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Heat shock protein 70 (Hsp70) which is expressed on the plasma membrane of highly

aggressive tumors including non-small cell lung carcinoma and glioblastoma multiforme

serves as a target for Hsp70-targeting NK cells. Herein, we aimed to investigate

the antitumor effects of a combined therapy consisting of ex vivo Hsp70-peptide

TKD/IL-2-activated NK cells in combination with mouse/human anti-PD-1 antibody in a

syngeneic glioblastoma and a xenograft lung cancer mouse model. Mice with membrane

Hsp70 positive syngeneic GL261 glioblastoma or human xenograft A549 lung tumors

were sham-treated with PBS or injected with ex vivo TKD/IL-2-activated mouse/human

NK cells and mouse/human PD-1 antibody either as a single regimen or in combination.

Tumor volume was assessed by MR scanning and tumor-infiltrating CD8+ T, NK, and

PD-1+ cells were quantified by immunohistochemistry (IHC). We could show that the

adoptive transfer of ex vivo TKD/IL-2-activated mouse NK cells or the inhibition of PD-1

resulted in tumor growth delay and an improved overall survival (OS) in a syngeneic

glioblastoma mouse model. A combination of both therapies was well-tolerated and

significantly more effective with respect to both outcome parameters than either of

the single regimens. A combined treatment in a xenograft lung cancer model showed

identical effects in immunodeficient mice bearing human lung cancer after adoptive

transfer of TKD/IL-2-activated human effector cells and a human PD-1 antibody. Tumor

control was associated with a massive infiltration with CD8+ T and NK cells in both tumor

models and a decreased in PD-1 expression on immune effector cells. In summary, a

combined approach consisting of activated NK cells and anti-PD-1 therapy is safe and

results in a long-term tumor control which is accompanied by a massive tumor immune

cell infiltration in 2 preclinical tumor models.

Keywords: membrane Hsp70, glioblastoma, lung carcinoma, immunophenotyping, NK cell therapy, anti-PD-1

antibody

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00454
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00454&domain=pdf&date_stamp=2019-03-22
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gabriele.multhoff@tum.de
https://doi.org/10.3389/fimmu.2019.00454
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00454/full
http://loop.frontiersin.org/people/313340/overview
http://loop.frontiersin.org/people/287611/overview
http://loop.frontiersin.org/people/599228/overview
http://loop.frontiersin.org/people/30408/overview


Shevtsov et al. Combined NK/PD-1 Inhibition Cancer Therapy

INTRODUCTION

Stress-inducible Hsp70 is frequently overexpressed in the cytosol
of many tumor entities where it fulfills a large variety of
chaperoning functions such as folding/unfolding and transport
of other proteins (1). Furthermore, highly aggressive tumors
including glioblastoma (2–4) and lung cancers (5) present Hsp70
on their plasma membrane as a tumor-specific biomarker.
Membrane Hsp70 positive, viable tumor cells have been
found to actively release Hsp70 in exosomes, and therefore
elevated exosomal Hsp70 levels in the serum are predictive for
viable tumor mass (5). Increased Hsp70 membrane densities
are detectable in highly aggressive tumors including primary
glioblastoma multiforme (2) and advanced non-small cell lung
cancer (NSCLC) (6). Both tumor types are debilitating, life-
threatening diseases with poor prognosis. Despite combined
treatment regimens consisting of surgery, radiotherapy (RT)
and chemotherapy, OS and local progression-free survival
(LPFS) in patients with glioblastoma multiforme and NSCLC
in stage IIIA/B remains poor with <15 months (7–9). In
preclinical tumor models, radio-chemotherapy (RCT) has been
found to induce abscopal effects (10–13), however, due to
anti-apoptotic pathways and immunosuppressive mechanisms
(14) these bonafide immunostimulatory effects are unable to
mediate long-term protective anti-tumor immunity (15). A
major breakthrough has been achieved by the application
of immune checkpoint inhibitor antibodies which provide
inhibitory feedback loops for an immune cell mediated tumor
rejection (16). Many cancer types including brain and lung
tumors use the PD-1 pathway for immune escape (17).
Nivolumab, a fully humanized IgG4 antibody, targets PD-1 and
thereby attenuates inhibitory signals in immune cells such as T
and NK cells (16, 18), which results in objective tumor responses
predominantly in highly immunogenic (“hot”) tumors (19, 20).
Despite these promising results a relevant proportion of patients,
however, does not profit from immune checkpoint inhibitor
blockade therapies. Therefore, herein a combined regimen
consisting of Hsp70-targeting activated NK cells and anti-PD-1
inhibition was tested in a preclinical syngeneic glioblastoma and
a xenograft lung cancer model.

