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Considering the high importance of immune surveillance and immune escape in the

evolution of cancer, the development of immunotherapeutic strategies has become a

major field of research in recent decades. The considerable therapeutic breakthrough

observed when targeting inhibitory immune checkpoint molecules has highlighted the

need to find approaches enabling the induction and proper activation of an immune

response against cancer. In this context, therapeutic vaccination, which can induce

a specific immune response against tumor antigens, is an important approach to

consider. However, this strategy has its advantages and limits. Considering its low

clinical efficacy, approaches combining therapeutic cancer vaccine strategies with

other immunotherapies or targeted therapies have been emphasized. This review will

list different cancer vaccines, with an emphasis on their targets. We highlight the

results and limits of vaccine strategies and then describe strategies that combine

therapeutic vaccines and antiangiogenic therapies or immune checkpoint blockade.

Antiangiogenic therapies and immune checkpoint blockade are of proven clinical efficacy

for some indications, but are limited by toxicity and the development of resistance. Their

combination with therapeutic vaccines could be a way to improve therapeutic outcome

by specifically stimulating the immune system and considering a global approach to

tumor microenvironment remodeling.

Keywords: cancer vaccines, immunotherapies, combinatorial strategies, antiangiogenic treatments, immune

checkpoint blockade

INTRODUCTION

Therapeutic cancer vaccines are based on specific stimulation of the immune system using
tumor antigens to elicit an antitumor response. Nevertheless, therapeutic cancer vaccines are still
considered as a strategy that fails to demonstrate clinical benefits. Indeed, when compared to
other newly developed immunotherapies such as immune checkpoint blockade (ICB) or CAR
T-cell therapies, therapeutic vaccines still show very few outcomes in the establishment of clinical
responses in advanced cancer patients.

Numerous improvements have been made in recent decades in therapeutic vaccination
protocols that enhance the immune response elicited by the vaccination. FDA approval of the first
therapeutic vaccine in 2010, the DC-based vaccine sipuleucel-T (Provenge R©) in the treatment of
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prostate cancer (1), brings to the force possible success for
therapeutic vaccination strategies.

In this mini review, we discuss the results and limitations
of vaccine approaches tested in clinical trials targeting different
tumor antigens. After describing the rationale for combining
therapeutic vaccines with either antiangiogenic therapies or
ICB, we present examples of combinations in preclinical mouse
models and in human clinical trials.

THERAPEUTIC CANCER VACCINES

Targeted Antigens
In the context of antitumor vaccine improvement, significant
efforts have been focused on the choice of tumor antigen to target.
Although numerous cancer vaccine strategies have been studied,
targeted antigens remain at the heart of the discussions. They are
classified into two main categories.

Tumor-associated antigens (TAAs) are expressed by tumor
cells and also by normal cells such as overexpressed antigens
(Her2/neu, survivin, MUC-1 . . . ), cancer testis antigens (MAGE-
3, NY-ESO-1 . . . ), or differentiation antigens (Mart1, PSA, PAP
. . . ). Although TAAs are expressed at a certain level by normal
cells, their immunogenicity induces specific T-cell responses (2–
4). However, a certain degree of self-tolerance can be applied
to TAAs.

In the case of tumor-specific antigens (TSAs), such as
oncogenic viral proteins in virally induced cancers or neoantigens
generated by non-silent somatic mutations of normal proteins,
such central thymic tolerance is bypassed, being regarded as
foreign antigens by the immune system. Neoantigen-based
vaccine strategies have shown specific anti-tumor immunity in
numerous preclinical models and have been tested in early (Phase
I) human clinical trials with very promising results (5–10).

Therapeutic Vaccine Strategies
Different therapeutic vaccine strategies have been developed
including whole tumor cell, tumor-cell lysates or gene-modified
tumor cells, protein- or peptide-based vaccines, RNA and DNA
vaccines, viral vector engineered to express tumor antigen and
DC-based vaccines loaded with DNA, RNA or peptides. These
strategies are further detailed in specialized reviews (10–15).

Many preclinical and clinical trials using these different
strategies have been performed and we will focus here on those
that have reached phase II/III clinical trials (16, 17). Some
examples are provided below and in Table 1 (18–29).

