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After antigen stimulation cognate naïve CD8+ T cells undergo rapid proliferation and

ultimately their progeny differentiates into short-lived effectors and longer-lived memory

T cells. Although the expansion of individual cells is very heterogeneous, the kinetics are

reproducible at the level of the total population of cognate cells. After the expansion

phase, the population contracts, and if antigen is cleared, a population of memory

T cells remains behind. Different markers like CD62L, CD27, and KLRG1 have been

used to define several T cell subsets (or cell fates) developing from individual naïve

CD8+ T cells during the expansion phase. Growing evidence from high-throughput

experiments, like single cell RNA sequencing, epigenetic profiling, and lineage tracing,

highlights the need to model this differentiation process at the level of single cells. We

model CD8+ T cell proliferation and differentiation as a competitive process between the

division and death probabilities of individual cells (like in the Cyton model). We use an

extended form of the Cyton model in which daughter cells inherit the division and death

times from their mother cell in a stochastic manner (using lognormal distributions). We

show that this stochastic model reproduces the dynamics of CD8+ T cells both at the

population and at the single cell level. Modeling the expression of the CD62L, CD27, and

KLRG1 markers of each individual cell, we find agreement with the changing phenotypic

distributions of these markers in single cell RNA sequencing data. Retrospectively

re-defining conventional T-cell subsets by “gating” on these markers, we find agreement

with published population data, without having to assume that these subsets have

different properties, i.e., correspond to different fates.

Keywords: CD8+ T cells, single cell dynamics, stochastic inheritance, T cell differentiation, immunological memory

1. INTRODUCTION

The hallmark of adaptive immunity is its ability to mount a specific response against primary
infection and to rapidly respond against re-infections with an enlarged population of memory
cells. This immunological memory forms the basis of vaccination. CD8+ T cells mount cytotoxic
responses against intracellular pathogens like viruses and form an integral part of the adaptive
immune system. CD8+ T cells express a T cell receptor (TCR) allowing them to recognize their
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cognate antigen presented as a pMHC complex (1–3). Naïve
CD8+ T cell are activated when their TCRs bind a cognate
pMHC complex, and after tandem signaling by co-stimulatory
molecules. After activation naïve CD8+ T cells undergo
clonal expansion producing short-lived effector and longer-lived
memory cells. For a typical epitope in mice, there are less than a
1,000 cognate naïve CD8+ T cells, which expand and can produce
a progeny of more than 107 activated cells (4, 5). When antigen
is cleared the CD8+ T cell population contracts about a 20-
fold, leaving behind a long-lived population of memory T cells.
Thesememory CD8+ T cells can rapidly respond upon secondary
infection. The timing and magnitude of CD8+ T cell responses
varies for different antigens and infections, but for each antigen
the dynamics of the entire response is highly reproducible (6–9).

In contrast to the reproducible population dynamics, single-
cell tracing studies have shown that the fate of individual naïve
CD8+ T cell is heterogeneous (8, 10). Multiple lines of evidence
suggest that the fate of an individual CD8+ T cell is regulated
by their local niche, i.e., the cytokines, cell-cell interactions,
co-stimulatory molecules, strength of TCR binding, and cell
migration (6, 7, 9, 11–14). Lineage tracing studies have shown
that individual naïve CD8+ T cell have the potential to produce
both effector and memory T cells (6). Even in controlled in vitro
experiments, genetically identical naïve CD8+ T cells expand
into heterogenous “families” (15–17). Because several biological
factors govern the fate of individual cells, this calls for involving
stochasticity when modeling T cell differentiation.

Different experimental and mathematical models considering
linear or branched differentiation pathways have been used to
study the potential mechanisms of T cell differentiation and
memory formation (7, 9, 18). According to the effector first
models supported by epigenetic studies, naïve CD8+ T cells first
divide and differentiate into effector cells during the expansion
phase, which either die or differentiate into memory CD8+ T
cells during the contraction phase (19–23). According to the
progressive differentiation models, individual naïve CD8+ T cells
receiving ample stimulation differentiate into effector cells, while
those receiving less stimulation differentiate into memory cells
(7, 9, 13). According to the asymmetric division model, naïve
CD8+ T cells divide asymmetrically producing one daughter
with effector potential, and another with memory potential (24).
Thus, very different models have been proposed for CD8+ T
cell differentiation.

