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The immune system employs several checkpoint pathways to regulate responses,

maintain homeostasis and prevent self-reactivity and autoimmunity. Tumor cells can

hijack these protective mechanisms to enable immune escape, cancer survival and

proliferation. Blocking antibodies, designed to interfere with checkpoint molecules

CTLA-4 and PD-1/PD-L1 and counteract these immune suppressive mechanisms,

have shown significant success in promoting immune responses against cancer and

can result in tumor regression in many patients. While inhibitors to CTLA-4 and the

PD-1/PD-L1 axis are well-established for the clinical management of melanoma, many

patients do not respond or develop resistance to these interventions. Concerted efforts

have focused on combinations of approved therapies aiming to further augment positive

outcomes and survival. While CTLA-4 and PD-1 are the most-extensively researched

targets, results from pre-clinical studies and clinical trials indicate that novel agents,

specific for checkpoints such as A2AR, LAG-3, IDO and others, may further contribute

to the improvement of patient outcomes, most likely in combinations with anti-CTLA-4

or anti-PD-1 blockade. This review discusses the rationale for, and results to date

of, the development of inhibitory immune checkpoint blockade combination therapies

in melanoma. The clinical potential of new pipeline therapeutics, and possible future

therapy design and directions that hold promise to significantly improve clinical prognosis

compared with monotherapy, are discussed.
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INTRODUCTION

Immune-mediated destruction of tumors has long been
considered a potential route of therapeutic intervention. Partial
spontaneous regression of melanoma lesions has previously been
associated with the presence of endogenous tumor infiltrating
lymphocytes (TILs) and the presence of TILs in patient samples
has been shown to correlate with improved clinical outcomes
and better prognosis (1). Infusion with CD8+ TILs has been
reported to induce some responses in patients when combined
with other treatments including IL-2 (2). Immunotherapy via
cytokine infusion has also been extensively trialed, with IL-2,
IL-12, and IFNα2b to activate T cells, showing anti-tumor effects
in pre-clinical models and clinical trials, with IL-2 and IFNα2b
approved for clinical use (3, 4). Cytokine treatments have
however been associated with severe adverse effects resembling
severe systemic infections and sometimes resulting in toxic
shock or capillary leak syndrome as reported in randomized
clinical trials (5, 6). Though not without challenges, these
trials confirmed the possibility of reigniting components of the
immune system as a cancer therapy.

Increased understanding of tumor evolution and the complex
interactions in the tumor microenvironment (TME) has
revealed numerous mechanisms by which tumors may escape
immune destruction and actively suppress immune activity (7).
Immunosuppression by tumor cells may partially be mediated
through FoxP3+ regulatory T cell (T-reg) recruitment via tumor-
secreted chemokines as shown in an ex vivo study (8, 9).
Critically, tumor resident T-reg can highly express cytotoxic
T-lymphocyte-associated antigen-4 (CTLA-4), an important
checkpoint that acts as a negative regulator of effector T cell
(T-eff) activity in vivo, studied in different models including
CTLA-4-deficient mice (10) (Figure 1). Suppression may also
be mediated by tumor expression of the Programmed-death
ligand 1 (PD-L1; B7-H1; CD274), known to trigger T cell
apoptosis in vivo inmouse tumors (11) and to promote formation
of FoxP3+ T-regs upon interaction with the T cell-associated
checkpoint receptor Programmed-death 1 (PD-1, also known
as CD279) (12) (Figure 1). These checkpoints, have become
therapeutic targets in immune checkpoint blockade therapy,
with the aim of overcoming TME-mediated immunosuppression
and restoring anti-tumor immune activity (13). Monoclonal
antibodies targeting CTLA-4 and PD-1 have now been approved
for the treatment of melanoma. These new therapeutic modalities
were developed in parallel with targeted MAPK pathway
inhibitor therapies, such as vemurafenib and dabrafenib,
approved for a subset of melanomas bearing point mutations
in the kinase BRAF (e.g., BRAFV600E), and the MEK inhibitors
trametinib and cobimetinib, all designed to cause cancer cell
death via interruption of theMAPK pathway (Table 1). Together,
these agents have led to an increase in medial survival for
advanced melanoma from 9 months in 2010 to over 3.5 years.

While CTLA-4 and PD-1 blockade has proved successful
in improving survival rates, many patients do not respond
or develop resistance to these interventions. Alongside
combinations of checkpoint inhibitors already in clinical
use, research into new checkpoints as therapeutic targets has

shown promise in pre-clinical and clinical studies, either alone
or combined with established agents. Focusing on malignant
melanoma as the tumor type for which the first pivotal
immunotherapy breakthroughs were demonstrated, in this
review, we discuss current and future checkpoint blockade and
other immunooncology combination therapies, and the rationale
for potential synergistic effects (Table 2).

THERAPIES TARGETING CTLA-4 AND
PD-1

Anti-CTLA-4 Monotherapy
CTLA-4 is a CD28 homolog expressed constitutively on the
surface of both T-reg cells and activated T cells (14). CTLA-4
binds to CD28 co-receptors CD80/60 with a higher affinity and
avidity than CD28, thus superseding positive CD28 signaling
and thus allowing for inhibition of T cell activation (15, 16).
In order to function effectively as an immune checkpoint
via endocytosis CTLA-4 is not only able to competitively
inhibit T cell co-stimulation but can also clear CD28 ligands
CD80/CD86 from the surrounding cells including APCs by
trans-endocytosis in vivo (17). Physiologically, CTLA-4 has been
shown in vitro and in mouse models in vivo, to suppress
T cell responses including activation, proliferation, and pro-
inflammatory cytokine production (IFN-γ and IL-2) by antigen-
presenting cells (APCs) such as dendritic cells (DCs) and
macrophages (18) (Figure 1).

Studies on cells expressing human CTLA-4 in murine models
of melanoma, that investigated antibodies aimed at blocking
CTLA-4 checkpoints, have documented effects such as enhanced
T-eff function, inhibition of T-reg activity and selective depletion
of T-reg cells via antibody Fc binding of Fcγ-receptors on atypical
macrophages in tumor lesions (19, 20). Hypotheses that CTLA-4
blockade could enhance anti-tumor response were tested by a
pre- clinical study using transplantable murine melanoma cell
lines, demonstrating that CTLA-4 inhibitors induced rejection of
melanoma (21). Ex vivo studies of peripheral blood mononuclear
cells (PBMCs) and matched melanoma metastases from
patients with melanoma treated with ipilimumab have shown
evidence that ipilimumab also works by depleting T-reg cell
populations by antibody-dependent cell-mediated cytotoxicity
(ADCC) mediated by CD16 (FcγRIIIA)-expressing, nonclassical
monocytes. In the same study, patients who responded to
ipilimumab treatment had higher ratios of intratumoral CD68-
expressing vs. CD163-expressing macrophages before treatment
and lower T-reg infiltration after treatment (22). Clinical trials
involving ipilimumab have demonstrated a dose-dependent
response to the antibody in late-stage melanoma patients,
with pooled analysis consistently showing improved survival in
patients with metastatic disease above historical controls (23, 24).
By blocking this key immune escape mechanism, overall survival
rates for ipilimumab were significantly improved, alone or in
combination with a glycoprotein 100 peptide (GP-100) vaccine
when compared to vaccine alone (15, 25). Ipilimumab, a fully
humanized IgG1 antibody, was the first anti-CTLA-4 treatment
approved by FDA in 2011 (Table 1).
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FIGURE 1 | Immune cell interactions via checkpoint molecules and their ligands. Various interactions between checkpoint molecules and their ligands expressed by

different cells, such as immune cells (dendritic cells (DC)s, T-effector cells (T-eff), macrophages) and between T-eff and tumor cells, that may be targeted with therapy.

Anti-PD-1 Monotherapy
Another immune checkpoint, the programmed death 1 (PD-1)
immunoglobulin-based receptor predominantly expressed on
activated, antigen-educated T cells can recognize two ligands,
PD-L1 and PD–L2 (B7-DC; CD273). PD-L1 is expressed
broadly across many cell types, including leukocytes and tissue
cells, whereas PD-L2 expression is limited and specific to
expression on immune cells: antigen presenting and stromal
cells. Ligation of PD-1 to PD-L1 causes phosphorylation
and activation of SHP-2, a phosphatase that can inactivate
many downstream molecules in TCR signaling (26). In
vitro and in vivo studies in mouse models of cancer showed
that PD-L1 can also enhance the generation of peripherally
induced T-regs, (iT-reg), increasing Foxp3 expression and
sustaining their immunoregulatory actions such as suppression
of CD4+ T-eff cells (27). The co-stimulatory molecule
CD28 of which CTLA-4 is a homolog, is also preferentially
targeted by PD-1-mediated dephosphorylation (28). By this
mechanism, PD-1 mediates two immune checkpoints, by
reducing immune hyperstimulation via PD-L1 and maintaining
tolerance in lymphoid tissues via PD-L2. Both ligands PD-
L1 and PD-L2 can also be induced by cytokine signaling
during inflammation (29).