MATERIALS AND METHODS

Cells
Themouse glioblastoma cells line GL261, human lung carcinoma
A549 cells (American type culture collection (ATCC #CCL-185)
and theNK target cell line K562 (ATCC #CCL-243) were cultured
in Roswell park Memorial Institute 1640 medium supplemented
with 10% (v/v) heat-inactivated fetal calf serum (FCS), 2mM L-
glutamine, 1mM sodium pyruvate, and antibiotics (100 IU/mL
penicillim, 100µg/mL streptomycin) at 37◦C in 95% humidity
and 5% (v/v) CO2. Lewis lung carcinoma (LLC) cells were
cultured in DMEMmedium supplemented with 10% FCS, 2mM
L-glutamine and antibiotics (100 IU/mL penicillin, 100µg/mL
streptomycin). All cell lines are positive for membrane-bound
Hsp70 as determined by flow cytometry (21, 22).

Animals
C57Bl/6 male 10-week-old mice were purchased from the
animal nursery “Rappolovo” of the Russian Academy of Medical
Sciences (St. Petersburg, Russia). NMRI nu/nu 8–10-week male
mice were obtained from an animal breeding colony (Charles
River). All animal experiments were approved by the local ethical
committee of Pavlov First St. Petersburg State Medical University
(St. Petersburg, Russia) and were in accordance with institutional
guidelines for the welfare of animals.

Orthotopic Injection of GL261
Glioblastoma Cells Into C57Bl/6 Mice
Briefly, C57BL/6 mice were anesthetized by ip injection with
fentanyl (0.05 mg/kg), midazolam (5 mg/kg) and medetomidine
(0.5 mg/kg) mixture before mounting them in a stereotactic
frame (David Kopf Instruments, Tujunda, CA, USA). GL261 cells
(1×105) resuspended in sterile PBS (2 µl) were stereotactically
injected into the nucleus caudatus dexter of anesthetized mice.

Orthotopic Injection of A549 Lung Cancer
Cells Into Immunodeficient Mice
After anesthesia, NMRI nu/numice were injected percutaneously
in the upper margin of the sixth rib on the right anterior axillary
line into the right lung (5mm depth) with a single cell suspension
(100 µl) of A549 cells (5×106 cells/ml).

Ex vivo Stimulation of Mouse/Human NK
Cells With TKD/IL-2
Peripheral blood lymphocytes (PBLs) were isolated of sacrificed
C57BL/6 mice by Ficoll-Paque gradient centrifugation. After
separation, PBL were resuspended in RPMI-1640 supplemented
with 2mM L-glutamine, 10% FCS, and antibiotics (100 IU/ml
Penicillin G and 100µg/ml Streptomycin). Previous data have
indicated that NK cell activation is superior when, instead
of purified NK cells, PBL are stimulated with the 14-mer
TKDpeptide (TKDNNLLGRFELS, 2µg/ml, Bachem, Bubendorf,
Switzerland) and IL-2 (100 IU/ml) at defined cell densities of 5–
10 × 106 PBL/ml for 3–4 days (23, 24). Since the human TKD
sequence differs only in one amino acid in human and mouse
(TKDNNLLGRFELSG and TRDNNLLGRFELSG, respectively),
it is possible to stimulate mouse NK cells with the human TKD
peptide (4).

Human PBL for NK cell stimulation for the treatment of
the A549 xenograft tumor mouse model were obtained from
Caucasian healthy volunteers (age range 22–24 year, age mean
23.1 years). All healthy individuals who participated in this study
provided written informed consent. The study was approved by
the local ethical committee.

Ten ml of peripheral blood was collected into EDTA tubes
and PBL were isolated by density gradient centrifugation
using Ficoll-Paque, as described earlier. After separation, PBL
were resuspended in RPMI-1640 supplemented with 2mM L-
glutamine, 10% FCS, and antibiotics (100 IU/ml Penicillin G
and 100µg/ml Streptomycin). PBL were stimulated either with
the 14-mer TKD peptide (TKDNNLLGRFELS, 2µg/ml, Bachem,
Bubendorf, Switzerland) or recombinant, low-endotoxin Hsp70
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protein (10µg/ml) that was obtained and purified from bacteria
transformed with a pMSHSP plasmid, as described previously
(23), and IL-2 (100 IU/ml) at cell densities of 5–10× 106 PBL/ml
for 3−5 days (24, 25). Flow cytometry was performed on day
5 after stimulation with TKD/IL-2 using FITC/PE/PerCP or
APC conjugated mouse IgG1 antibodies (BD Biosciences), FITC-
conjugated mouse antibody against CD94 (BD Pharmingen),
FITC/PE or APC conjugated mouse antibodies against CD56
(BD Biosciences), PerCP conjugated antibody against CD3
(BD Biosciences), FITC conjugated antibody against CD4
(BD Pharmingen), FITC or PE conjugated antibodies against
CD8 (BD Pharmingen), PE conjugated antibody against CD19
(BD Pharmingen), PE conjugated antibody against CD16 (BD
Pharmingen), PE conjugated monoclonal antibodies against
NK cell activatory receptors (NKG2D (R&D Systems), NKp30
(BeckmanCoulter), NKp46 (BeckmanCoulter), APC-conjugated
antibodies against CD45 (Life Technologies) and CD69 (BD
biosciences). The percentage of positively stained cells was
determined following subtraction of cell stained with an isotype-
matched negative control antibody. Only PI (propidium iodide,
Sigma) negative, viable cells were gated and analyzed.

