to target RIPK1 for proteasomal degradation
(75). Additionally, A20 disrupts the interactions between TRAF6
and E2 ubiquitin conjugating enzymes, Ubc13 and UbcH5;
A20 also enhances proteasomal degradation of Ubc13 and
UbcH5c, by catalyzing the deposition of K48-linked ubiquitin
chains (83). By mediating signaling crosstalk between TNFR and
TLR/IL1R signaling pathways, A20 serves as a memory of recent
inflammatory signaling (58, 63).

A20-binding inhibitor of NFκB activation 1(ABIN1; also
known TNIP1) is a TNF-inducible binding partner of A20
(84–86). ABIN1 modulates A20-mediated inhibition of IKK-
NFκB signaling by enhancing the de-ubiqutination of the IKK
regulatory subunit, IKKγ/NEMO (84). The exact mechanism of

ABIN1-mediated inhibition of IKK has yet to be elucidated. The
observation that ABIN1 has a high affinity for polyubiquitin
chains has informed some candidate mechanisms (87). One
potential mechanism involves ABIN1 serving as an adaptor that
brings A20 and its targets into close proximity (88). Another
potential mechanism involves competition with the regulatory
subunit of IKK, IKKγ/NEMO for polyubiquitin binding (88).
Similar to the loss of A20, the loss of ABIN1 (tnip1−/−) may lead
to embryonic lethality (89). Tnip1−/− mice that reach adulthood
develop autoimmune disorders spontaneously (87, 90). ABIN3
is another TNF-inducible binding partner of A20 (18, 91). The
significance of ABIN3-mediated negative regulation of TLR-
NFκB signaling has yet to be established and the mechanism has
yet to be elucidated.

Monocyte chemotactic protein [MCP]-induced protein 1
(MCPIP1; also known as Regnase-1a or ZC3H12A) is a TNF-,
IL1β-, and IL4-inducible deubiquitinase that negatively regulates
NFκB activity (92–94). In the absence of MCPIP1, TLR-induced
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FIGURE 3 | Signaling crosstalk at receptors and adaptors. IFNγ receptor activation leads to the phosphorylation and nuclear translocation of STAT1 homodimers.

STAT1 upregulates the expression of several signaling components of the TLR signaling pathway, such asTLRs and co-receptors MD2 and CD14. SOCS1, a

STAT1-inducible negative regulator of STAT1 signaling, promotes the degradation of TIRAP by facilitating K48-ubiquitin-mediated proteolysis.

IKK phosphorylation, and NFκB nuclear translocation are
enhanced as a result of elevated TRAF6 ubiquitination (93).
The biological importance of MCPIP1 is highlighted by
the fact that Zc3h12a−/− mice develop lymphadenopathy,
splenomegaly, growth retardation, and chronic autoimmunity
and die prematurely (92, 93).

NFκB-IκB MODULE

IκB Synthesis
Regulation of IκBα synthesis via translational control of nfkbia
mRNA, which encodes IκBα, can mediate cross-regulation of
NFκB activity (Figure 5B). Type I IFNs, such as IFNβ, enhance
TLR-NFκB signaling by repressing the translation of nfkbia
(19). Further, stress responses to ultraviolet radiation (UV)
and unfolded proteins (UPR) enhance NFκB activity through
translation repression of nfkbia (95, 96). Translation of nfkbia is

controlled by eukaryotic initiation factor (elF)2α and eIF4E [J.
(97, 98)]. Translational repression of nfkbia by eIF2α depends on
its phosphorylation by eIF2α kinases, such as PKR (interferon-
induced, double-stranded RNA-activated protein kinase), PERK
(pancreatic eIF2α kinase/RNA-dependent-protein-kinase-like
endoplasmic-reticulum kinase), and GCN2 (general control non-
derepressible-2) (96, 97, 99, 101). Whereas, PKR is activated by
type I IFNs, GCN2, and PERK are activated by UV and UPR,
respectively (100, 101).

IFNγ may also inhibit nfkbia translation and enhance NFκB
activity by inhibiting the phosphorylation and activation of
eIF4E (102). eIF4E-dependent inhibition of IκBα is controlled
by MAPK and mammalian target of rapamycin (mTOR)
pathways (98, 102). Interestingly, translation inhibition of
IκBα significantly upregulates IFNβ production in response to
double-stranded RNA stimulation (98). This observation hints at
the possibility of positive feedback regulation of NFκB activity
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FIGURE 4 | Signaling crosstalk at enzymatic complexes. TLR signaling can modulate TNF signaling through the actions of A20, a ubiquitin-editing enzyme. A20

inhibits the recruitment of IKK to the TNFR signaling complex by inhibiting K63-linked ubiquitination of RIP1. Further, A20 increases the degradation of RIP1 by

facilitating K48-linked ubiquitination of RIP1.

by type I IFNs. Currently, detailed investigations to examine this
positive feedback regulation are lacking.