PD-L1 expression on tumor cells is often upregulated,
resulting in inhibition of T cell responses (15). In melanoma,
the expression of PD-L1 may be prognostic, and could correlate
with Breslow thickness (30). Mouse melanoma metastasis
to the liver was shown to be impaired in PD-1-deficient

mice and anti-PD-1 monoclonal antibody administration could
inhibit the spread of tumor cells via recruitment of T-eff
(31) by blocking the interaction of PD-1 with its ligands
(14). Anti-PD-1 and anti-PD-L1 blocking strategies produce

different immunologic effects as anti-PD-L1 has effects on more
than one pathway. PD-L1 signals negatively to T cells by
interacting with both CD80/CD86 and PD-1 (32) preventing
both pathways, without interacting with PD-L2, which activates
T cell response by producing co-stimulatory signals (32). Anti-
PD-L1 studies demonstrated temporary arrest of the growth of
melanoma cells in mouse models (33). Following the approval
of ipilimumab, the anti-PD-1 monoclonal antibodies nivolumab
and pembrolizumab gained FDA approval in 2014 (34) and
EMA approval in 2015, following trials showing significantly
improved patient outcomes (Table 1) (35). Nivolumab is a
fully human IgG4 monoclonal antibody which was shown to
improve median overall survival to 8.9 months compared to 6.8
months in patients treated with dacarbazine in a phase III study
involving patients with previously untreated melanoma (36).
Studies into metastatic melanoma have shown superior overall
survival of 1 year (72.9 to 42.1%) and better objective response
rate (40 to 13.9%) with nivolumab plus dacarbazine compared
to dacarbazine plus placebo (36). Pembrolizumab, a humanized
IgG4 monoclonal antibody has also shown similar efficacy to
nivolumab, with one phase III study reporting increased long-
term survival rates when compared to ipilimumab in patients
with unresectable melanoma (37).

Comparing Anti-CTLA-4 and Anti-PD-1
Therapies and Toxicity in the Clinic
Both anti-CTLA-4 and anti-PD-1 therapies aim to restore T cell
effector function in the TME and establish immune dominance
over tumors. Overall, these immune checkpoint blockade
monotherapies have generated significant improvements in
patient outcomes against traditional dacarbazine therapy, with
anti-PD-1 blockade seemingly more effective.
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TABLE 1 | Approved targeted, antibody and other immunotherapies and combination treatments for malignant melanoma.

Drug Target Mechanism Indication Approval

MONOCLONAL ANTIBODY MONOTHERAPIES

Ipilimumab CTLA-4 Human IgG1 monoclonal antibody

blockade

Advanced unresectable metastatic

melanoma

2011

Nivolumab PD-1 Human IgG4 monoclonal antibody

blockade

Advanced metastatic melanoma ±

refractory to ipilimumab

2014*

*2017: Approved as adjuvant

treatment for melanoma with

involvement of lymph nodes or

for patients with metastatic

disease who have undergone

complete resection

Pembrolizumab PD-1 Humanized IgG4 monoclonal

antibody blockade

Unresectable melanoma—stage III/IV 2014

COMBINED MONOCLONAL ANTIBODY THERAPIES

Ipilimumab + nivolumab CTLA-4 + PD-1 Monoclonal antibody blockade Unresectable melanoma—stage III/IV

PD-L1 negative

2015

TYROSINE KINASE INHIBITOR MONOTHERAPIES

Vemurafenib BRAF BRAF inhibitor causing programmed

cell death via interruption of MAPK

pathway

Unresectable BRAFV600 mutant

melanoma

2011

Dabrafenib BRAF inhibitor BRAF inhibitor causing programmed

cell death via interruption of MAPK

pathway

Unresectable BRAFV600 mutant

melanoma (not wild-type)

2013

Trametinib MEK inhibitor MEK1 and 2 inhibitor causing cell

death via interruption of MAPK

pathway

Unresectable BRAFV600E/K mutant

melanoma (not to be used post BRAF

inhibitor)

2013

COMBINED TYROSINE KINASE INHIBITOR THERAPIES

Dabrafenib + trametinib BRAF + MEK BRAF+MEK inhibition Unresectable BRAFV600E/K mutant

melanoma

2013

Vemurafenib + cobimetinib BRAF + MEK BRAF+MEK inhibition BRAFV600 mutant melanoma 2015**

**2018: Approved as adjuvant

treatment for patients with

nodal involvement and

following complete resection

OTHER TARGETED AND IMMUNE THERAPIES

Interferon IFNα2b Systemic IFNα2b administration

results in immunostimulatory effects

including an increase in

tumor-infiltration, decrease in

circulating T-regs and modulation of

STAT1/STAT3 balance

Adjuvant therapy for stage III

melanoma (cancer free but at high

risk of recurrence)

Adjuvant therapy for stage IIB or IIC

melanoma with primary lesions

>4mm thickness

1995

Aldesleukin IL-2 Systemic IL-2 administration

promotes T cell proliferation and

stimulates CD8 and NK cell

cytotoxicity

Metastatic melanoma 1998

T-VEC Oncolytic herpes

simplex virus

Local and direct infection and killing

of tumor cells

Unresectable stage IIIB, IIIC or IV

melanoma

2015

In 173 patients with advanced melanoma unresponsive
to ipilimumab treatment, the overall response rate (ORR)
to pembrolizumab was 26%, with the most severe adverse
event (AE) reported as grade 3 fatigue in 5 patients (38). In
comparison, CTLA-4-blockade treatment-associated toxicity has
not been insignificant; 60% of patients treated with ipilimumab
experienced adverse immune effects, which were severe (grade
3 or 4) in 10–15% of cases (25). Head-to-head trials of

pembrolizumab vs. ipilimumab have shown 47.3 and 26.5%
6-month progression-free-survival (PFS) rates respectively, with
AEs grade 3 or higher at rates of 19.9 and 13.3% (39). Nivolumab
was shown to be effective in a range of cancers, producing a
28% ORR in melanoma and grade 3 or 4 drug- related AEs
occurred in 14% of 296 patients across all groups (including three
deaths from pulmonary toxicity) (40). Research in one study
demonstrated 1-year and 2-year survival rates of 62 and 43%,
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TABLE 2 | Proposed mechanisms of action of selected immune checkpoint

blocking agents.

Agent Specificity Mechanism

Ipilimumab CTLA-4 • Inhibits coinhibitory checkpoint molecule

CTLA-4 on T cells by preventing CD80/CD86

binding on APCs

• Enhances T-eff activation and T-reg inhibition

Pembrolizumab/

nivolumab

PD-1 • Inhibit coinhibitory checkpoint molecule PD-1

on antigen-educated T cells, preventing PD-

L1-APC binding

• Enhances T-eff activation

• Reduces T-eff anergy

BMS-

956559/PDR001

PD-L1 • Inhibits coinhibitory checkpoint molecule PD-

L1 on APCs and melanoma cells preventing

its binding to PD-1 and CD80/CD86 on T cells

• Enhances T-eff activation

• Reduces T-eff anergy

LAG525 LAG-3 • Inhibits coinhibitory checkpoint molecule

LAG-2 on activated T cells preventing binding

to MHC-II on DCs, pDC and melanoma cells

• Enhances T-eff and myeloid cell responses

(DCs, macrophages and NK cells

CP1-444 A2AR • Inhibits coinhibitory checkpoint molecule

A2AR molecule on myeloid cells preventing

binding to extracellular adenosine released

by CD73 on T-reg and melanoma cells

• Enhances myeloid cell response

• Reduces T-reg cell response

MBG453 TIM-3 • Inhibits coinhibitory checkpoint molecule TIM-

3 on T cells preventing to binding on galactin-

9 on immune and melanoma cells and HMG-

B on immune cells

• Prevents T cell exhaustion

• Enhances nucleic acid recognition

within endosomes

MGA271 B7-H3 • Inhibits coinhibitory checkpoint molecule B7-

H3 on APCs and melanoma cells preventing

ligand binding on T cells

• Enhances T-eff activation and T-reg inhibition

CA-170 VISTA • Inhibits coinhibitory checkpoint molecule

VISTA on myeloid cells and naïve T cells

preventing binding to VSIG-3

• Enhances T-eff activation and T-reg inhibition

Epacadostat IDO • Inhibits coinhibitory checkpoint molecule IDO

on alternatively activated macrophages, T-

regs and melanoma cells preventing the

conversion of tryptophan to kynurenines on T

cells

• Enhances NK/ T-eff activation and T-reg

inhibition

N/A PKC-η • Inhibits coinhibitory signaling molecule PKC-η

on T-regs preventing its induction of anti-

inflammatory cytokine transcription

• Enhances T-eff activation and T-reg inhibition

respectively (35). Although both therapies have been successful
in treating many cases, anti-PD-1 have thus far been more
efficacious than anti-CTLA-4 monoclonal antibodies and have
fewer adverse drug reactions. This difference may be because
PD-1 is expressed on mature T cells; PD-L1 is expressed on
antigen-presenting cells such as DCs andmacrophages, and other

immune cells as well as on tumor cells, while CTLA-4 is widely
expressed on T cells across the body including those circulating
in lymph nodes and skin. CTLA-4 inhibitor-mediated anti-tumor
activity may therefore extend to secondary lymphoid organs
rather than only within the TME (13). This wide expression
distribution may potentially result in the disruption of other
immune-regulating mechanisms and triggering of autoimmune-
like events, consistent with toxicities observed in the clinic with
anti-CTLA-4 antibody treatment.

Rationale and Pre-clinical Evidence for
Checkpoint Blockade Combination
Therapy
While checkpoint inhibitor monotherapy provides significant
benefits, this is generally only the case in subsets of patients.
CTLA-4 and PD-1 are not functionally redundant, acting at
different locations and times in the generation of T-eff (41).
This may mean that combination therapies may act in a
complementary or even synergistic fashion.