Cytotoxicity Assay
GL261, A549, and LLC cells and K562 cells were employed
as target cells for analysis of the cytolytic activity of NK cells.
The effector cells were isolated from C57/Bl6 mice (for GL261
and LLC cells) and peripheral blood of healthy individuals (for
human A549 adenocarcinoma cells). Target cells were treated
as follows: (1) control; (2) NK cells following co-incubation
with IgG isotype antibody (20µg/ml); (3) NK cells co-incubated
with mouse/human anti-PD-1 immune checkpoint inhibitor
antibody (20µg/ml); (4) NK cells without stimulation; (5) NK
cells ex vivo TKD/IL-2-stimulated (2µg/ml for TKD peptide
and 100 IU/ml for IL-2); (6) NK cells ex vivo TKD/IL-2-
stimulated in combination with anti-PD-1 immune checkpoint
inhibitor antibody (20µg/ml). The incubation of the effector
and target cells at various ratios (1:12.5, 1:25, and 1:50) lasted
4 h. CytoTox 96 R© non-radioactive cytotoxicity assay (Promega,
USA) was employed to determine the amount of dying target cells
according to the manufacture’s protocol.

Treatment Protocol
For comparing the efficacy of singular or combined therapies
consisting of an adoptive transfer of ex vivo TKD/IL-2-
stimulated mouse/human NK cells and mouse/human anti-PD-1
immune checkpoint inhibitor antibody (RMP1-30, eBioscience,
Frankfurt/Main, Germany) animals with comparable tumor sizes
(according to MRI volumometrics) were randomly divided into
5 groups (8 animals per group): Animals of the control groups
were injected either with 100 µl PBS (iv) or with 250 µg isotype-
matched IgG antibody (ip) on days 6, 9, 12 and 15. Animals of
the treatment groups were iv injected either with NK cells (6 ×

106 in 100 µl PBL) on days 6, 9, and 12 and/or ip injected with
anti-PD-1 antibody on days 6 (500 µg), 9 (250 µg), 12 (250 µg),
and 15 (250 µg) in a volume of 500 µl PBS.

Magnetic Resonance (MR) Tumor Imaging
of Mouse Glioblastoma
Tumor progression was assessed before and after each therapy
on days 5, 10, 15, 20, 25, and 30 using a high-field 11.0 T MR
scanner (Bruker, Bremen, Germany) with a customized rodent
coil. High-resolution anatomical T2-weighted scans (repetition
time [TR]/echo time [TE] 4,200/36ms, flip angle 180◦, slice
thickness 1.0mm, interslice distance 1.2mm, field of vision (FoV)
3.0× 3.0 cm, matrix 256× 256, in total 20 slices) were performed
in coronal planes. Additionally T1-weighted scans (TR/TE
1500/7.5ms, flip angle 180◦, slice thickness 1.0mm, FoV 3.0 ×

3.0 cm, matrix 256× 256), FLASH scans (TR/TE 350/5.4ms, flip
angle 40◦, slice thickness 1.0mm, 3.0× 3.0 cm,matrix 256× 256)
in coronal planes were performed. The obtained images were
analyzed using adequate software (AnalyzeDirect Inc, Overland
Park, KS, USA).

Mouse Tumor Immunohistochemistry (IHC)
Animals were anesthetized by ip injection of 150–200
mg/kg pentobarbital. After perfusion with 100ml saline/4%
paraformaldehyde, whole brains were removed and
tumor volumes were assessed. Tissue was fixed in 4%
paraformaldehyde/30% sucrose, embedded in Tissue-Tek R©

and blocks were cut into serial sections (5–7µm). CD8+ T
cells, NK1.1+ cells and PD-1+ lymphocytes were stained on
IHC sections using anti-CD8 (53-6.7, Biolegend, San Diego,
CA, USA), anti-NK1.1 (PK136, Biolegend, San Diego, CA,
USA) and anti-PD-1 (RMP1-30, eBioscience, Frankfurt/Main,
Germany) antibodies according to an established protocol.
Tumor-infiltrating CD8+ T cells, NK1.1 cells and PD-1+ cells
were counted in 3 fields of views by two independent researchers.