Two single-cell tracing studies demonstrated a large
heterogeneity in the number of progeny produced by individual
naïve CD8+ T cells expressing the same TCR (8, 10). Buchholz
et al. (10) compartmentalized the cells using the surface
expression of the CD62L and CD27 markers, and found that
the progeny (or family) of an individual naïve CD8+ T cell
was also heterogenous in the fraction of “central memory”
(CD62L+CD27+), “effector memory" (CD62L−CD27+), and
“effector” (CD62L−CD27−) T cells. Thus, considering the
surface expression of CD62L and CD27 as a marker for the fate
adopted by individual cells, (10) found that individual naïve
CD8+ T cells have very different memory potentials. Using the
time course of these markers, Buchholz et al. (10) show that a
progressive differentiation model from naïve to central memory,

to effector memory, to effector cells fitted their single-cell
tracing data best. One of the drawbacks of using molecules like
CD62L and CD27 as a memory marker is that these molecules
are also expressed on naïve CD8+ T cells. Recently activated
T cells that are on a trajectory to become effector T cells are
therefore expected to initially exhibit the CD62L+CD27+ central
memory phenotype. Indeed, in both CD4+ (14) and CD8+

(25, 26) T cells, CD62L expression declines during the first
division(s), but is either retained or up-regulated later in a
sub-population of cells that one typically associates with memory
precursor cells.

Division and differentiation of CD8+ T cells is a complex
process. The growth of single-cell sequencing technologies and
other high-throughput methods, including cellular barcoding
and lineage tracing, warrants the development of models that
can incorporate the complex dynamics of individual cells, along
with their RNA/protein expression data. We modeled CD8+

T cell division and differentiation dynamics as competition
between division and death fate of a cell, as advocated in the
Cyton model (27). The same group of authors also developed
models where daughter cells inherit these division and death
times from their mother cell in stochastic manner (27–30). We
here develop a simple combination of both models by defining
a phenomenological stochastic inheritance of the division and
death times (using lognormal distributions), in order to study
the heterogeneity between the families produced by single naïve
T cells. To integrate these growth dynamics with the molecular
data, we also allow each cell to inherit three surface markers from
their mother cell (i.e., CD62L, CD27, and KLRG1). Because cell
division is often associated with differentiation (21, 27, 29, 31–
33), we considered that the marker expression of a cell changes
with cell division, without a priori coupling marker expression
to the kinetic properties, or fate, of that cell. We show that such
simple “stochastic inheritance” models can qualitatively replicate
previously observed CD8+ T cell division and differentiation
dynamics (10), both at the population level and at the single-
cell level. Additionally, this stochastic inheritance of surface
markers can account for the recent single-cell expression data
obtained during the expansion phase of CD8+ T cells (26).
Since in our model the expression of the markers on a
cell has no effect on its kinetic properties, and the model
nevertheless remains in agreement with the data, we conclude
that compartmentalizing dividing T cells into kinetically different
T cell subsets on the basis of their surface markers need not
capture the true population dynamics, nor the fate adopted by
individual T cells.

2. RESULTS

2.1. Basic Model
We simulated 8 days of clonal expansion of CD8+ T cells using a
“stochastic inheritance” model (see Figure 1A and Table 1). The
simulations were initialized with a 1, 000 naïve CD8+ T cells,
and each cell was assigned a time of division (tp) and a time of
death (td), following earlier models (27–30). In our model, these
“waiting times” are sampled from two independent lognormal
distributions (Equations 1, 4). In generation zero the mean time
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of division was much lower than the mean initial time of death
(see Figures 1B–D; Equation 1) to allow for an initial expansion
phase. In our basic model, we considered that all naïve CD8+

T cells become activated at the start of the simulation, and at
their time of division these cells deliver two daughter cells. Each
daughter cell noisily inherits the division and death times from
its mother cell (Equations 2, 3). Since the probability of cell death
has been shown to increase with the number of divisions, we
decrease the probability to undergo a subsequent division (i.e.,
we increase the division time; see Equation 2), and increase the
probability of cell death (i.e., we decrease the death time; see
Equation 5), with every division. The inheritance of the division
and death times is stochastic because we add noise to the time
both daughters inherit from their mother (using a lognormal
distribution), and add Gaussian noise to allow for some variation
between the daughters. Thus, one daughter cell may divide or
die earlier than the other, but their division and death times are
correlated to those of their mother (Figure 1A).

Figure 1C shows that the mean division time of the
proliferating cells increases with every division for the first 8
divisions, and, surprisingly, starts to decrease after 8 divisions
(even though in our model the probability to divide decreases
with every division). Since the probability of cell death increases
with every division, the death time is expected to become
comparable to the division time (Figures 1B,D) after 8 divisions,
resulting in preferential death of slowly dividing CD8+ T cells.
Although the increased death rate slows down the expansion
of the population, there is a selection for cells that divide fast,
which decreases the mean division time after about 8 divisions.
We parameterized our model such that the mean division and
death times become comparable at 8th generation (Figure 1B);
choosing different parameters did not alter our subsequent
results qualitatively (Figure S1 in Supplementary Material).
Thus, modeling time of division and death as independent
stochastic variables allows for complex population dynamics
selecting for particular cellular properties in the absence of
competition between the cells.