Checkpoint blockade therapies are also known to be subject to
various forms of resistance mechanisms. Anti-CTLA-4 blockade
primary resistance has been shown to correlate with a loss
of IFN-γ signaling genes in vitro and clinically in patients
who had poor clinical responses to ipilimumab therapy (42).
Furthermore, in patients, PD-L1 expression on circulating
CD4+ T CD8+ T cells may be predictive of resistance to
anti-CTLA-4 treatment, providing a potential rationale for
combination with PD-1/PD-L1 blockade therapy (43). Studies
in murine models and patients receiving anti-PD-1 treatment
also point to key roles of infiltrating myeloid cells and their
signaling pathways, as well as upregulation of alternative immune
checkpoints such as T cell immunoglobulin mucin-3 (TIM-3),
all associated with resistance to checkpoint inhibition (44, 45).
Checkpoint inhibitor monotherapy has been shown to trigger
activation of compensatory T cell-associated checkpoints. Pre-
clinical evidence supports a rationale for combination therapy
as, by blocking more than one of these pathways, including
PD-1, LAG-3, and CTLA-4, may reduce tumor growth (46,
47). Murine studies demonstrated that B16 melanoma cell
rejection in mice was improved by combined anti-CTLA-4
and anti-PD-1 antibody therapies (47). The results indicated
that combination therapy was more than twice as effective
as monotherapy in terms of B16 melanoma rejection by
increasing T cell infiltration and the presence of T-eff in
the TME; IFN-γ and other pro-inflammatory cytokines were
observed to be upregulated, producing an inflammatory rather
than immunosuppressive TME (47). Further pre-clinical studies
suggested that anti-CTLA-4 and anti-PD-1 therapies may have
synergistic effects, increasing the numbers of TILs, reducing
T-reg and retarding tumor growth (48). Certain subgroups of
patients, such as elderly patients, tend to respond better to
anti-PD-1 agents, a phenomenon which may be attributed to a
depletion of the number of T-regs in older patients (49). These
findings, taken together with studies suggesting that anti-CTLA-
4 treatment can reduce CTLA-4-expressing T-regs, may lend
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further merit to stratifying appropriate patient groups to receive
combination therapies (20, 22).

Therefore, since CTLA-4 and PD-1 inhibitors exert anti-
tumor effects through different mechanisms of action, combining
these agents could potentially lead tomore efficacious treatments.
Furthermore, blockade of one pathway resulted in increased
activity and an upregulation of other inhibitory pathways, an
effect that could perhaps be mitigated by combined therapy.
Emerging evidence provided a rationale for the development of
combined blockade regimens as well as acceleration of research
into further blockade targets. Although toxicity profiles especially
those associated with CTLA-4 blockade use may be an important
concern in combined therapies, pre-clinical and clinical findings
into the efficacy of combining checkpoint blockade antibodies
showed encouraging results in melanoma.

Combined CTLA-4 and PD-1 mAb
Therapies in the Clinic
In the first clinical trial investigating the efficacy and safety
of combined checkpoint blockade antibodies published in 2013
(50), 53 patients with melanoma were treated concurrently
with nivolumab and ipilimumab, while 33 patients received
only ipilimumab. In the double therapy group the ORR was
40% for combination treatment and the ORR was 20% in the
monotherapy group. However, drug-related toxicity was higher
in the combined therapy group; 53% of patients experienced
grade 3 or 4 AEs compared to 18% in the monotherapy group.
These drug related reactions were managed with medications.

Prolonged PFS was also reported in a phase II dose-escalation
study of combined nivolumab and ipilimumab in 142 patients
(51). ORRs in the combination and ipilimumab alone groups
were 61 and 11%, respectively with drug-related AEs of grade 3
or 4 were exhibited by 54 and 24% of the patients, respectively
(51). These drug-related AEs were also managed by immune
modulation drug intervention. Follow up on these patients
(median 24.5 months) showed a 63.8% 2-year overall survival for
the combination group compared to 53.6% for ipilimumab alone
(51). This clearly indicated the benefit of combined therapy and
its longevity.

The registration phase III Checkmate 067 trial randomized
945 previously-untreated patients to nivolumab, ipilimumab and
the two combined drugs, showing a median PFS of 6.9 months,
2.9 months and 11.5 months and 3-year overall survival (OS)
rates of 52, 34, and 58%, respectively (52). This large well powered
trial confirmed the superior efficacy of combination therapy
and nivolumab monotherapy when compared to ipilimumab
monotherapy as PFS was consistently longer for patients taking
preparations that included nivolumab; this included subgroups
categorized by PD-L1 or BRAF mutation status and metastasis
stage (53). For patients with BRAF mutations the PFS was 11.7
months (11.2 months for those with wild-type BRAF). Positive
PD-L1 status patients fared better with a median PFS of 14
months in both the nivolumab mono and dual therapy groups
compared to only 3.9 months for patients taking ipilimumab
alone. Checkmate 067 also reported higher rates of complete
response in patients on a combined regimen (11.5% compared

with 8.9% for nivolumab alone and only 2.2% for ipilimumab
alone). Tumor burden change (a parameter which can be used
for predicting treatment response) was also significantly higher in
the combination group;−51.9% compared with−34.5% and 5.9%
for nivolumab alone and ipilimumab alone, respectively.

Furthermore, treatment-related adverse events, as reported in
the Checkmate 067 trial comparing ipilimumab, nivolumab and
the two combined, revealed higher rates of toxicity associated
with the combination therapy (96% compared with 86% in both
monotherapy regimens) and this also more frequently led to
discontinuation of treatment in the combined group than either
monotherapy group. Grade 3 or 4 AEs occurred in 59% of
patients given dual therapy comparedwith 21 and 28% of patients
on nivolumab or ipilimumab alone, respectively, and these grade
3 or 4 adverse reactions were most frequently gastrointestinal
in nature. Side effects were managed with established safety
guidelines and usually resolved within 3–4 weeks and the 3-
year survival rate for patients who discontinued treatment was
67% (52). These indicate that combined treatment elicited higher
rates of toxicity than either monotherapy and that benefit from
dual therapy was conferred despite discontinuation of treatment.
Median survival in patients with PD-L1-positive tumors was the
same in both the combination and nivolumab alone groups.
This may reflect T cell infiltration enhanced by ipilimumab,
thus favoring a TME that may be amenable to anti-PD-1
agent action (54).

Previous studies of anti-PD-1 monotherapies have suggested
that efficacy was higher in patients whose tumors expressed PD-
L1 at levels ≥5%, compared with those whose tumors showed
lower expression (54). Where the patients were PD-L1-negative
however, another study demonstrated that PFS was longer in the
combination group (11.2 months) than in the nivolumab alone
group (5.3 months) (53). Overall studies to-date support these
combination therapies, which appear to benefit patients with low
PD-L1 tumor expression.

Studies have also successfully treated melanoma with
combined checkpoint blockade regimens where the two
antibodies were administered sequentially. A phase III study
of two groups of patients with unresectable stage III or IV
melanoma investigated patients treated with nivolumab then
ipilimumab (n = 68), or vice versa (n = 70); with nivolumab
used as maintenance therapy for both groups until toxicity or
disease progression (55). Toxicity was comparable between the
groups, however, the nivolumab/ipilimumab exhibited a greater
12-month survival (76%) compared with its counterpart cohort
of patients who received the treatments in reverse.

Reducing the dose of ipilimumab in combination with
PD-1 directed therapy has resulted in lower combined therapy
toxicity rates. Nivolumab with low-dose ipilimumab has
been approved in some jurisdictions for the treatment of
renal cell carcinoma where toxicity rates have reportedly
been reduced compared with combined therapies with
higher doses of ipilimumab (56). Research has suggested
pembrolizumab as an alternative to nivolumab in a
combined regimen with ipilimumab (57). A phase I study,
investigating the safety of combining standard-dose (2 mg/kg)
pembrolizumab with low-dose (1 mg/kg reduced from 3
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mg/kg) ipilimumab, was not powered to examine efficacy
(although it suggested comparable level of efficacy to a
nivolumab/ipilimumab combination) (57). However, the study
demonstrated a more manageable toxicity profile with the
pembrolizumab preparation (57).

In summary, the first phase I trials demonstrated higher
efficacy than previous monotherapy regimens in small patient
cohorts, with a concurrent increase in drug-related toxicity
(58). Phase III trials have confirmed these findings showing
improved outcomes for advanced-stage melanoma patients when
treated with both anti-CTLA-4 and anti-PD-1 therapeutics,
which showed benefits for patients with PD-L1 negative tumors
(53). Significant toxicity associated with dual therapy limits
its usage in patients with comorbidities. However, improved
clinical outcomes led to the FDA approval of the combination
of nivolumab and ipilimumab for the treatment of unresectable
stage III/IV PD-L1 negative melanoma (Table 1). In 2018 the
EMA adopted a positive opinion recommending that nivolumab
in combination with ipilimumab is indicated for the treatment of
unresectable or metastatic melanoma in adults.