Human Tumor Immunohistochemistry (IHC)
For IHC formalin-fixed, paraffin-embedded (FFPE) specimens of
the A549 lung tumors were cut at 4µm and transferred onto
slides. All staining procedures were automatically performed
on a Ventanas Benchmark XT for analysis of tumor-infiltrating
CD8+, PD-1+, and CD56+ cells.

Statistics
The comparative survival of animals was assessed with Kaplan-
Meier curves that are based on the Kaplan-Meier estimator.
All such estimates were computed and visually presented with
corresponding confidence intervals. The Kaplan-Meier estimator
is a non-parametric statistic that accommodates right-censoring
in the data. When the means of the groups of two continuous
variables were compared, the parametric Student’s t-test was
employed. Variances between groups were not considered to be
equal, and degrees of freedom for such tests were computed
accordingly. The significance level for all tests was alpha = 0.05,
and all confidence intervals are reported at the 95% level. All p-
values reported for all t-tests are two-sided. When comparing
multiple groups, each of which had so few observations that
standard parametric assumptions could not be validated, the
Kruskal-Wallis test, which is a non-parametric analog to the
one-way ANOVA test, was applied. The Krukal-Wallis test
analyzes the differences in ranks between groups, rather than
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FIGURE 1 | The effect of TKD/IL-2 or Hsp70/IL-2 on the expression of CD56, CD94, and CD69 receptors in peripheral blood lymphocytes (PBLs) of healthy

individuals. The expression of the receptors was examined within the fraction of stimulated and unstimulated PBLs derived from 10 healthy Caucasian individuals. (A)

Representative figure of the healthy individual following stimulation with TKD/IL-2 or Hsp70/IL-2. (B) The amount and (C) the median fluorescence intensity (MFI) of the

receptors expressed on NK cells. Data presented as means ± standard error (M ± SE).

the difference in means. Depending on the test, either Statistica
Version 9.2 for Windows or the R programming language was
run for all tests. All experiments were conducted once on
each animal.

RESULTS

Analysis of the Phenotype of Human NK
Cells After Stimulation With TKD/IL-2
Compared to unstimulated cells, a treatment with TKD/IL-2
for 5 days results in a significant upregulation of CD94, CD69,
and CD56 on CD3-negative, human NK cells (Figures 1A,B).
The percentage of CD94+ cells increased from 1.83 ± 0.48
to 6.27 ± 2.31%, that of CD69+ cells from 0.14 ± 0.09 to
9.94 ± 4.35% and that of CD56+ cells from 1.19 ± 0.35 to
6.13 ± 3.9% (p < 0.05) (Figure 1B). A similar upregulation
of the receptors was observed after an incubation of PBL with
recombinant Hsp70 protein instead of TKD peptide: (CD94+

cells: 5.55 ± 1.65; CD69+ cells: 11.58 ± 4.38; CD56+ cells:
6.72 ± 4.75) (Figure 1B). Concomitantly, the mean fluorescence
intensities of CD94, CD56 which serve as surrogate markers
for the Hsp70-specificity increased significantly on CD3-negative
NK cells compared to unstimulated control cells (Figure 1C). No

significant changes in activationmarkers were observed onCD3+

T cell population upon stimulation with TKD/IL-2 or Hsp70/IL-2
(data not shown).

Ex vivo TKD/IL-2-Stimulated NK Cells
Combined With Anti-PD-1 Antibody
Demonstrate Enhanced Cytotoxic Activity
Toward Tumor Cells
To assess the effect of a combined application of TKD/IL-2-
stimulated NK cells with anti-PD-1 antibody in vitro, tumor
cells (GL261, A549, and LLC) were co-incubated with activated
lymphocytes at various effector:target (E:T) cells ratios ranging
from 1:50 to 1:12.5. To prove that NK cell activity is measured in
the assay the lysis of the NK target cell line K562 was assessed.
The lysis of K562 cells at an E:T ratio of 1:50 was 20, 34,
and 55% by unstimulated NK cells, NK cells stimulated with
TKD/IL-2, and NK cells stimulated with TKD/IL-2 plus PD-
1 antibody, respectively. With respect to the tumor cell lines
GL261, A549, and LLC a co-incubation of unstimulated PBL
with species-specific PD-1 antibody resulted in a more than two-
fold increase in the lysis of all tumor cells (Figure 2). This effect
was comparable to that of a stimulation of mouse and human
PBL with TKD/IL-2. The most prominent anti-tumor cytolytic
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FIGURE 2 | Cytolytic activity of the ex vivo stimulated NK cells with anti-PD-1

antibody toward GL261, A549, and LLC tumor cells. Data presented as

means ± standard error (M ± SE) for three independent experiments.

activity was achieved when PBL were stimulated with TKD/IL-2
concomitant with anti-PD-1 antibody (p < 0.001).