Cancer vaccine strategies based on autologous dendritic cells
(DCs) pulsed with tumor antigens have been widely studied
(30, 31). For example, a phase III clinical trial testing peptide-
pulsed DCs as a first-line treatment in advanced melanoma
patients has been performed, but DC vaccination was ineffective
compared to chemotherapy (18). A randomized phase II/III
clinical trial is currently ongoing in glioblastoma patients to test
a DC-based vaccine (NCT03548571). Many parameters such as
DC-based vaccine administration, maintenance of DC viability
and maturation as well as standardization of ex vivo generation
can be limiting (32–34).

Improvement of vaccine platforms has also led to the use
of viral vectors with modified viruses engineered to express
both targeted antigens and immunomodulatory molecules.
In this context, modified vaccinia virus of the Ankara
strain (MVA) has been studied. A vaccine containing MVA
expressing tumor antigen MUC-1 and immunostimulatory
cytokine IL-2 (TG4010 vaccine) was tested in a phase II
clinical trial in patients with metastatic renal cell carcinoma
(mRCC) (19). Induction of an immunological response against
MUC-1 was observed and safety established. Nevertheless,
the trial showed no clinical benefit following vaccination.
In the TIME clinical trial (phase II), TG4010 was tested
in NSCLC patients with or without chemotherapy. Patients
who showed a MUC-1-specific response (n = 16) had an
improved clinical outcome with a median overall survival
(OS) of 32.1 months vs. 12.7 months in non-responders
(n= 6) (20).

Other vaccines have also emerged using this modified virus
strategy, such as TroVax, an MVA expressing fetal oncogene
5T4 (MVA-5T4) studied in a phase III clinical trial in the
treatment of renal cancer, though no clinical benefit was found
(21). PROSTVAC (or PSA-TRICOM), a poxviral-based prostate-
specific antigen (PSA) vaccine has been assessed in a phase II
clinical trial in the treatment of metastatic castration-resistant
prostate cancer (mCRPC) and was associated with a 44%
reduction in the death rate and an 8.5 months improvement in
median OS (22).

Thus, therapeutic vaccine strategies take many forms and
importance is now also given to vaccine administration routes
to enhance efficacy (35) as well as work done on vehicle delivery
and adjuvants (12, 15, 36–38).

Therapeutic Vaccines in the Era of
Combination Strategies
However, even though cancer vaccines have been greatly
improved, overall they still fail to provide any clinical benefit
as monotherapy in patients with advanced cancers. During
cancer progression, tumors develop several mechanisms of
immune escape such as tumor angiogenesis, recruitment of
immunosuppressive cells, and over-expression of inhibitory
molecules, all leading to an ineffective antitumor immune
response (39, 40).

Due to their lack of migration and/or progressive
exhaustion, tumor-specific T cells generated by vaccination
do not act effectively against the tumor. Combination with
strategies that counteract such immune escape mechanisms is
therefore essential.

Therapeutic vaccine approaches have a major place in
the arsenal of weapons developed to fight cancer and in
many published studies have been combined with radio-
or chemotherapy, with promising results, as reviewed
elsewhere (41, 42).

In this mini review, we will concentrate on combinations of
therapeutic vaccines and antiangiogenic treatments (AATs) or
ICB, highlighting their synergistic potential and providing an
update of preclinical and clinical results.
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THERAPEUTIC CANCER VACCINES AND
ANTIANGIOGENIC TREATMENTS
COMBINATIONS

Rationale for Vaccine Combination
With AATs
During carcinogenesis, tumors will increase the expression of
pro-angiogenic molecules such as vascular endothelial growth
factor (VEGF), which is involved in tumor angiogenesis. This
process fosters access to nutrient and oxygen supplies for the
tumor and allows proliferation and metastatic dissemination
even though vasculature development is abnormal (43). On the
other hand, the aberrant tumor vasculature actively suppresses
anti-tumor responses by providing a physical barrier to T
cell infiltration and limits therapeutic drug efficacy due to
poor delivery to the tumor (40). Tumor angiogenesis also
contributes to immune escape with its immunosuppressive
roles (44–47). For example, VEGF is involved in inhibition of
DC maturation, development of tumor-associated macrophages,
increase in regulatory T cells (Tregs), accumulation of myeloid-
derived suppressor cells (MDSCs), and expression of inhibitory
checkpoints such as PD-1 on CD8+ T cells (48).