2.1.1. Disparate Single Cell Behavior
After 8 days of clonal expansion, our simulations typically
produced more than 106 CD8+ T cells starting from a
1,000 naïve CD8+ T cells. Previous studies have shown that
individual naïve CD8+ T cells carrying the same T cell
receptor make disparate immune responses (8, 10). In good
agreement with the experimental studies (4, 8, 10), we found
that a small fraction of the initial naïve CD8+ T cell pool
form the majority of the response (Figure 2A). Specifically,
about 10% of the naïve CD8+ T cells contribute about 50%
of the total immune response. In the model this disparity
can only arise from the fact that different CD8+ T cells
families undergo different numbers of divisions. In a typical
simulation, the median family size (i.e., the number of progeny
of a single naïve CD8+ T cell) was about a 1000 cells,
whereas the largest family size was about 105 cells (Figure 2B).
Thus, stochastic inheritance of division and death times can
account for the experimentally observed large disparity in
family sizes.

2.2. Surface Marker Distribution
Lineage tracing experiments have used several surface markers,
including CD62L, CD27, and KLRG1, to categorize CD8+ T
cells as naïve, central memory, effector memory and effector T
cell subsets (8, 10, 26). To study marker dynamics, we allowed
our simulated CD8+ T cell to express the same set of surface
markers. We initialized naïve CD8+ T cells as CD62L+, CD27+,
and KLRG1− (see section 4), and allow daughter cells to noisily
inherit the CD62L, CD27, and KLRG1 expression levels from
their mother cell. Expression of the markers only changes upon
cell division, and the expression levels do not influence the
division and death times of the cell. Inheritance of expression
levels also involves stochasticity, and the segregation of each
marker is independent of the other markers, and the division
and death times. The CD62L marker tends to decrease upon
cell division, while KLRG1 tends to increase with cell division.
By these assumptions, large families tend to be dominated
by KLRG1+ cells, and contain a small fraction CD62L+ cells
(Figure 3). Overall, the CD62L marker is negatively correlated
(Spearman’s ρ ∼ −0.52; p-value < 10−5) with family size,
while the KLRG1 marker is positively correlated (Spearman’s
ρ ∼ 0.73; p-value < 10−5) (Figures 3A,C). The correlation
of CD62L with family size is weaker, and the correlation of
KLRG1 is stronger, than the corresponding correlations observed
in lineage tracing experiments (8, 10). Corroborating the lineage
tracing experiments, CD27 exhibited a weak (Spearman’s ρ ∼

−0.08) correlation with family size (Figure 3B). Thus, assuming
stochastic inheritance of marker expression suffices to explain the
previously observed marker dynamics of differentiating CD8+ T
cells (8, 10).

2.3. Heterogenous Time of Activation
Model
In the lineage tracing experiments several small families
contained a large fraction of CD62L+ cells (8, 10), and a
natural explanation for this observation is that these are families
completing few divisions because they started late. Although
the population dynamics, and the correlations of markers with
family size, in our model were comparable to those in these
lineage tracing experiments, we rarely observed small CD62L-
rich families because in the model small families are largely due
to excessive cell death. This is due to one of our simplifying
assumptions because in our model the first division tends to
be completed faster than the subsequent divisions, whereas in
reality the first division typically takes much longer, because
quiescent naïve T cells have to become activated and change
the expression of thousands of genes. The observed times to
complete the first division following activation of naïve CD8+

T cells typically obey a normal or lognormal distribution (15,
17, 27, 31, 34). We therefore make our model more realistic
by adding a “time of activation” for every naïve CD8+ T
cell, which is sampled from a lognormal distribution (see
section 4 for details). Similar to the basic model, a 1,000
naïve CD8+ T cells typically produced > 106 CD8+ T cells
after 8 days of clonal expansion. Adding heterogeneity in the
time of activation increased the disparity in the family size
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FIGURE 1 | Stochastic inheritance model of T cell differentiation. Panel (A) is a schematic representation of the model. The red circle on the left represents a mother

naïve CD8+ T cell that divides into two daughter T cells, which divide further. The color of the circles indicates that the dividing CD8+ T cells differ from each other in

terms of their division and death kinetics. Empty circles represent dead cells. Panel (B) depicts that we parameterized the model such that expected division and

death times cross each other at generation 8. The red line represents the expected mean division times at each generation and the blue line represents the expected

mean death times at each generation. The violin plot shows the time of division (C) and death (D) distributions for each generation of dividing CD8+ T cells. The red

lines depict the mean of each distribution. The model was initialized with a 1,000 naïve CD8+ T cells.

TABLE 1 | Parameter values used in the stochastic inheritance model.