OTHER POTENTIAL IMMUNE
CHECKPOINT THERAPY TARGETS AND
COMBINATIONS WITH ESTABLISHED
CHECKPOINT INHIBITORS

As research into therapies utilizing CTLA-4 and PD-1/PD-
L1 blockade to treat melanoma has advanced, further targets
have been sought out in an effort to overcome issues
such as incomplete tumor regression or relapse following
treatment. A concerted effort is underway focusing on inhibitory
molecules whose mechanisms may operate within the TME
and could have complementary functions to those of approved
immunotherapies. Studies in the circulation and tumors of
patients with melanoma reveal that the TME promotes T
cell, exhaustion demonstrated by upregulation of markers of
immunosenescence, thereby allowing T cell impairment and
immune escape (59). These markers represent targets for
immunotherapy to counteract the immune escape of cancer cells.
Targeted treatments combining anti-CTLA-4 or anti-PD-1/PD-
L1 alongside blockade of novel checkpoints have the potential
to produce comparable effects, perhaps with fewer adverse
drug reactions than those of the dual anti-CTLA-4/anti-PD-
1 regimens.

LAG-3/PD-L1 Blockade
The lymphocyte-activation gene 3 (LAG-3) is a co-inhibitory
receptor known primarily to be expressed on exhausted TILs
which have less potent effector functions (60, 61). LAG-3
may downregulate T cell responses via interaction with major
histocompatibility complex class-II (MHC-II) on DCs (61)
(Figure 1). Preclinical studies have shown that, as a result
of persistent melanoma antigen expression, LAG-3 expression
on TILs is increased, thereby inhibiting T cell action and
reducing IFN-γ production within the TME under the influence
of PD-1 co-stimulation (61). It has been hypothesized that

LAG-3 blockade might produce milder side effects than those
observed with checkpoint inhibitors currently in clinical use.
Autoimmunity developed by Lag3−/−Pdcd1−/− mice (deficient
in LAG-3 and PD-1) was slower: approximately 10 weeks
compared with 3–4 weeks in CTLA-4 deficient mice, and less
penetrant (80% vs. 100%) than the phenotype observed in
Ctla4−/− mice (60). Indeed, in one phase I trial of LAG3/PD-1
targeting combined therapy, similar safety profiles to nivolumab
monotherapy were reported (62). Moreover, in vivo studies
in murine cancer models have shown that when expressed
at high levels, concomitant LAG-3/PD-1 expression is mostly
restricted to infiltrating TILs (60). This may signify that a
combination immunotherapy targeting these two molecules may
encourage tumor-specific responses, avoiding non-specific or
self-antigen specific immune responses, perhaps rendering such
treatment less toxic than CTLA-4 blockade. Indeed, preclinical
evidence that LAG-3 is synergistically efficacious in combination
with anti-CTLA or anti-PD-1 therapies is driving clinical
development (46).

In addition, PD-L1 overexpression in melanoma tumors has
been associated with increased LAG-3 expression. Thismay point
to potential synergistic treatment effects. Pre-clinical studies
demonstrated that combination blockade of PD-1 and LAG-3
can induce immune activation and associated tumor rejection in
fibrosarcoma and colorectal cancer models in mice (60). LAG-
3 has been shown to be expressed on a subset of alternatively-
activated human plasmacytoid DCs (pDC). These cells may
be enriched in human melanoma tumor sites and produce
anti-inflammatory cytokines in response to interactions with
MHC class II (61, 63). This may indicate that LAG-3 blockade
may promote innate immunity host defense mechanisms.
Additionally, melanoma resistance to FAS-mediated apoptosis
has been proposed as a mechanism of immune escape mediated
by tumor cells expressing MHC class II through engagement
with LAG-3 (CD223) expressed on TILs (64). Murine studies
have indicated that combined use of anti-LAG-3 and anti-PD-
L1 in melanoma treatment overcame the requirement for tumor
specific T-reg depletion (65). Because LAG-3 engages with DCs,
it is possible that LAG-3 blockade can promote innate immunity,
a first host defense mechanism, hence stopping tumor growth at
an early stage.

The human IgG4 monoclonal LAG-3 antibody relatlimab
is in late phase clinical trials in combination with nivolumab
versus nivolumabmonotherapy for first line advancedmelanoma
treatment (Table 3). This regimen holds promise of both efficacy
and de-escalation of toxicity.

TIM-3/PD-1 Blockade
T cell immunoglobulin and mucin 3 (TIM-3), a co-inhibitory
receptor expressed on T cells, has both inhibitory and activating
properties (Figure 1). It has been shown to induce T cell
apoptosis, anergy and exhaustion via interaction with galectin-

9 on immune cells (66). TIM- 3 expressed on TILs has also
been found to bind to galectin-9 expressed on tumor cells
in vitro, promoting immune escape (66). In addition, TIM-

3 interactions with the high mobility group box 1 (HMGB1)
protein, which is involved in the recruitment of nucleic acids
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TABLE 3 | Selection of current anti-LAG-3 (relatlimab) clinical trials. Information sourced from ClinicalTrials.gov.

Trial Aim Target molecules Condition Phase

NCT02658981 To evaluate the safety and most effective

dose of relatlimab or urelumab (CD137)

alone and in combination with nivolumab

Relatlimab: anti-LAG-3 mAb

Urelumab: anti-CD137 mAb

Recurrent glioblastoma I

NCT03335540 Evaluate the treatment of solid tumors with

various immunotherapy combinations

(nivolumab, relatlimab, cabiralizumab,

ipilimumab, anti-GITR, IDO1 inhibitor,

lirilumab and radiation therapy

Nivolumab: anti-PD-1 mAb

Relatimab: anti-LAG-3 mAb

Cabiralizumab: anti-CTF1R mAb

Ipilimumab: anti-CTLA mAb

Lirilumab: anti-KIR mAb

Anti-GITR

IDO1 inhibitor

Broad biomarker assessment I

NCT01968109 To assess the safety, tolerability and

efficacy of relatlimab alone and in

combination with nivolumab in patients

with unresectable/metastatic cancer

Nivolumab: anti-PD-1 mAb

Relatlimab: anti-LAG-3 mAb

Not previously treated

with immunotherapy:

• NSCLC

• Gastric cancer

• Hepatocellular carcinoma

• Renal cell carcinoma

• Bladder cancer

• Squamous cell carcinoma of the head

and neck

• Melanoma

Previously treated with immunotherapy

• NSCLC

• Melanoma

I/II

NCT02488759 To investigate the safety and effectiveness

of nivolumab, and nivolumab combination

therapy (relatlimab, ipilimumab and

daratumumab)

Relatlimab: anti-LAG-3 mAb

Ipilimumab: anti-CTLA mAb

Daratumumab: anti-CD38 mAb

Virus associated cancers:

• Anal canal cancer

• Cervical cancer

• Epstein Barr Virus (EBV) positive gastric

cancer

• HPV positive and negative squamous

cell cancer of the head and neck

(SCCHN)

• Merkel Cell Cancer

• Nasopharyngeal cancer (NPC)

• Penile cancer

• Vaginal and vulvar cancer

I/II

NCT02061761 To evaluate the safety, tolerability and

maximum tolerated dose of relatlimab

administered alone or in combination with

nivolumab to subjects with relapsed

hematologic malignancies

Nivolumab: anti-PD-1 mAb

Relatimab: anti-LAG-3 mAb

• Relapsed or refractory Hodgkin

lymphoma (HL),

• Relapsed or refractory Diffuse Large B

Cell lymphoma (DLBCL)

I/II

NCT03459222 To investigate safety and anti-tumor

activity of relatlimab combination therapy

in metastatic/unresectable solid cancers

Relatimab: anti-LAG-3 mAb Incurable metastatic/unresectable solid

tumor excluding CNS metastases

I/II

NCT02750514 To evaluate the efficacy of nivolumab in

combination with other agents (dasatinib,

relatlimab, IDO1 inhibitor)

Nivolumab: anti-PD-1 mAb

Relatimab: anti-LAG-3 mAb

Dasatinib: tyrosine kinase inhibitor

IDO1 inhibitor

NSCLC II

NCT02996110 To compare the efficacy and safety of

nivolumab combination therapies

(relatlimab/IDO1 inhibitor) with nivolumab

and ipilimumab

Nivolumab: anti-PD-1 mAb

Relatimab: anti-LAG-3 mAb

Ipilimumab: anti-CTLA mAb

IDO inhibitor

Renal cell carcinoma II

NCT02935634 To compare the efficacy and safety of

nivolumab combination therapies

(relatlimab/IDO1 inhibitor) with nivolumab

and ipilimumab

Nivolumab: anti-PD-1 mAb

Relatimab: anti-LAG-3 mAb

Ipilimumab: anti-CTLA mAb

IDO inhibitor

Gastric cancer II

NCT03470922 To compare the efficacy of nivolumab in

combination with relatlimab and nivolumab

alone

Nivolumab: anti-PD-1 mAb

Relatimab: anti-LAG-3 mAb

Unresectable/metastatic melanoma II/III

into endosomes to be sensed by the innate immunity, impairs
this mechanism promoting tumor escape (67). Since TIM-3 has

been established as an exhaustion marker in cancer, it is an

attractive immunotherapy target (68). Compared with single
agent PD-1 blockade in murine cancer models, it has been
shown that combined TIM-3/PD-1 blockade led to superior
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tumor regression (68). In vivo and ex vivo research into the
properties of TIM-3 has shown that a melanoma peptide vaccine
induced CD8+ T cells to upregulate PD-1 and to an extent
TIM-3 in immunized patients. Simultaneous TIM-3 and PD-
1 blockade enhanced the proliferation of CD8+ T cells (69).
Dual anti-TIM-3 (MBG453) plus anti-PD-1 (PDR001) blockade
is currently being analyzed in phase I/II trials (NCT02817633,
NCT02608268, NCT03099109, NCT03066648).