Within this framework, numerous antiangiogenic molecules
have been developed to repress tumor angiogenesis. AATs
target many components of the tumor microenvironment
(endothelial cells, tumor cells, DC, MDSC, Tregs. . . .) resulting
in a shift of cytokine and chemokine production favoring
antitumor activities. These therapies lead to transient vascular
normalization while dampening immunosuppression (40, 47,
49, 50). In this review, we will focus on drugs targeting the
VEGF/VEGF receptor (VEGFR) pathway, such as bevacizumab
(an anti-VEGFA antibody), tyrosine kinase inhibitors such
as sunitinib, sorafenib or axitinib, which target VEFGR
but also other pathways, and anti-VEGFR antibodies. These
antiangiogenic drugs are currently the most used in the clinical
setting. However, the benefits provided by these treatments are
still limited and acquired resistance can appear (51, 52).

Considering the extensive tumor microenvironment
remodeling induced by AATs, a combination of such strategies
with therapeutic vaccines could help to enhance the immune
response against tumors. By improving in quantity and quality
the infiltration of T lymphocytes activated by the vaccine and by
decreasing immunosuppression, AATs might act in synergy with
therapeutic cancer vaccines.

Preclinical Studies Combining AATs
And Vaccines
Several preclinical studies have sought to define the best timing of
administration of therapeutic vaccines and AATs for an optimal
synergy of action. These studies have yielded conflicting results.

In a first study, sunitinib was combined with a DC-based
vaccine expressing IL-12 and pulsed with OVA-peptide (DC-
IL12-OVA) in a B16-OVA tumor model. This combination
improved therapeutic efficacy, increased type-1 antitumor T-
cell recruitment in the tumor microenvironment and decreased
immunosuppressive cells (MDSCs, Tregs) (53). Similar results in

terms of efficacy were obtained using the tyrosine kinase inhibitor
axitinib instead of sunitinib (54).

Bose et al. showed that the best therapeutic efficacy was
achieved when sunitinib was administered alongside vaccine
priming or boosting, whereas starting sunitinib treatment after
vaccination did not lead to optimal efficacy (53).

Farsaci et al. studied the combination of sunitinib with a
modified virus-based vaccine using rMVA containing transgenes
for co-stimulatory molecules (B7-1, ICAM-1, and LFA-3) as
well as for the carcinoembryogenic antigen (CEA) administered
to CEA-transgenic mice bearing MC38-CEA tumors (55).
Sunitinib was administered for 4 weeks followed by 2 weeks
without treatment (comparable to schedules in cancer patients).
In this context, vaccine was administered before, alongside
or after the start of sunitinib treatment. Only situations
where sunitinib preceded vaccination were associated with
increased therapeutic efficacy when compared to sunitinib alone.
The authors concluded that synergy between sunitinib and
therapeutic vaccination happened after sunitinib preconditioned
the immune system.

Finally, a study combining sunitinib with a protein-based
vaccine using recombinant α-lactalbumin in a 4T1 mammary
tumor-bearing mouse model highlighted the fact that sunitinib
inhibited the priming phase of the active immunization protocol
by reducing the number of CD11b+ CD11c+ antigen-presenting
cells in draining lymph nodes and spleen when sunitinib is
administered alongside vaccination (56).

Besides the importance of the timing of administration, the
dose of antiangiogenic treatment is a key factor for vessel
normalization in the tumor (47, 49). In a preclinical model of
breast cancer, only low doses of anti-VEGFR2 antibody (DC101)
enabled vascular normalization, and a combination of low-
dose DC101 with irradiated tumor cell vaccine enhanced tumor
control compared to vaccine alone (57).

Although there seems to be no consensus regarding treatment
scheduling, some patterns do emerge. The nature of the
vaccine strategy should be taken into account, as should the
antiangiogenic drug properties, considering the large spectrum
of immune responses considered.