Parameter Value Dimension

µmp 4.5 hours

vmp 0.2× µmp hours

µp 1.25 –

vp 0.05× µp –

tmin 4.0 hours

ve 0.02 –

µmd 40 hours

σmd 0.2× µmd hours

µd 0.99 –

σd 0.05× µd –

distribution (Figure 4), resulting in an even smaller fraction (∼
7%) of the 1,000 naïve CD8+ T cells contributing the majority
of the response (Figure 4A). The disparity in the family size
distribution in the heterogenous time of activation model more
closely resembles the disparity observed in Gerlach et al. (8), and
in agreement with their previous interpretation, we conclude that
heterogeneity in time of activation plays an important role in T
cell population dynamics.

We also studied the marker dynamics in this “heterogenous
time of activation” model. Similar to the basic model, in large
families a small fraction of cells was CD62L+ and most cells

were KLRG1+ (Figure 5). The CD62L marker was negatively
correlated (Spearman’s ρ ∼ − 0.766, CI95% = (−0.790,−0.738);
Student’s t-test p-value < 10−10), while the KLRG1 marker
was positively correlated (Spearman’s ρ ∼ 0.835, CI95% =

(0.815, 0.853); Student’s t-test p-value < 10−10) with family
size (Figures 5A,C). CD27 exhibited a weak (Spearman’s
ρ ∼ −0.152) correlation with family size (Figure 3B). These
correlations of CD62L, CD27, and KLRG1 are comparable to
those observed in the lineage tracing experiments (8, 10), and
we now have several small families with a large fraction of
CD62L+ cells, because some families start late and complete
relatively few divisions. Thus, incorporating heterogeneity in
time of activation helps to account even better for the marker
dynamics of differentiating CD8+ T cells (Figure 5).

2.4. Division Dependent Marker Dynamics
Most studies ascribe the effector and memory potential of
dividing CD8+ T cells by their surface expression of markers
like CD62L, CD27, CCR7, and KLRG1. We reanalyzed the
single cell data of proliferating CD8+ T cells published by
Kakaradov et al. (26) to study the variation in mRNA expression
(as an indicator of surface expression of the corresponding
proteins). Kakaradov et al. (26) studied single cell mRNA
expression data for naïve CD8+ T cells (Naive), cells which
had undergone 1 division on day 2 (Day2), pools of dividing
cells on day 4 (Day4) and day 7 (Day7), central memory
(Tcm; CD62L+) cells on day 42; and effector memory (Tem;
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FIGURE 2 | Family size distributions generated by the basic stochastic

inheritance model. Panel (A) depicts the cumulative family size distribution,

i.e., the percentage of naïve CD8+ T cells (x-axis) and the corresponding

cumulative number of CD8+ T cells present on day 8 (y-axis). The CD8+ T cell

families on the x-axis are ordered by their size on day 8 (with the largest family

on the left). The dashed red lines represent the fraction of families that

constitute 50% of the total response. Panel (B) shows the frequency

distribution of family sizes on day 8, which reveals that some families

contribute more than 104 cells to the total response. These results are based

on simulating the clonal expansion of a 1,000 naïve CD8+ T cells.

CD62L−) cells on day 42 (Figures 6A–D). Note that the last
two sets were measured after six weeks, which is beyond the
time window of our simulations. Because we are modeling the
first 8 days of clonal expansion, the majority of the single cells
studied on day 4 and day 7 should be activated effector cells
(Figures 6A–C). The expression of CD62L mRNA was high in
individual naïve cells, and the Day2 cells undergoing their first
division. Since CD62L expression is not dramatically reduced
in cells after their first division (Figure 6A), these data confirm
that CD62L is lost somewhat gradually. Similarly, the data
reveal that CD27 expression does not exhibit a temporal trend
(Figure 6B), while KLRG1 mRNA expression increases over
the first week (Figure 6C). Thus, single cell expression profiles
confirm the assumptions made in our model: the expression of

FIGURE 3 | Variation of the marker distribution as a function of family size in

the basic model. The fraction of CD8+ T cells that are positive for CD62L (A),

CD27 (B), and KLRG1 (C) markers is shown for each CD8+ T cell family. Each

bullet represents one naïve CD8+ T cell family. These results are based on

simulating the clonal expansion of a 1,000 naïve CD8+ T cells.

typical markers is gained or lost gradually by dividing CD8+

T cells.
Using the heterogenous time of activation model, we explored

the longitudinal marker dynamics in dividing CD8+ T cells. As
expected, the mean CD62L expression decreased over time, but
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FIGURE 4 | Family size distribution of the heterogenous time of activation

model. (A) Same as Figure 2 the cumulative family size distribution shows the

percentage of naïve CD8+ T cells (x-axis) and the cumulative number of

responding CD8+ T cells present on day 8 (y-axis). The red vertical and

horizontal lines represent the fraction of families that constitute 50% of the total

response. (B) Family size frequency distribution on day 8 shows that some

families contribute more than 104 cells to the total response. These results are

based on simulating the clonal expansion of a 1,000 naïve CD8+ T cells.