Treatment With ex vivo TKD/IL-2-Activated,
Mouse NK Cells, and Anti-PD-1 Antibody
Significantly Enhances OS and Induces
Immune Cell Infiltration in a Syngeneic
Glioblastoma Mouse Model
The effects of a singular or combined treatment consisting
of ex vivo TKD/IL-2-stimulated mouse effector cells (NK)
and immune checkpoint inhibitor blockade against mouse
PD-1 (PD-1) were determined in mice with membrane Hsp70
positive orthotopic glioblastomas (GL261) (22). The treatment

was started when the tumors reached a size of 100 mm3

approximately on day 6. The most rapid tumor growth was
observed in sham-treated (PBS, IgG isotype-matched antibody)
control mice, as determined by MRI scanning (Figure 3A). On
day 10, tumors reached a volume of 179± 12mm3 (PBS) and 203
± 12 mm3 (IgG, Table 1), and all mice of the control groups died
before day 15 (Figure 3B). Three iv injections of ex vivo TKD/IL-
2-activated NK cells, or 4 ip injections of mouse anti-PD-1
antibody caused a significant tumor growth delay. Themaximum
tumor volume of 203± 33 and 205± 24mm3 was reached 10 and
15 days later than in the sham-treated control group (Table 1).
The best therapeutic outcome was achieved after a combined
treatment with ex vivomouse NK cells and PD-1 antibody. Even
on day 30, the size of the tumors of 4 mice was only 124 ± 22
mm3, and 4 out of 8 mice treated with the combined therapeutic
approach showed complete tumor control (Table 1).

As shown by Kaplan-Meier analysis, OS of mice treated
either with NK cells (3 injections, iv) or anti-PD-1 antibody
(4 injections, ip) was significantly (p < 0.05) higher than that
of sham-treated mice (PBS, 3 injections, iv; IgG, 4 injections,
ip) (Figure 3B, Table 2). The p-values constituted p < 0.0001
for both, NK cell and anti-PD-1-treated groups vs. control. It
appeared that 4 treatment cycles with mouse anti-PD-1 antibody
were not significantly different regarding the OS as compared to
the animals treated with three cycles of pre-activated NK cells
(p = 0.22). Due to the iv route, the number of NK injections
was limited to three cycles. The best therapeutic outcome was
observed in mice after a combined treatment. OS of these mice
was significantly higher than that of the sham-treated control
groups (p < 0.00001) and that of NK or PD-1 antibody treated
mice (p < 0.00001). In line with these findings, the number of
tumor-infiltrating CD8+ T and NK1.1 cells in tumor sections of
mice, treated with NK cells and PD-1 antibody was significantly
higher than in the control group (p < 0.01), and in the group of
mice treated either with NK cells or PD-1 antibody (p < 0.05;
Figure 4, Table 3). Vice versa, the number of tumor-infiltrating
effector cells expressing the immune checkpoint inhibitor PD-
1 decreased significantly (p < 0.001) in the treatment groups
(PD-1, NK, NK+ PD-1).

Treatment With ex vivo TKD/IL-2-Activated,
Human NK Cells, and Anti-PD-1 Antibody
Significantly Enhances OS in a Xenograft
Lung Carcinoma Mouse Model
Following iv injection of ex vivo TKD/IL-2-stimulated, human
effector cells (38.6 ± 9.7 days) a significant increase in the
OS of tumor-bearing animals was observed compared to sham
(PBS or IgG control antibody) treated control animals (Figure 5,
Table 4). A combination of the NK cell therapy and the
humanized anti-PD-1 antibody showed a 2.3-fold increase in OS
as compared to control animals 48.8 ± 12.4 (NK) and 21.2 ± 6.2
(PBS), 22.3± 6.3 (IgG) days, respectively (p < 0.001) (Figure 5).
Subsequent IHC analysis of the tumor sections showed an
increased infiltration by CD56+ NK cells and CD8+ cells in the
treatment groups with a highest infiltration of immune effector
cells in the group who received the combined treatment regimen
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FIGURE 3 | Therapeutic potency of a combined treatment with ex vivo TKD/IL-2- stimulated, mouse NK cells with anti-PD-1 antibody in the model of intracranial