IκB Degradation
Control of IκB degradation can mediate signaling crosstalk to
NFκB (Figure 5B). IFNγ enhances NFκB activity by enhancing
the degradation of free IκBα, which are unbound to NFκB
dimers (19). Free IκBs have short half-lives (<10min) and can
be degraded independently of IKK activity and ubiquitination
(99, 103); however, proteolysis of free IκBs is dependent on
proteasomal degradation (99, 103). IFNγ enhances proteolysis
of free IκBα by the immunoproteasome, which shares the
20S core of the 26S proteasome, but utilizes an 11S cap
rather than a 19S cap (19, 104). IFNγ upregulates key
components of the IκBα-associated 11S cap: PA28α and PA28β
(19). Furthermore, pathological TNF signaling enhances NFκB

activity by upregulating the degradation of IκBε by the
immunoproteasome in a murine model of inflammatory bowel
disease (105). TNF induces the expression PA28γ component
of the immunoproteasome cap in colonic epithelial cells, which
leads to severe colonic inflammation due to elevated NFκB
activity (105).

NFκB Trapping
Cytoplasmic trapping of RelA:p50 dimers by high-molecular
weight IκB complexes (IκBsomes) permits multiple layers of
inflammatory regulation (106, 107). It provides a gateway for
crosstalk through developmental signals and provides a history
of recent inflammatory signaling (Figure 5A). Members of
the TNF receptor superfamily that transduce developmental
signals, such as B-cell activator factor and lymphotoxin-
β (LTβ), induce degradation of IκBδ, which is induced in
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FIGURE 5 | Signaling crosstalk at the IκB module. (A) The non-canonical NFκB signaling pathway can cross-regulate the canonical NFκB through NIK-IKK1-mediated

degradation of IκBδ. High-molecular weight complexes of IκBδ trap RelA:p50 dimers in the cytoplasm to limit inflammatory NFκB activity. (B) Stimulus-responsive

transcription initiation factors regulate the synthesis of IκBα. GCN2 and PKR phosphorylate eIF2α to inhibit IκBα synthesis in response to UV light and IFNβ,

respectively. In contrast, phosphorylation of eIF4E by MNK1 stabilizes the IκBα mRNA. IFNγ promotes the proteolysis of IκBα/ε by upregulating the 11s cap of the

immunoproteasome.

response to inflammatory stimuli such as TLR ligands (108,
109). Although it is induced less rapidly than IκBα, IκBδ

possesses a longer half-life and may function as a late brake
on NFκB activity (110). Since IκBδ levels are invariant to
canonical IKK-degradation, IκBδ functions as regulator of
available NFκB dimers that can be activated by inflammatory
stimuli (108). Finally, in the absence of IκBδ, priming with TNF
or IL1β enhances NFκB signaling rather than inhibiting NFκB
signaling (110).

CONCLUDING REMARKS

Maintaining a delicate balance between effective host defense and
deleterious inflammatory responses requires precise control of
NFκB signaling (111). Multiple regulatory circuits have evolved
to fine-tune NFκB-mediated inflammation through context-
specific crosstalk (112). In this work, we have highlighted specific
components of the NFκB signaling pathway for which crosstalk
regulation is well-established. Despite decades of research, our
current understanding of NFκB signaling remains insufficient to
yield effective pharmacological targets (111, 113). Effective and
specific pharmacological modulation of NFκB activity requires
detailed, quantitative understanding of NFκB signaling dynamics
(57). Furthermore, achieving cell-type and context-specific
modulation of NFκB would be a panacea for many autoimmune
and infectious diseases, as well as malignancies (112–114).

To dissect the dynamic regulation of NFκB signaling,
quantitative approaches with single-cell resolution are required
(115). By measuring the full distribution of signaling dynamics
and gene expression in single cells, rather than simple averages,
one can decipher cell-intrinsic properties from tissue-intrinsic
properties (116–118). Such single-cell analyses may reveal
strategies for targeting pathological cell populations with high

specificity, which can mitigate adverse effects of pharmacological
therapy (57, 113). Furthermore, with the aid of mathematical and
computational modeling, one can conduct experiments in silico
that may be prohibitive in vitro or ex vivo (57, 119, 120).

Finally, cross-regulatory pathways may fine-tune NFκB
activity in a gene-specific manner. Many studies have identified
the molecular components of gene-regulatory networks (GRNs)
that control NFκB-dependent gene expression (15, 121). The
regulatory mechanisms that define the topology of these GRNs
include chromatin remodeling, transcription initiation and
elongation, and post-transcriptional processing (15). They allow
for combinatorial control by multiple factors and pathways, as
well as cross-regulation (15). Further work will be required to
delineate them in various physiological contexts.
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