a small fraction of cells remained CD62L+ (CD62L expression
≥ marker specific threshold; see section 4) throughout the
expansion phase (Figure 6D). The mean CD27 expression was
centered around 1 (relative to the marker specific threshold)
and exhibited no clear trend (Figure 6E). Nevertheless, several
individual CD8+ T cells express very low or very high levels
of CD27, indicating that stochastic gain or loss of CD27 does
skew the marker expression in dividing cells. The mean KLRG1
expression increased over time, however, the majority of the
cells remained KLRG1− (KLRG1 expression < marker specific
threshold; see section 4) throughout the simulation (Figure 6F).

Two different mechanisms allow dividing cells to maintain
high CD62L expression levels (or low KLRG1 expression
levels) throughout the expansion phase. First, because of the
heterogeneity in the time of first division several families
retain high CD62L levels (or low KLRG1 levels) by starting
late and completing few divisions. Second, the dividing cells
stochastically retain or gain CD62L expression (or retain or lose
KLRG1 levels). We therefore plotted the marker distributions
as a function of the number of divisions undergone by each

FIGURE 5 | Variation of marker distribution with family size for the

heterogenous time of activation model. The fraction of CD8+ T cells that are

positive for CD62L (A), CD27 (B), and KLRG1 (C) markers is shown for each

CD8+ T cell family. Each bullet represents one naïve CD8+ T cell family. These

results are based on simulating the clonal expansion of a 1,000 naïve

CD8+ T cells.

cell (Figures 6G–I). As expected cells having undergone few
divisions are typically CD62L positive (relative expression ≥

1; Figure 6G). Interestingly, a small fraction of cells that had
undergone more than 6 divisions were found to be CD62L
positive (Figure 6G), indicating that dividing cells can retain or
gain CD62L expression due to stochasticity in marker dynamics.
The marker distributions of CD27 expression exhibited a slight
negative trend with increasing generation number indicating that
stochastic retention or acquisition dominates CD27 positivity
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FIGURE 6 | Comparison of temporal and generational dynamics in heterogenous time of activation model with the publicly available single cell experiment described

in Kakaradov et al. (26). RNA expression of different cell surface markers CD62L (A), CD27 (B), and KLRG1 (C), which are commonly used to classify different CD8+

T cell subsets [reanalyzed from (26)]. Briefly, Kakaradov et al. (26) performed single cell RNA sequencing on the following CD8+ T cell populations: naïve; day 2 cells

that had undergone their first division (Day2); day 4 cells (Day4); day 7 cells (Day7); day 42 central memory (Tcm); and day 42 effector memory (Tem) cells. The violin

plot shows the temporal dynamics of CD62L (D), CD27 (E), and KLRG1 (F) expression distribution in CD8+ T cells. The cells that were alive at the start of each day

were considered for the calculation of the individual expression distribution. The violin plot shows the dynamics of CD62L (G), CD27 (H), and KLRG1 (I) expression

distribution per generation of CD8+ T cells. The marker expression levels in the model were normalized with the expression threshold used to determine marker

positivity in Figures 3, 5 (see section 4). These results are based on simulating the clonal expansion of a 1,000 naïve CD8+ T cells.

(Figure 6H). The marker distributions of KLRG1 expression
exhibited a strong positive trend with increasing generation
number, indicating that most KLRG1 positive cells have
undergone a large number of divisions (Figure 6I). A fraction
of cells that underwent more than 14 divisions remained KLRG1
negative (relative expression < 1; Figure 6I). Thus, stochasticity
in marker inheritance can lead to large variability in marker
expression, and classifying CD8+ T cells by their markers need
not reflect their division history.

2.5. T Cell Population and Subset Dynamics
In a seminal study, Buchholz et al. (10) used lineage tracing and
mathematical modeling to suggest that naïve CD8+ T cell first
divide and differentiate into central memory cells, which further
differentiate into effector memory cells, and subsequently into
effectors. To mimic their T cell subsets, we similarly categorized
the T cells in our simulations: CD62L+CD27+ as central
memory T cells, CD62L−CD27+ as effector memory T cells, and