B7-H3/CTLA-4 Blockade
B7-H3 (CD276) is a receptor of the CD28 (a co-stimulatory
molecule) and B7 (a co-inhibitory molecule) family molecules
found on APCs (Figure 1). B7-H3 has been found to be
over-expressed in melanoma, favoring tumor growth and
conferring anti-apoptotic processes (70). When targeted by an
Fc-optimized anti-B7-H3 (MGA271) humanized IgG1 antibody,
potent antibody-dependent cellular cytotoxicity (ADCC) against
melanoma in vitro and in vivo was observed (71). Studies
have suggested than B7-H3 blockade could suppress its co-
stimulatory properties. Anti-sense oligonucleotides shown to
inhibit B7-H3 expression on DCs resulted in inhibition of IFN-
γ production by DC-activated T cells and the proliferation of T
cells in vitro (72). Subsequently, ipilimumab plus enoblituzumab,
a first in class mAb targeting B7-H3, have been the subject
of a phase I trial (NCT02381314), and also enoblituzumab in
combination with pembrolizumab is being tested in refractory
cancers (NCT02475213) (73).

VISTA/PD-1 Blockade
V-domain Ig suppressor of T cell activation (VISTA) is
a PD-L1 homolog and co-inhibitory receptor of the B7
family predominantly expressed on various hematopoietic cells
(myeloid derived suppressor cells (MDSCs), tumor associated
macrophages (TAMS) and DCs) (74) and on leukocytes such as
naïve T cells (Figure 1). Particularly high levels of VISTA were
found on tumor infiltrating myeloid cells in murine models (75).
VISTA may participate in the suppression of T-eff responses and
T-reg induction via interaction with its putative ligand VSIG-
3 (75, 76). VSIG-3 is thought to inhibit T cell function and, in
the presence of TCR signaling, it may impair T cell proliferation
via the VSIG-3/VISTA pathway (77). As well as expression on
T cells, it has also been noted to be upregulated in tumors such
as colorectal cancer or hepatocellular carcinoma (77). A murine
study using B16-OVA melanoma cell lines demonstrated that
VISTA blockade with a monoclonal antibody (13F3) enhanced
T-eff response within the TME (78). Therefore, blockade of
VISTA could enhance innate immunity since it is expressed on
myeloid cells thereby promoting early melanoma eradication.
VISTA is also expressed on naïve T cells, and inhibition of VISTA
could promote early T cell reaction in response to tumor cells
(79). VISTA can control T cell activation through nonredundant
functions distinct from the PD-1/PD-L1 pathway in controlling
T cell activation and antibodies targeting both checkpoints have
shown efficacy in preclinical models (80). Therefore, concurrent
targeting VISTA and PD-1 pathways has been proposed as a
therapeutic approach. The small molecule antagonist CA-170
electively targets PD-L1/2 and VISTA and is presently tested

in a phase I trial (NCT02812875) in advanced solid tumors
and lymphomas.

A2AR/PD-L1 Blockade
The adenosine-adenosine A2A receptor (A2AR) pathway is of
interest as a target for immunotherapy, since the extracellular
adenosine, often found in TME due to hypoxia, can inhibit T
cell proliferation and cytotoxicity via the A2AR receptor (CD73)
on myeloid cells such as macrophages (81) (Figure 1). CD73
is a checkpoint molecule expressed on T-reg which converts
AMP to adenosine in this pathway and this checkpoint is also
expressed on melanoma cells. Studies of patient samples ex
vivo have shown that via adenosine interaction, tumor cells
are able to inhibit immune responses and to simultaneously
enhance neovascularization and cancer cell growth via vascular
endothelial growth factor (VEGF) and IL-6 expression (82, 83).
Synergistic effects of combined CTLA-4 and CD73 as well as
combinations of PD-1 and CD73 blockade immunotherapies
in breast cancer and colon carcinoma pre-clinical models
(84, 85) have been observed. Furthermore, murine studies
have demonstrated suppressed melanoma growth and enhanced
lymphocytic infiltration in the TME in A2AR-deficient mice.
Early phase trials investigating the merits of a combined anti-
CD73/anti-PD-L1/anti-PD1 therapies in patients with solid
tumors are underway, to ascertain whether or not targeting
multiple sites in the pathway can show enhanced anti-tumor
effects (e.g. NCT02655822, NCT02503774) (Table 4).

IDO/CTLA-4, PD-1 and PD-L1 Blockade
Indoleamine 2’3’ dioxygenase (IDO, IDO1 and IDO2) is a
catabolic enzyme produced by macrophages and T-regs to
convert tryptophan, which is needed for T cell effector function,
to kynurines (86) (Figure 1). Immune tolerance is promoted
by IDO-mediated tryptophan deficiency, with naïve T cells
observed to differentiate into T-reg (87). This protein can also be
expressed by tumors alongside prostaglandin E2, thereby aiding
in immune escape of these cancers via NK cell inhibition (88)
and T-reg recruitment resulting in IL-10 mediated induction
of myeloid-derived suppressor cells (MDSC) (89). Ex vivo-
derived and tumor-associatedMDSC have been shown to express
PD-L1 and MHC-II, and correlated with expression of their
receptors, PD-1 and LAG- 3, on T cells, known to be associated
with immunosuppression of T cell functions. PD-L1-expressing
MDSCs could trigger immunosuppressive effects via IDO (90).
Importantly, a pre-clinical study in a melanoma model in mice
demonstrated IDO overexpression post-treatment with anti-
CTLA-4 and anti-PD-1 (14). This conferred resistance and
tumor growth, a property found to be reversible by combination
treatment with anti-CTLA-4 and IDO inhibitors (14). Studies
using the murine B16.SIY melanoma mouse model have shown
that combinations of CTLA-4 or PD-1/PD-L1 with IDO blockade
restored both IL-2 production and CD8+ T cell proliferation
within the TME (48), pointing to the potential merits of a
combinational targeting approach.

IDO and galectin-3 expression are known to promote T-
reg upregulation, while suppressing T-eff production (91, 92).
Blockade of these two molecules reversed these effects (91),
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TABLE 4 | Selection of current A2AR/CD73 inhibitor clinical trials. Information sourced from ClinicalTrials.gov.

Trial Aim Target molecules Condition Phase

NCT03454451 To evaluate the safety, tolerability, and

anti-tumor activity of CPI-006 as a single

agent, in combination with A2AR inhibitor

CPI-444 and in combination with

pembrolizumab

CPI-006: CD23 and adenosine

inhibitor

CPI-444: A2AR inhibitor

Pembrolizumab: humanized

anti-PD-1 mAb

• Non-small cell lung Cancer (NSCLC)

• Renal cell cancer

• Colorectal cancer

• Triple negative breast cancer

• Cervical cancer

• Ovarian cancer

• Pancreatic cancer

• Endometrial cancer

• Sarcoma

• Squamous cell Carcinoma of the head

and neck

• Bladder cancer

• Metastatic castration Resistant

prostate cancer

I

NCT02503774 To evaluate the safety, tolerability,

pharmacokinetics, immunogenicity, and

antitumor activity of MEDI9447

(oleclumab) alone and in combination with

MEDI4736 (Durvalumab) in adult subjects

with select advanced solid tumors

Oleclumab: human anti-CD73 mAb

Durvalumab: human anti-PD-1 mAb

• Advanced solid malignancies

• NSCLC

I

NCT02655822 To study the safety, tolerability, and

anti-tumor activity of A2Ar inhibitor

CPI-444 alone and in combination with

atezolizumab

CPI-444: A2AR inhibitor

Atezolizumab: humanized

anti-PD-1 mAb

• Non-small cell lung cancer

• Malignant melanoma

• Renal cell cancer

• Triple negative breast cancer

• Colorectal cancer

• Bladder cancer

• Metastatic

• Castration resistant Prostate cancer

I

NCT02740985 To determine the maximum tolerated dose

of A2AR receptor antagonist AZD4635 in

combination with durvalumab

Durvalumab: human anti-PD-1 mAb

AZD4635: A2AR receptor antagonist

• Advanced solid malignancies

• NSCLC

• Metastatic castrate-resistant prostate

carcinoma

• Colorectal carcinoma

I

NCT03549000 To assess the safety, tolerability, and

anti-tumor activity of anti-CD73 NZV930

alone and when combined with anti-PD1

and/or A2AR inhibitor NIR178

NZV930: anti-CD73

NIR178: A2AR inhibitor

PDR001: experimental anti-PD-1

• NSCLC

• Triple negative breast cancer

• Pancreatic ductal adenocarcinoma

• Colorectal cancer microsatellite stable

• Ovarian cancer

• Renal cell carcinoma

I

NCT02403193 To determine the safety, tolerability,

feasibility and efficacy of A2AR inhibitor

PBF-509 alone and in combination with

anti-PD1

PBF-509: A2AR inhibitor

PDR001: experimental anti-PD-1

NSCLC I/II

NCT03381274 To evaluate the safety, tolerability and

antitumor activity of novel combination

therapies (oleclumab, A2AR inhibitor

AZD4635 and osimertinib)