GL261 glioma. (A) Volumetric studies of the GL261 glioma. Tumor volume (mm3) as determined over time by T1-weighted and T2-weighted MRI scans in control

(PBS, red lines; IgG control antibody, black lines) and treated (NK cells, green lines; PD-1 antibody, orange lines; NK cells + PD-1 antibody, blue lines) glioblastoma

(GL261)-bearing C57/Bl6 mice (n = 3 per group). Tumor progression was calculated by measuring the cross-sectional areas on each slice and multiplying their sum

as related to the thickness of the sections. (B) Kaplan-Meier analysis of the cumulative survival (days after treatment) in control (PBS, red lines; IgG control antibody,

blue lines) and treated (NK cells, black lines; PD-1 antibody, green lines; NK cells + PD-1 antibody, orange lines) glioblastoma (GL261)-bearing C57/Bl6 mice (n = 8

per group). Solid lines: mean values; dotted lines: SD within 95% confidence interval.

TABLE 1 | Tumor volumes (mm3) of mice (n = 8 per group) of control (ctrl) and treatment groups (NK, PD-1, NK + PD-1).

Day 5 Day 10 Day 15 Day 20 Day 25 Day 30

PBS (ctrl) 29 (3) 178.67 (12.22)

IgG (ctrl) 27.33 (9.50) 202.67 (11.93)

NK 23.33 (5.13) 66.33 (11.15) 104.33 (30.43) 203.67 (33.29)

PD-1 28 (14.52) 47.33 (9.02) 80 (18.08) 100.67 (23.46) 205.33 (23.80)

NK + PD-1 26.67 (7.77) 44.66 (8.02) 57.33 (9.71) 73 (9.54) 87.33 (9.29) 124.33 (22.12)

Sham treatment: PBS (ctrl, 100 µl, iv), IgG (ctrl, 500 µl, ip) isotype-matched control antibody; treatment: NK, ex vivo TKD/IL-2-activated NK cells (6x106 cells in 100 µl PBS, iv); PD-1,

PD-1 antibody (500 µl, ip); NK + PD-1, ex vivo activated NK cells (6x106 cells in 100 µl PBS, iv) + PD-1 (500 µl, ip) antibody over 6 time points (days 5, 10, 15, 20, 25, 30). The data

represent mean values ± SD.

(Figure 6,Table 5). Furthermore, a significant decrease in PD-1+

effector cells was observed inside the tumor (p < 0.01), as shown
by IHC analysis.

DISCUSSION

Immune checkpoint inhibitors directed against CTLA-4, PD-
1 or PD-L1 have recently demonstrated a therapeutic benefit
in various solid tumors (e.g., melanoma, head and neck
squamous cell carcinoma, gastric cancer, colorectal cancer,
NSCLC, etc.) and lymphoid malignancies (26–31). Recently,
evidence has accumulated that combined therapeutic strategies
that consist of several immune checkpoint inhibitors or immune
checkpoint inhibitors and other treatment modalities (32, 33) are
beneficial. In the presented study anti-PD-1 immune checkpoint
antibodies were combined with a NK cell therapy in a syngeneic

TABLE 2 | Means and standard deviations (SD) of survival in days for mice with

orthotopic GL261 glioblastoma subjected to different treatment and control

regimes.

PBS (Ctrl) IgG (Ctrl) NK PD-1 NK + PD-1

Mean 11.5 11.1 21 23.5 29.9

SD 1.41 1.8 3.4 4.4 5.3

and xenograft tumor mouse model. As shown previously,
a blockade of immune checkpoints could improve NK cell-
based therapies (34). Guo et al. demonstrated that anti-PD-
1 antibody significantly increased the cytotoxicity of NK cells
(i.e., enhanced expression of NKp30, NKp44 and NKG2D) that
resulted in therapeutic effect toward multiple myeloma cells
(35). Subsequent studies proved combined effect of Pidilizumab
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FIGURE 4 | Boxplots of the CD8+, NK1.1+ and PD-1+ cells infiltrating the

GL261 tumor in control (PBS and IgG treated animals) and experimental

groups. Tumor infiltrating CD8+ cytotoxic T cells, CD3-/CD56+ NK cells and

PD1+ effector (T/NK) cells were counted in three representative IHC sections

of the tumors of the different treatment groups (PBS ctrl, IgG ctrl, NK, NK +

PD-1, PD-1) and infiltrating immune cells per mm2 were calculated.

(anti-PD-1) either alone or in combination with Rituximab
in facilitation of the cytolytic activity of NK cells in patients
with follicular lymphoma, multiple myeloma and renal cell
carcinoma (36, 37).