CD62L−CD27− as effector T cells. Lumping our simulated T cells
into these subsets our model mimics the population dynamics
observed in Buchholz et al. (10) because the sub-population of
central memory T cells (red) decreased over time, while the
effector memory (black) and effector T cells (blue) increased
over time (Figure 7A). Using their progressive model, Buchholz
et al. (10) postulated that family sizes are largely determined
by the stochastic activation, differentiation and expansion of
the cells. Large families arise when activation occurs early and
cells differentiate rapidly (as the more differentiated subsets
were estimate to proliferate faster). Hence, the memory potential
(defined by the expression of the CD62L and CD27 markers) of
large families could be lower than that of small families. Although
in our model large families tend to produce a small fraction of
CD62L+ “memory” T cells (Figures 3, 5), we found that large
families produced the highest number of CD62L+ “memory” T
cells (Figure 7B). Thus, if the expression of CD62L at the end
of the expansion phase would indeed correlate with memory
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FIGURE 7 | T cell subset dynamics. (A) Temporal dynamics of T cells: central memory cells (CD62L+CD27+; red); effector memory (CD62L−CD27+; black) cells;

and effector (CD62L−CD27−; blue) cells. (B) Number of CD62L+ cells as a function of family size. (C) The violin plot shows the changes in the rate of proliferation

(1/(time of division)) over time for T cell subsets: central memory cells (CD62L+CD27+; red); effector memory (CD62L−CD27+; gray) cells; and effector

(CD62L−CD27−; blue) cells. (D) The violin plot shows the rate of proliferation as a function of generation or number of divisions.

potential, e.g., if CD62L+ cells were to preferentially survive
during the contraction phase, we would conclude that the largest
families contribute most to a secondary response [which agrees
well with the data of Gerlach et al. (8)].

Using a mathematical model Buchholz et al. (10) inferred that
the proliferation rate increases with differentiation, i.e., central
memory cells have a lower proliferation rate than effectors.
In agreement with this, we found that the proliferation rate
(defined as the inverse of the division time) was higher for
the effector subset compared to effector memory and central
memory subsets when calculated from day 5 onwards (i.e., on
day 5 to day 8; Figure 7C). Conversely, the proliferation rate
of the central memory and effector memory subset was higher
than that of effector subset at early times (i.e., on day 2, 3,
and 4 Figure 7C). Finally, we observed that the division rate
increased in cells having completed 8 divisions (Figure 7D).
Therefore, lineages undergoing a high number of divisions tend
to proliferate faster than those undergoing few divisions, which in
our model emerges as a consequence of the competition between
the division and death rates (Figures 7D, 1B,C), i.e., rapidly
dividing families are selected and start to predominate. Hence,
large families are formed from cells that tend to divide faster
and they produce the highest number of CD62L+ “memory”

T cells. Thus, the estimated increase in the division rate of
clonally expanding CD8+ T cell observed by Buchholz et al. (10)
could just be a consequence of selection, and need not reflect
inherently different kinetic properties of cells adopting different
fates defined by the expression of the CD62L and CD27 markers.

3. DISCUSSION

How naïve CD8+ T cells adopt their eventual fate in terms
of memory or effector cells has remained an open question
for decades. We have shown that stochastic inheritance of
the division and death time of mother cells readily accounts
for the large heterogeneity in family sizes that is observed in
experimental data (4, 8, 10), and that stochastic inheritance of
marker expression can account for the observed kinetic “fates”
(10) of cells adopted during the clonal expansion phase. Although
the dividing cells in our model do not adopt any fate, as they
only gradually change their expected time to divide or die and
their marker expression per division, we also obtain that the
average proliferation rate of the population increases over time.
This is not because the cells adopt different fates but because
there is natural selection for families that divide fast, which has
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FIGURE 8 | Division destiny stochastic inheritance model. (A) Cumulative family size distribution, and (B) family size frequency distribution on day 8 from division

destiny stochastic inheritance model (same as Figure 2). The fraction of CD8+ T cells that are positive for CD62L (C), CD27 (D), and KLRG1 (E) markers is shown for

each CD8+ T cell family (same as Figure 3). (F) Number of CD62L+ cells as a function of family size (similar to Figure 7B). (G) Temporal dynamics of T cells (similar

to Figure 7A). (H) The violin plot shows the rate of proliferation (1/(time of division)) for T cell subsets from day 5 to day 8: central memory cells (CD62L+CD27+; red);

effector memory (CD62L−CD27+; gray) cells; and effector (CD62L−CD27−; blue) cells (similar to Figure 7C).

the natural side effect that these families tend to be dominated
by CD62L− and KLRG1+ cells. When the inheritance of the
marker expression and the division and death times is noisy,
the correlation between the markers and the kinetic properties
remains rather poor. Modeling clonal expansion at the single cell
level also allowed us to compare the model with the recently
published single cell RNA expression data (26), revealing that
during the first week of clonal expansion there is little evidence
for a separation of the population into clusters of CD62L+CD27+

central memory T cells, CD62L−CD27+ effector memory T cells,
and CD62L−CD27− effector T cells (see Figures 6A–C). This
probably happens later, since sorting cells on the basis of these
markers on day 42 does lead to subsets with different properties
(26). The growth of high-throughput methods therefore warrants
the need to develop models incorporating the dynamics of
individual cells.