Oleclumab: human anti-CD73 mAb

AZD4635: A2AR inhibitor

Osimertinib: tyrosine kinase inhibitor

NSCLC I/II

NCT03207867 To evaluate the efficacy and safety of

A2AR antagonist (NIR178) in combination

with anti-PD1

NIR178: A2AR inhibitor

PDR001: experimental anti-PD-1

• NSCLC

• Renal cell cancer

• Pancreatic cancer

• Urothelial cancer

• Head and neck cancer

• Diffused large B cell

• Lymphoma

• Microsatellite stable colon cancer

• Triple negative breast cancer

• Melanoma

II

and although further investigations into combined anti-PD-
1/IDO (epacadostat) inhibitors underway in a phase I and II
trial (NCT02318277) were promising, a phase III trial studying

an epacodostat-pembrolizumab combination was abandoned
due to a lack of significant improvement in both primary
and secondary endpoints—PFS and overall survival (OS) (93).
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Epacodostat has had to be discontinued in several trials
assessing its efficacy as a monotherapy including KEYNOTE-006,
KEYNOTE-010, KEYNOTE-087 and KEYNOTE-052, due to
adverse reactions (94). These disappointing results may influence
the design of future studies aiming to assess IDO as a potential
immunotherapy target. However, different approaches to direct
IDO inhibition, including an IDO peptide vaccine, have been
promising and have shown significant delay in tumor growth
and prolonged survival in a B16 murine model (95). Early
phase trials of combinations such as a PD-L1/IDO peptide
vaccine with nivolumab (NCT03047928) in advanced melanoma
are underway.

PKC-η/PD-1 Blockade
A protein which may synergize with CTLA-4 to mediate
immune tolerance is PKC-η, an intrinsic downstream signaling
checkpoint molecule (96) (Figure 1). PKC-η induces anti-
inflammatory cytokine transcription by activating NFkB
downstream of the cascade (97). Downregulation of PKC-η in
murine models reduced the tumor-suppressive activity of T-reg
but did not enhance autoimmune colitis (96). It is possible that
inhibition of PKC-η could potentially produce effective T-reg
suppression and with fewer adverse drug reactions if used in
combination with anti-CTLA-4 blockade. Pre-clinical studies
on Rag1 mice have shown that a PKC-η deficiency reduced
tumor growth (98) and there are currently studies investigating
the efficacy of midostaurin, a tyrosine kinase inhibitor, for
the treatment of leukemia as well as studies on the pan-PKC
inhibitor AEB071 sotrastaurin which is being tested in uveal
melanoma (NCT02273219, NCT02601378, and NCT01430416).

ANTIBODY ENGINEERING AND NOVEL
COMBINATIONS TO IMPROVE
CHECKPOINT BLOCKADE

Combining checkpoint blockade antibodies may be an effective
strategy for treating melanoma (Figure 1). However, there
remain numerous avenues available for the refinement of existing
therapies. With advances in protein engineering, antibodies
can be manipulated to introduce novel functionality (99). For
combined checkpoint blockade therapies, there is evidence that
such engineering could further improve clinical efficacy. Anti-
CTLA-4 antibodies have been observed in mouse models of
cancer to deplete T-reg cells by ADCC, a function that relies on
specific antibody isotypes engaging with FcγR on effector cells
(monocytes, macrophages, NK cells) that are cytotoxic to T-regs
within the TME (20, 100) (Figure 2A).

Until recently, there has been an assumption that Fc
receptors would not contribute to the anti-tumor activity
of antibodies recognizing checkpoint molecules (101). FcγRs
expressed mainly on hematopoietic cells such as NK cells, DCs
and macrophages (102) can activate or inhibit; in particular,
FcγRI, FcγRIIa, and FcγRIIIa are activating receptors while
FcγRIIb is inhibitory (101) (Figure 2A). Importantly, FcγRs
are co-expressed on the same cells such as monocytes and
macrophages, allowing thresholds for activation/inhibition to

be fine-tuned (101). Ipilimumab, for instance, exhibits T-
reg depletion properties specifically in the presence of FcγR-
expressing monocytes and natural killer (NK) cells, consistent
with clinical studies that have demonstrated correlations between
specific checkpoint inhibitor antibody subtypes of activating
hFcγRs and clinical responses (100) (Figure 2A). An example of
this includes variants in the gene FCGR (FCGR2A and FCGR3A)
which bind more avidly to human IgG1 and IgG2 subtypes,
thereby increasing ADCC-mediated cell death and thus have
been associated with improved outcomes (100). Whether these
single nucleotide polymorphisms (SNPs) can affect the response
of other immunomodulatory monoclonal antibodies requires
further investigation.

In vitro studies of anti-CTLA-4 monoclonal antibodies with
the same IgG1 and IgG2 Fc variants such as ipilimumab
and tremelimumab exhibited superior tumor killing with
antibodies able to maximize T-reg depletion by ADCC (20,
100) (Figure 2A). Additionally, preclinical studies have shown
that targeting CTLA-4 on T-reg cells conferred minimal tumor
protection in comparison to when antibody bound to CTLA-
4 on both T-eff and T-reg compartments in vivo (101).
Preclinical studies demonstrated a requirement for enriching
the TME with effector cells such as myeloid cells expressing
high levels of FcγRs (103). One phase II trial showed that
granulocyte–macrophage colony-stimulating factor (GM-CSF)
plus ipilimumab improved overall survival in patients with
metastatic melanoma compared with ipilimumab alone, possibly
as a result of a macrophage enriched TME. These findings suggest
that macrophages, may be key effector cells in mediating ADCC
(101, 103) (Figure 2A).

One molecule of note is CD25, highly expressed on T-reg
cells in the TME in mouse models and in human tumors,
but with minimal expression in the effector cell compartment
(104). Anti-CD25 antibody-induced ADCC can be enhanced
by optimizing the antibody isotype to engage activating FcγRs
in mouse models of cancer (104). Experiments on mouse
models have also shown that anti-CD25 therapies can work
concurrently with other immunomodulatory drugs such as
anti-PD-1 monoclonal antibodies in the TME. Fc-optimized
anti-CD25 drug combinations may prove promising through
improving the drug therapeutic window (104). However, it
is important to note that CD25 is also expressed at lower
levels on activated memory T cell populations (105) potentially
highlighting a risk for unwelcome T-eff depletion with anti-
CD25 treatment.

Bispecific T cell engaging antibodies (BiTE) constitute
an extensive class of agents able to recognize a range of
tumor antigens expressed on cancer cells on one arm, while
simultaneously engaging a T cell-specific molecule such as
CD3 through the other arm (Figure 2B). BiTEs are able to
link the two, promoting cytolysis of tumor cells. A bispecific
T cell engaging (BiTE) antibody which recognizes the tumor
antigen carcinoembryonic antigen (CEA) with one arm and CD3
with the other has been suggested for improving checkpoint
blockade therapies (106) (Figure 2B). Following BiTE-mediated
cytolysis, upregulation of PD-1 impaired T cell functions (107).
If the BiTEs are delivered in conjunction with PD-1 checkpoint
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FIGURE 2 | Monoclonal antibody mechanisms of action and interactions with immune cells that can influence checkpoint inhibition: isotype switching, Fc domain

optimization and BiTEs. (A) Isotype switching and Fc optimization of mAbs to increase binding to activatory Fc receptors on effector cells, such as monocytes,

macrophages and NK cells, to enhance T-reg depletion by ADCC, and in the presence of GM-CSF, to enhance ADCC of tumor cells. (B) Development of bispecific T

cell engaging antibody structures (BiTE) that can either simultaneously engage tumor-associated antigen (TAA, e.g., CEA or CD19) and T cell specific molecules (e.g.,

CD3 or CD47) to promote cytolysis of tumor cells (B,i) or simultaneously inhibit two T cell checkpoint molecules; such as CTLA-4 and PD-1, to circumvent

mechanisms of resistance (B,ii).

blockers, these T cell modulating effects may be reversed (107).
It is therefore possible that checkpoint blockers could synergize
with such cancer immunotherapies when used in combination.

Bispecific antibodies have also been generated which
target checkpoint molecules directly. CD47 is an immune-
regulatory molecule expressed on the surface of many cells
and all human cancers. It can prevent phagocytosis of
cancer cells by macrophages and dendritic cells by binding
to SIRPα on their surface (108). However, the ubiquity of
CD47 makes it difficult to specifically target with antibodies.
Considering this, a bispecific antibody recognizing both
CD47 and a cancer-specific antigen, in this case CD19 for B
cell lymphoma, has been generated. In vitro, this antibody
could promote effective phagocytosis of the cancerous cells
(109). It is possible to imagine that this targeted checkpoint
blockade approach may be exploited for use melanoma,
provided an appropriate targeting antigen can be identified.
Furthermore, a BiTE designed to simultaneously target two
immune checkpoints on T-eff cells, such as CTLA-4 and
PD-1, may improve tumor killing and increase efficacy since
dual therapies of anti-PD-1 and anti-CTLA-4 have proven
effective (Figure 2B). This could circumvent mechanisms
of resistance and eschew the need for two mAbs to be
administered concurrently.

T cell activation upregulates ICOS expression and targeting
the ICOS/ICOSL pathway improved the potency of anti-CTLA-
4 therapy in preclinical models (110, 111). The cellular vaccine
IVAX (irradiated ICOSL-positive tumor cells) has been shown to
function synergistically in the context of CTLA-4 blockade. The
combination has been shown to lead to effector cell migration

to and survival in the TME, and consequent enhanced tumor
elimination in murine models (110) (Figure 3A).