In series of in vitro experiments for analysis of NK cells
cytolytic activity toward tumor cells (GL261, A549, LLC)
we demonstrated the therapeutic potential of a monotherapy
when ex vivo TKD/IL-2-activated NK cells were applied
(Figure 2). The effect was significantly higher as compared to
non-stimulated lymphocytes. TKD/IL-2 activation of NK cells
upregulated expression of CD56, CD69, and CD94 (Figure 1)
that subsequently resulted in an enhanced cytotoxicity of
lymphocytes (38). Previously, Gross et al. demonstrated that

TABLE 3 | Number of tumor-infiltrating CD8+ T cells, NK1.1 cells and PD-1+

expressing effector cells in tumor sections of mice of the sham-treated control

(ctrl) and treatment groups (NK, PD-1, NK+PD-1).

NK 1.1 cells CD8 cells PD-1+ cells

PBS (ctrl) 7 (3.61) 6.33 (2.08) 53.67 (9.71)

IgG (ctrl) 5 (1) 7.67 (1.53) 53.67 (5.03)

PD-1 30.33 (7.77) 17.33 (3.06) 16.67 (4.16)

NK 19.67 (8.02) 14.67 (3.51) 34.67 (5.13)

NK + PD-1 40.33 (4.62) 22.22 (3.51) 12.67 (5.51)

Sham-treated groups: PBS (ctrl), PBS (100 µl, iv), IgG (ctrl), isotype-matched IgG control

antibody (500 µl, ip). Treated groups: NK, ex vivo activated NK cells (6x106 cells in 100 µl

PBS, iv), PD-1, PD-1 antibody (500 µl, ip), NK+PD-1, ex vivo activated NK cells (6x106

cells in 100 µl PBS, iv) + PD-1 antibody (500 µl, ip). The data represent mean values of

three fields of view ± SD.

an increased expression density of CD94/NKG2C and CD56
initiates the NK cells capacity to kill membrane Hsp70-positive
tumor cells (39, 40) and thereby acts as a surrogate marker
for Hsp70-reactivity. The observed cytolytic effect of TKD/IL-2-
stimulated NK cells was comparable to that of lymphocytes which
have been pre-incubated with anti-PD-1 monoclonal antibodies
(Figure 2). Previously, it was shown that blockade of PD-1 on
NK cells could improve the cytotoxicity of the lymphocytes (even
of exhausted NK cells in advanced tumor stages) (36, 41). A
combination of TKD/IL-2-stimulated NK cells with anti-PD-1
antibodies resulted in 1.5-fold increase of anti-tumor cytotoxicity
of lymphocytes (Figure 2) that indicates the synergistic effect of
both therapeutic concepts.

In our experiments a preclinical proof-of-principle study
has shown promising results of a combined therapy consisting
of ex vivo TKD/IL-2-stimulated NK cells and anti-PD-1
antibody with respect to local tumor control, OS and immune
stimulation in immunocompetent and immunodeficient mice
with membrane Hsp70-positive tumors (GL261 glioblastoma,
A549 lung cancer). The observed therapeutic efficacy was
comparable to the effects reported earlier (42–44). Intriguingly,
a significantly improved OS was observed when NK cell therapy
was combined with anti-PD-1 antibody in a syngeneic GL261
glioblastoma and a xenograft A549 lung cancermodel. Previously
it was reported that cancer types (including NSCLC and
melanoma), which are most responsive to checkpoint inhibitors,
have a high mutational load (45, 46). Anti-tumor responses
in mice were accompanied by a massive infiltration of the
tumors with CD8+ cytotoxic lymphocytes and NK1.1 cells, and
a reduction in the amount of PD-1+ immune cells in the tumor.
Although NK cells or anti-PD-1 antibody, as a single treatment
modality, have been shown to trigger anti-tumor immune
responses that increase OS, a combined therapy has been found
to be significantly more efficient. Presumably this could be
explained by the effect of the anti-PD-1 antibody on NK cells.
Programmed death 1 (PD-1) receptor was originally determined
as an exhaustion marker on T cells, however, this receptor is also
expressed on NK cells. In the recent study by Concha-Benavente
et al. it was shown that PD-1 blockade increased Cetuximab-
mediatedNK cell activation and cytotoxicity in the head and neck
patients (47). The anti-tumor effect achieved by monotherapies
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FIGURE 5 | Therapeutic effect of ex vivo stimulated, human NK cells with anti-PD-1 antibody in the orthotopic xenograft model of A549 lung carcinoma. Kaplan-Meier

analysis of the cumulative survival (days after treatment) in control (PBS, red lines; IgG control antibody, blue lines) and treated (NK cells, black lines; NK cells + PD-1

antibody, orange lines) lung cancer (A549)-bearing mice (n = 8 per group). Solid lines: mean values; dotted lines: SD within 95% confidence interval.