Studies have shown that gain or loss of surface markers
is a continuous process (11, 25, 26, 33). Nevertheless, several
models categorize dividing T cells into distinct sub-populations
having different properties (10, 26, 35). Although our model

shows that a large fraction of cells undergoing a high number
of divisions tend to lose CD62L, and that these cells tend
to divide faster, we also found that a fraction of cells can
retain or gain CD62L expression, despite undergoing several
divisions. Similarly, we found a substantial fraction of cells can
remain KLRG1 negative after undergoing a high number of
divisions. Thus, categorizing dividing T cells into subsets using
the expression of a few surface marker need not reflect the
true dynamics of individual CD8+ T cells. More importantly,
Buchholz et al. (10) categorized dividing T cells into subsets
and postulated that larger families produce smaller fraction
of CD62L+ cells at the end of the expansion phase. Using
their mathematical model Buchholz et al. (10), predict that
the contribution to memory phase is poorly correlated with
the size of a family. Contrary to this, Gerlach et al. (8)
reported that the contribution to the memory phase is positively
correlated with the size of a family at the end of the expansion
phase. This is the expected result when the activated cells
at the end of the expansion phase do not differ much in
their survival probabilities during the subsequent contraction
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phase. Additionally, if the expression of CD62L at the end of
the expansion phase were to correlate with memory potential,
i.e., if CD62L+ cells were to preferentially survive during the
contraction phase, our model would still predict that the largest
families contribute most to a secondary response, because they
contain more CD62L+ cells than smaller families (Figure 7B),
even though the latter contain a larger fraction of CD62L+

cells (Figure 5A).
Several studies have indicated that the division times

of two daughter cells are highly correlated, and that the
division destiny (number of divisions after activation) of a
naïve T cell is determined by integrating the activation and
co-stimulatory signals (16, 17, 36). Myc was identified as
regulator of division destiny with the rate of production
of Myc being inherited from one generation to the next.
Interestingly, the time of death was not affected by Myc
expression; hence time of division and death are regulated
independently (16, 17). Allowing for stochasticity in the
inheritance of division and death times in our models implicitly
defines different division destinies for different families. To
test whether or not defining an explicit division destiny (i.e.,
a maximum number of generations) for each family would
change our conclusions, we extended our heterogeneous time of
activation model with a phenomenological parameter sampling
the maximum number of divisions for each family from
a lognormal distribution (see Equation 7). Cells breaching
their predetermined division destiny are assumed to become
quiescent. We found that stochastic inheritance model with
division destinies exhibited population dynamics (Figures 8A,B),
marker dynamics (Figures 8C-F), and subset based inferences
(Figures 8G,H) that were qualitatively similar to the stochastic
inheritance model without division destinies. We found that
incorporating division destinies increased the skewness in the
response (fewer families were required to mount 50% of the
response) as a large number of families with rapidly dividing
cells reached their division destinies curtailing their response
potential (Figure 8B). Varying the distribution from which we
sampled the division destinies changed the skewness of the
responses (data not shown), but did not alter our qualitative
results and inferences.

In conclusion, we show that modeling stochastic inheritance
of time of division and death allows us to qualitatively reproduce
the marker, division and differentiation dynamics of CD8+ T
cells without having to assume that clonally expanding cells adopt
different fates.

4. METHODS

4.1. Basic Model
Upon activation by cognate antigen, naïve T cells clones undergo
rampant proliferation to produce a large population of effector
and memory T cells. We considered a modified cyton model
(27) that we call the stochastic inheritance model to capture the
proliferation and differentiation of naïve CD8+ T cells. Similar
to cells in the Cyton model, each cell in our model harbors two
competing clocks: (i) a division clock which determines the time
of division, and (ii) a death clock which determines the time of

death (27, 28, 37, 38). If the division time is smaller than the
death time, the cell divides at the time of division; whereas if
the death time is smaller than the division time, the cell dies at
the time of death. We simplified extensions of the Cyton model
that allow each daughter cell to stochastically inherits the division
and death times from its mother (27–30, 37). In our model
the daughters inherit the division and death times by sampling
from a lognormal distribution. The time of the first division
of each naïve T cell is sampled from a lognormal distribution
as follows:

tp0 = L(µmp, vmp), (1)

where tp0 is the time at which a cell in generation 0 proliferates.
The division time of the daughters in generation i is inherited
from their mother cell in generation i − 1 by sampling from
another lognormal distribution:

tpi = tpi−1 × L(µp, vp), (2)