Beyond Antibody Engineering: Oncolytic
Viruses as Immunotherapies
Oncolytic viruses (OVs) are being developed as cancer

immunotherapies, with the modified herpes simplex virus type 1
talimogene laherparepvec (T-VEC, or OncoVEXGM−CSF) being
approved by the FDA for malignant melanoma (112), and the
ClinicalTrials.gov database currently listing 22 trials studying
oncolytic herpes simplex virus following the success of T-VEC
for metastatic melanoma (113) (Figure 3B). Many tumor cells

cannot adequately protect themselves against viral infection,
making the development of oncolytic agents an attractive therapy
option that may selectively infect tumor cells (113–115). Among

the properties of OVs is their ability to improve the immune
system response to tumors, and in combination with checkpoint
inhibitors they also enhance checkpoint blockade (116–118).
By lysing tumor cells, OV treatment can lead to the release of
tumor-associated antigens by the dying cells and efficient cross-
presentation of antigens to DCs, thus enhancing anti-tumor
responses (113, 116) (Figure 3B).

In clinical practice, OVs are made cancer specific by
attenuating the virus so that preferential infection of tumor
cells occurs (119). In addition to this, cytokine expression of

OVs may increase the anti-cancer properties of these therapies

avoiding systemic toxicity due to the preferential action of
OVs on tumor cells (119). IL-12 in particular is an important
cancer immune response modulator and oncolytic herpes viruses
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FIGURE 3 | IVAX vaccine and oncolytic viruses combined with checkpoint blockade. (A) Combinatorial therapy may include CTLA-4 blockade with anti-CTLA-4 mAb

(leading to T cell activation and subsequent ICOS upregulation) together with the IVAX vaccine [which engages ICOS to increase T-eff migration to the tumor

microenvironment (TME)]. (B) Approaches beyond antibody engineering include attenuated oncolytic virus, such as T-VEC unable to replicate in healthy cells, instead

preferentially invading cancer cells. The replicating virus lyses the tumor cells and is armed, for instance with GM-CSF, which when released can recruit DCs to prime T

cells to identify and destroy tumor cells. Efficacy of oncolytic virus may be improved by combination with checkpoint inhibitors, such as anti-CTLA-4 treatment to

boost T cell activation.

(oHSVs) expressing IL-12 have shown efficacy in preclinical
studies on glioblastoma multiforme (120). ‘Arming’ these OVs
with an expression of a particular cytokine may be key for
achieving anti-tumor efficacy. The clinically-licensed T-VEC for
instance is armed with GM-CSF, an APC activator (121). A
murine study also found that an IL-12 armed oHSVs delayed
tumor proliferation and reduced tumor growth more effectively
than its unarmed counterpart (119) (Figure 3B).

Although viral-mediated tumor lysis can be enhanced by
tropism targeting and viral arming with immune stimulatory
cytokines, clinical efficacy has not been consistent across all
patient groups (122). For instance, the cytidine deaminase
Apolipoprotein B Editing Complex 3 (APOBEC3), normally
involved in the host response to retrovirus infection, is also
reported to be associated with virus-resistant tumors. Expression
of APOBEC3 been shown to be upregulated in B16 murine
melanoma cells infected with an oncolytic vesicular stomatitis
virus (VSV) (122). Tumor cell resistance to VSV both in vivo
and in vitrowas demonstrated where APOBEC3 was upregulated
and knockdown of this enzyme reduced VSV escape from
immune clearance (122). This highlights the need for further
research to clarify methods for mitigating and preventing tumor
resistance to immunotherapies and other novel therapies that
often limit efficacy.

Studies have suggested the potential merit of combining OVs
with checkpoint inhibitors. In a Phase II study, CD8-expressing
T cells, immune activation markers and PD-L1 expression were
increased with intralesional administration of coxsackievirus A21
(CVA21), which has a propensity for tumor cells expressing
ICAM-1 (123). Phase Ib trials have shown that this combination
has minimal additional toxicity or adverse drug reactions, with

one study recording an ORR of 73% and a disease control rate
(DCR) of 91% of patients with advanced melanoma (124, 125).
In the case of T-VEC, long term protection and significant effects
on untreated tumors was seen only when the OV was combined
with anti-CTLA-4 (121). Finally, several studies are exploring
novel OV combinations. One is an oncolytic vaccinia virus
armed with a superagonist IL-15 (IL-15-IL-15Rα fusion) given
alone or in combination with anti-PD-1: combined treatment
demonstrated T cell-driven anti-tumor efficacy in in vivo mouse
models of cancer (126). Furthermore, TNFα armed viruses
have seen success in inducing tumor regression and vascular
collapse in solid masses when administered in tumor-bearing
mice alongside therapies that inhibit anti-apoptosis proteins
in vitro (127).

The administration of OVs has often been limited to
intratumoral delivery in patients; T-VEC is currently only
licensed as a locally-administered treatment (128). This is due
to concerns regarding neutralizing antibodies (NAbs) which are
often present in human populations in response to common
viruses such as HSV and reovirus and may impair the efficacy
of systemic delivery of OVs (128). This may be a limitation
since systemic delivery of OV therapy would in theory be more
effective for targeting metastatic lesions. However, one report
(128) found that by loading neutralized reovirus with antibodies
in immune complexes onto human monocytes, resulted in the
transfer of the virus to melanoma cells, cancer cell lysis and in
restriction of cancer growth in a murine model of melanoma
(128). This indicates that monocytes and antibodies recognizing
viral proteins may be important components in maintaining
the potency of OV therapy and may lead to new strategies for
OV treatment.
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In summary, oncolytic viruses may provide an alternative
avenue for cancer immunotherapy due to their properties in
targeting cancer cells with some specificity and due to some
promising results in combination with immune checkpoint
blockade. It appears that these therapies are most efficient when
armed with specific cytokine expression and attenuation of
the virus is important for both reducing toxicity and allowing
preferential infection of cancer cells.

CHALLENGES AND FUTURE DIRECTIONS

Anti-CTLA-1 and anti-PD-1 therapies have been the most
extensively researched due to documented benefits for melanoma
treatment as evidenced by higher rates of tumor clearance
and, crucially, long term disease eradication in some patients
compared with traditional treatments (129). Importantly, further
research has emphasized improved response and survival rates
when combining anti-CTLA-4 and anti-PD-1 therapy (130),
leading to the approval of ipilimumab plus nivolumab in BRAF
wild-type melanoma in 2015 and regardless of BRAF tumor
subtype in 2016 (131). As more and more immune checkpoints
are identified, and their mechanisms of action elucidated, new
options for single and combined therapy regimens can be derived
(Table 5). Combining different checkpoint blockade agents may
produce potent effects, due in part to targeting more than one
immune pathways. The benefits of combination therapies are
not limited to the use of multiple checkpoint inhibitors but can
extend to combining anti-CTLA or anti-PD-1 drugs with other
targeted agents such as MEK and BRAF inhibitors. One such
example is a Phase III trial combining PD-L1 andMEK inhibition
(atezolizumab and cobimetinib) vs. pembrolizumab in advanced
BRAFV600 wild-type melanoma (NCT03273153). Combinations
of checkpoint inhibitors with chemotherapy, radiotherapy and
other immunotherapies such as oncolytic viruses and cell-
based therapy approaches are also being investigated. Many
challenges, including selecting optimal combinations, predicting
and managing toxic effects for different combinations and
development of clinically-useful biomarkers to help support the
use of such treatments are and will continue to be the subject of
intense study.

Toxicities of immunotherapies remains an important
challenge. Adverse effects (50, 62), can be managed according
to information from resources such as the European Society
for Medical Oncology (ESMO) Clinical Practice Guidelines
(132, 133). It has been shown that recurrence of immune-related
adverse events (irAEs) in patients in whom it was necessary
to discontinue treatment as a result of irAEs can occur upon
re-challenge with immunotherapies such as anti-PD-1. For
instance, a retrospective analysis showed that colitis was
less likely to recur in comparison to hepatitis, pancreatitis,
pneumonitis and nephritis, and re-challenge with PD-1 blockade
has been reported to be tolerated better than other agents (134).
Studies have also suggested various biomarkers such as IL-17
or eosinophilia to help predict toxicity in patients, something
that could allow early recognition of pathology and thus prompt
intervention (133, 135). Investigation into new immunotherapies

and combinations may also reveal treatment algorithms with
more favorable toxicity profiles than the current regimens.

Improved efficacy has often been associated with increased
irAEs, as reported in trials such as Checkmate 067, where the
ipilimumab/nivolumab combination had a 10% higher rate of
toxicity than either drug administered alone (52). However,
immune-related toxic effects may potentially be abrogated
in future therapeutic regimens by various approaches. These
may include the increasing specificity of targeted immune
therapies, to help reduce systemic effects on non-target
healthy cells, as well as the implementation of combinatorial
therapies with non-overlapping targets. For instance LAG-3 may
promote more tumor-specific responses than currently licensed
immunotherapies: concomitant LAG-3/PD-1 expression
is mostly restricted to infiltrating TILs, expressed at high
levels in murine models (60), and mouse studies into other
combinations such as a PKC-η/PD-1 blockade therapy has
shown a reduction in T-reg immunosuppressive activity
without the concomitant increase in autoimmunity (96).
Thus, although data from current licensed therapies have
suggested a correlation between combinatorial therapies and
increased toxicity, this may not necessarily be the case with
different checkpoint blockade combinations. In the future,
ideally patients would be able to access fully personalized
medicine in which treatment such as immunotherapies would
be specific to the patient immune response as well as the specific
genetic characteristics of their cancers—this would reduce
unwanted side effects and maximize the antitumor effect in each
individual patient.