(i.e., TKD/IL-2-stimulated NK cells or anti-PD-1 antibodies)
that resulted in the delayed tumor progression (Figure 3A) was
shortly abrogated after the discontinuation of the therapies.
However, combined treatment approaches demonstrated the
sustainability of the therapeutic effect after the discontinuation.
Presumably, to further potentiate the therapeutic benefit a long-
term combinatorial immunotherapy should be considered.

In our study we employed the inhibitor of PD-L1/PD-1 axis
for the enhancement of NK cell adoptive therapy. Recently other
immune checkpoint inhibitors (e.g., anti-CTLA-4 antibodies,
anti-NKG2A antibodies) have been reported to restore cytolytic
functions of NK cells and thereby enhance their anti-tumor
activity (48, 49). Thus, André et al. showed that humanized anti-
NKG2A antibodies enhanced NK cell activity against various
tumor cells and rescued CD8+ T cell function (49). Presumably,
combination of TKD/IL-2-stimulated NK cells with several

TABLE 4 | Means and standard deviations (SD) of survival in days for mice with

orthotopic lung A549 adenocarcinoma subjected to different treatment and

control regimes.

PBS (Ctrl) IgG (Ctrl) NK NK + PD-1

Mean 21.2 22.3 38.6 48.8

SD 6.2 6.3 9.7 12.4

therapeutic antibodies could improve the anti-tumor activity of
the adoptive cell immunotherapies.

Depending on its subcellular or extracellular localization,
Hsp70 fulfills different functions (50). On the one hand
membrane Hsp70 serves as a tumor-specific target for TKD/IL-
2-activated NK cells (4, 51), on the other hand, high
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FIGURE 6 | Boxplots of the CD8+, CD56+NK, and PD-1+ cells infiltrating the

A549 lung carcinoma in control (PBS and IgG treated animals) and

experimental groups. Tumor infiltrating CD8+ cytotoxic T cells, CD3-/CD56+

NK cells, and PD1+ effector (T/NK) cells were counted in three representative

IHC sections of the tumors of the different treatment groups (PBS ctrl, IgG ctrl,

NK, and NK + PD-1) and infiltrating immune cells per mm2 were calculated.

TABLE 5 | Number of tumor-infiltrating CD8+ T cells, CD56+ NK cells and

PD-1+ expressing effector cells in A549 lung carcinoma sections of mice of the

sham-treated control (ctrl) and treatment groups (NK, PD-1, NK+PD-1).

Cell type

Treatment CD56+ NK cells CD8+ cells PD-1+ cells

PBS (ctrl) 4.67 (1.53) 6.00 (1.73) 59.00 (3.00)

IgG (ctrl) 6.00 (2.00) 10.00 (2.00) 55.67 (10.02)

NK 24.67 (11.59) 20.00 (1.00) 33.33 (5.86)

NK + PD-1 45.67 (6.11) 44.33 (10.02) 8.00 (2.00)

Sham-treated groups: PBS (ctrl), PBS (100 µl, iv), IgG (ctrl), isotype-matched IgG control

antibody (500 µl, ip). Treated groups: NK, ex vivo activated NK cells (6 ×106 cells in 100

µl PBS, iv), ex vivo activated NK cells (6 × 106 cells in 100 µl PBS, iv) + PD-1 antibody

(500 µl, ip). The data represent mean values of three fields of view ± SD.

cytosolic Hsp70 levels can interfere with apoptotic pathways
that mediate radio-chemotherapy resistance. However, as was
shown previously the upregulation of the membrane-bound
Hsp70 following anti-tumor therapies (e.g., ionizing radiation,
chemotherapy, etc.) also increases the efficacy of the Hsp70-
targeted therapies (52, 53).

In line with the data shown in two preclinical models most
recently, we could demonstrate the efficacy of the combined
therapeutic concept consisting of radiochemotherapy, TKD/IL-
2-activated NK cells and PD-1 inhibition in a patient with
membrane Hsp70 positive stage IIIb NSCLC. Identical to the
mouse models, the therapy was well tolerated, induced anti-
tumor immune responses mediated by T and NK cells and
resulted in a long-term OS of more than 35 months (54).

In summary our data indicate that immunotherapeutic
approaches with minor monoactivity could be enhanced by
the addition of immune checkpoint inhibitors. The efficacy
of a combined therapy consisting of ex vivo stimulated NK
cells and anti-PD-1 blockade which has been shown to be
feasible, safe, and effective needs to be validated in randomized
clinical trials.
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