where, i is the generation, tpi−1 is the division time of the
mother cell. We assumed that the division times tend to
increase with every division and therefore set µp > 1
(Table 1). Additionally, we required a minimum division time
of tmin = 4 hours for every division (Table 1), and redraw
tpi whenever tpi < tmin (for i ≥ 0, i.e., including the first
division). We tested different µp values and found no qualitative
difference between our results (Figure S1 in Supplementary
Material). Since stochastic factors may lead to variation between
the division times of the daughter cells (tpi,1 and tpi,2 ), we
considered an additional variation in the division times of
each daughter,

tpi,1 = tpi ×N (1, ve) and tpi,2 = tpi ×N (1, ve), (3)

by sampling twice from a normal distributionN (1, ve) (Table 1).
Similarly, we defined the time of death for each naïve T cell,

td0 , and each daughter cell, tdi,j , using lognormal distributions,

td0 = L(µmd, vmd), (4)

tdi,1 = tdi−1
× L(µd, vd), and tdi,2 = tdi−1

× L(µd, vd), (5)

where we setµd < 1 to define that cells tend to shorten their time
to death with every division.

4.2. Heterogenous Time of Activation
Model
In the basic model the time the naïve mother cells take
to complete their first division is very similar to the time
required to complete the subsequent divisions. Several studies
have shown that the time to complete the first division is
much longer than that of subsequent divisions (15, 27, 28),
which is natural because quiescent naïve T cells have to
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become activated and change the expression of thousands of
genes. To allow for a difference between the first and the
subsequent divisions we add a stochastic “activation time” to
the first division. Activation is expected to be stochastic because
of intrinsic differences among the naïve T cells and their
environments. Adding an activation time of on average µa

hours, we define the time of first division as a sum of two
lognormal distributions:

tp0 = L(µmp, vmp)+ L(µa, va), (6)

where we use an average time of activation of 2 days, i.e.,µa = 57
and va = 29 (15).

4.3. Division Destiny Model
To incorporate an explicit division destiny, we sample a
maximum number of divisions allowed for each family from a
lognormal distribution as:

Df = L(µdiv, vdiv), (7)

where the division destiny of a family, Df , defines the highest
generation number allowed within a family f . We parameterized
the model such that the mean division destiny was 8 generations
(i.e., µdiv = 1.73 and vdiv = 0.83). When cells breach their
division destiny they become quiescent, and do not undergo
further divisions nor cell death.

4.4. Marker Inheritance
In the simulations, every naïve CD8+ T cell was seeded with three
initial expression levels of the surface markers CD62L, CD27, and
KLRG1 by sampling normal distributions:

CD62L0 = N (100, 0.01) (8)

CD270 = N (100, 0.01) (9)

KLRG10 = N (10, 0.01) (10)

where the index 0 again indicates the expression level in the naïve
mother cells (generation 0), and we use arbitrary levels, i.e., 100
for high and 10 for low.

Upon division the three markers are stochastically inherited
by the daughter cells such that the CD62L marker tends to
decrease, while the KLRG1marker tends to increase upon cellular
division. We considered that CD27 marker was stochastically
inherited without any propensity to increase or decrease upon
cellular division, i.e.,

CD62Li,1 = CD62Li−1 ×N (0.95, 0.05) and CD62Li,2

= CD62Li−1 ×N (0.95, 0.05),
(11)

CD27i,1 = CD27i−1 ×N (1.0, 0.15) and CD27i,2

= CD27i−1 ×N (1.0, 0.15),
(12)

KLRG1i,1 = KLRG1i−1 ×N (1.15, 0.15) and KLRG1i,2

= KLRG1i−1 ×N (1.15, 0.15),
(13)

where, CD62Li,j, CD27i,j, and KLRG1i,j are the expression levels
of the CD62L, CD27, and KLRG1 markers for each daughter
cell (j = 1 or 2), which are inherited from the expression level
in their respective mother cells. Note that CD62L expression
tends to decrease by 5% per division, and that KLRG1 expression
tends to increase by 15%. For Figures 3, 5–8, we considered
cells with a CD62L expression ≥ 97, CD27 expression ≥ 90,
and KLRG1 expression ≥ 80 as positive, for the respective
markers. Since expression levels are arbitrary, we also considered
arbitrary thresholds to assign marker positivity. Due to lack of
data, these propensities had to be guessed, but changing them
produced qualitatively similar results, albeit with higher or lower
variability in the marker distributions. Also note that in our
models the expression levels can only reflect the division history
of a cell and that they do not change the behavior of the cells.
Since the cells in our model cannot adopt memory or effector
fates, the CD62L, CD27, and KLRG1 expression cannot reflect
these fates.

The codes for simulating the three models are available at:
https://bitbucket.org/aridaman/tcellfate.

4.5. Single Cell Data Analysis
Single cell expression data described and generated by (26)
was downloaded from NCBI GEO website (Accession number:
GSE89405). We used R package Seurat (39) to normalize and
quality check the single cell data. The gene expression for selected
genes were plotted using R package ggplot2 (40).
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