The mechanisms behind the lack of clinical responses
to single or combination treatments in many patients, how
tumors develop resistance to novel immunotherapies and
the best criteria to select patients for maximum treatment
effect are insufficiently elucidated. A focus on functional
evaluations in the context of patient immunity for novel
regimens alongside clinical testing may shed some light on
the most effective combinations and the best strategies to
reduce adverse effects. This may reveal immune or genomic
biomarkers linked with better treatment outcomes. For instance,
cancer development and therapeutic response may relate to
host factors such as the gut microbiome. Approximately 20%
of malignancies are linked with microorganism infection and
a patient’s gastrointestinal microbiota can both positively and
negatively influence cancer susceptibility (136). The effects of the
microbiome in cancer susceptibility, progression and response
to treatment are far reaching insofar as the microbiome is
known to guide the immune system’s response, host metabolism
of medication and endogenously produced chemicals, and
can also influence the balance of cell growth and death
(136). A recent study of patients with melanoma exploring
the role of the microbiome in influencing clinical response
to anti-PD-1 therapy found that “favorable” gut microbiota
(characterized by higher gut microbe diversity and levels of
Ruminococcaceae/Faecalibacterium) mediated higher levels of
antigen presentation and T-eff function both in the periphery and
within the TME. This promoted better systemic and anti-tumor
immune responses compared with patients with “unfavorable”
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TABLE 5 | Examples of combination phase III monoclonal antibody immunotherapy trials in melanoma. Information sourced from ClinicalTrials.gov.

Indication Trial number Combination

therapy

Study design Target Status

DUAL MONOCLONAL ANTIBODY THERAPIES

Previously untreated,

unresectable or metastatic

melanoma

NCT02905266 Nivolumab +

ipilimumab

Arm A: nivolumab and ipilimumab

concomitant administration followed

by nivolumab monotherapy

Arm B: nivolumab and ipilimumab

sequential administration followed by

nivolumab monotherapy

Anti-PD-1 +

anti-CTLA-4

Active, not

recruiting

Complete resection of stage

IIIB/C/D or stage IV melanoma

NCT03068455

(CheckMate 915)

Nivolumab +

ipilimumab

Arm A: nivolumab + ipilimumab

Arm B: nivolumab

Anti-PD-1 +

anti-CTLA-4

Active, not

recruiting

Previously untreated,

unresectable or metastatic

melanoma

NCT02714218 Nivolumab +

ipilimumab

Arm A: nivolumab 3 mg/kg IV +

ipilimumab 1 mg/kg IV

Arm B: ipilimumab 3 mg/kg IV +

nivolumab 1 mg/kg IV

Arm C: nivolumab 6 mg/kg IV +

ipilimumab 1 mg/kg

Anti-PD-1 +

anti-CTLA-4

Active, not

recruiting

First-line for advanced melanoma NCT02599402

(CheckMate 401)

Nivolumab +

ipilimumab

Arm A: nivolumab + ipilimumab

Arm B: nivolumab

Anti-PD-1 +

anti-CTLA-4

Active, not

recruiting

Unresectable or metastatic

melanoma

NCT03470922 Nivolumab +

relatlimab

Arm A: relatlimab + nivolumab

Arm B: nivolumab

Anti-PD-1 +

LAG-3 inhibitor

Recruiting

COMBINED MONOCLONAL ANTIBODY AND TYROSINE KINASE INHIBITORS

Stage III-IV BRAFV600 melanoma NCT02224781 Ipilimumab and

nivolumab +

dabrafenib and

trametinib

Arm A: ipilimumab and nivolumab

then dabrafenib and trametinib

Arm B: dabrafenib and trametinib

then ipilimumab and nivolumab

Anti-CTLA-4 and

anti-PD-1 + BRAF

inhibitor and MEK

inhibitor

Recruiting

Previously untreated BRAFV600

mutation-positive patients with

metastatic or unresectable

locally advanced melanoma

NCT02908672 Atezolizumab +

cobimetinib +

vemurafenib

Arm A: atezolizumab + cobimetinib +

vemurafenib + vemurafenib placebo

Arm B: atezolizumab placebo +

cobimetinib + vemurafenib

Anti-PD-1 + MEK

inhibitor + BRAF

inhibitor

Active, not

recruiting

Previously untreated advanced

BRAFV600 wild-type melanoma

NCT03273153 Atezolizumab +

cobimetinib

Pembrolizumab

Arm A: atezolizumab + cobimetinib

Arm B: pembrolizumab

Anti-PD-L1 +

MEK inhibitors

Anti-PD-1

Recruiting

MONOCLONAL ANTIBODY THERAPIES COMBINED WITH OTHER AGENTS

Anti-PD-1 refractory melanoma NCT03445533

(ILLUMINATE-301)

Ipilimumab +

IMO-2125

Arm A: ipilimumab

Arm B: ipilimumab + IMO-2125

Anti-CTLA-4 +

TLR9 agonist

Recruiting

Unresectable or metastatic

melanoma

NCT02752074

(Keynote-252 /

ECHO-301)

Pembrolizumab +

epacadostat Arm A: pembrolizumab +

epacadostat

Arm B pembrolizumab + placebo

Anti-PD-1 + IDO1

inhibitor

Active, not

recruiting

Untreated unresectable stage III

or IV melanoma

NCT00324155 Dacarbazine +

ipilimumab

Arm A: dacarbazine + ipilimumab

Arm B: dacarbazine + placebo

Chemotherapy

alkylating agent +

anti-CTLA-4

Completed

Unresected melanoma NCT02263508

(KEYNOTE-034)

Pembrolizumab +

T-Vec

Arm A: pembrolizumab + talimogene

laherparepvec

Arm B: pembrolizumab + placebo

Anti-PD-1 +

oncolytic herpes

virus

Active, not

recruiting

Unresectable or metastatic

melanoma

NCT03301636

(NLG2107)

Pembrolizumab/

nivolumab +

indoximod

Arm A: pembrolizumab + indoximiod

Arm B: pembrolizumab + placebo

Arm C: nivolumab + indoximiod

Arm D: nivolumab + placebo

Anti-PD-1 + IDO

inhibitor

Recruiting

microbiomes (137). Bacteroides has been linked to a poorer anti-
tumor response in patients treated with ipilimumab and patient
microbiomes enriched with Faecalibacterium and Firmicutes
have also been correlated with more efficacious clinical response
to ipilimumab (138).

Research exploring predictive markers for checkpoint
treatment response has pointed to mutational burden, PD-1

ligand (PD-L1) expression, circulating tumor cells (CTCs)
and miRNA signatures. The challenge of identifying biomarkers
should also be explored in combination therapies. Formelanoma,
mutational burden and PD-L1 studied in pretreatment biopsies
have been evaluated as predictive markers for guiding therapy.
However, these do not always correlate with response (139).
A study exploring a noninvasive blood-based monitoring
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method of tumor burden, aimed at improving prediction of
response for melanoma patients undergoing immune checkpoint
inhibition therapy, found longitudinal digital measurements
of circulating tumor cells (CTCs) to be predictive of clinical
outcomes in patients with metastatic melanoma (139). Other
research studies have reported falling levels of circulating free
DNA (ctDNA) for tumor survival-promoting mutant kinase
BRAF, NRAS, and KIT alleles in melanoma patients who are
undergoing immunotherapy (140, 141). Alongside their use
as biomarkers of response, perhaps an optimal immune and
mutant kinase targeted therapy combination could be derived to
further improve clinical outcomes. Tumor lymphocyte and NK
cell infiltration and IFNγ upregulation, have been proposed as
potential predictors of response alongside mutational burden,
however these need to be standardized and widely evaluated
in clinical practice (142–144). Tumor mutational load and
PD-L1 expression are often clinically available to physicians.
PD-L1 expression has been reported to have a good negative
predictive value in lung cancer; however, the same results have
not been shown in melanoma (142). Finally, new technologies
such as analyzing T cell clonality are promising but require
specialist equipment not yet widely available as clinical tools
(142). Reliable predictive markers of long term outcome are
also particularly important for combined therapies with their
high toxicity profiles. Identifying signatures to guide selection
of patients who do not need to be exposed to the increased risk
of toxicity currently inherent in combination strategies would
greatly aid clinical decision making.

CONCLUSION

Combinations of existing and novel immune checkpoint
inhibitors and discovering predictive biomarkers promise to
further build on the success of immunotherapy. A comprehensive
approach will be required to produce the most efficacious
combination immunotherapies able to circumvent mechanisms
of resistance. Antibody engineering may help capitalize on
tumor killing effector mechanisms through knowledge of SNPs

and FcR-expressing immune effector cells known to influence
patient responses to other immunomodulatory monoclonal
antibodies. These in addition to considering host factors such as
the microbiome, which can affect medication metabolism and
uptake, and tumor-associated molecular and immunological

characteristics such as mutational burden, expression of
checkpoint molecules and immune cell infiltration in the TME,
may ultimately determine patient response to treatment and help
optimize immunotherapy for melanoma.
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