Clinical Trials Combining AATs
And Vaccines
Based on positive results in preclinical studies, the combination
of AATs and therapeutic vaccines in human subjects is currently
being assessed. In a phase II clinical study involving newly
diagnosed intermediate and low-risk mRCC patients, sunitinib
was combined with a personalized DC-based vaccine AGS-
003 consisting of monocyte-derived DCs transfected with
total autologous tumor RNAs and CD40L RNA. Vaccine
administration was started at the beginning of the second cycle
of sunitinib. Combination treatment induced immunological
responses and prolonged survival (58). These encouraging results
led to a phase III clinical trial, but AGS-003 failed to improve
OS (NCT01582672).

The same lack of clinical response has been reported in a
phase II clinical trial combining the multipeptide IMA901 with
sunitinib in the treatment of mRCC (59).
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Although progress has been made in the understanding of
the impact of AATs, combinatorial approaches with cancer
vaccines have failed to demonstrate clinical efficacy. To improve
clinical outcomes, before considering vaccination we need a
better understanding of immunological remodeling induced by
antiangiogenic therapies and an assessment of the immunological
stage of patients already on antiangiogenic drugs in the context
of standard of care treatment. On the other hand, as mentioned
above, attention should be paid to the treatment schedule and the
doses of AAT. Clinical trials are usually not design to address this
issue. To date, the combination of vaccines and antiangiogenic
therapies has been less studied than other combinations,
although numerous clinical trials are ongoing (some are listed in
Table 2A) and hopefully will provide new insights into how such
strategies might optimize synergistic effects.

THERAPEUTIC CANCER VACCINES AND
IMMUNE CHECKPOINT
BLOCKADE COMBINATIONS

Rationale for Vaccine Combination
With ICB
As described before, the acquisition of immune checkpoint
molecules by effector T cells in the tumor microenvironment
render them progressively exhausted and unable to kill tumor
cells. This has led in recent years to the development of ICB,
which is now used in the treatment of many types of cancer.

Monoclonal antibodies (mAbs) directed against co-inhibitory
molecules involved in T cell exhaustion or Treg cell function such
as CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4) and
the PD-1/PD-L1 axes (programmed cell death 1/programmed
death-ligand 1) have revolutionized the treatment of an
increasing number of cancers, including melanoma, lung cancer,
renal cancer, bladder cancer, and Hodgkin’s lymphoma (60).

Although success stories such as anti-CTLA-4 and anti-
PD-1 mAbs have emerged, these strategies seem to work as
monotherapies in a restricted number of patients and some
limitations have emerged, with the development of acquired
resistance (61, 62). It is important to highlight that poorly
immunogenic tumors (also referred to as “cold” tumors), like
pancreatic and prostate cancers, are not sensitive to checkpoint
blockade (63). Accordingly, the rationale of combining ICB with
therapies that increase the number of infiltrating tumor-specific
T cells, such as vaccination, is often underlined (63, 64).

Preclinical Studies Combining ICB
And Vaccines
Anti-CTLA-4 mAbs in combination with cancer vaccines have
been tested in some preclinical studies. For instance, a GM-CSF-
producing tumor cell vaccine combined with CTLA-4 blockade
has important synergistic effects in reducing tumor size and
increasing the antitumor immune response in amelanomamodel
(65) and in a prostate cancer model (66).

Wada et al. have demonstrated the importance of timing
with the combination of anti-CTLA-4 mAbs and GM-CSF gene-
transfected tumor cell (GVAX) vaccine in the prostate cancer

model Pro-TRAMP (67), by showing that anti-CTLA-4 mAbs
should be administered after vaccination to produce additive
effects. They hypothesized that delayed CTLA-4 blockade could
avoid compensatory expansion of the Treg compartment, which
might affect generation of an effective antitumor response.

To improve treatment of pancreatic ductal adenocarcinoma in
which checkpoint inhibitor monotherapies seem to be ineffective,
Soares et al. have shown that combining anti-PD-1 with GVAX
vaccine improved survival and enhanced T-cell activity in
mice (68).

Similar conclusions have been reached with another non-
immunogenic tumor model. The combination of DC tumor
lysate-based vaccine with PD-1 mAbs resulted in long-term
survival in mice bearing large established glioma tumors, while
neither treatment alone improved survival (69).

In addition, a preclinical study revealed that PD-1 checkpoint
inhibition combined with an adenoviral-based vaccine targeting
HPV-E6/E7 protein in the context of E6+/E7+ tumor-bearing
mice resulted in a more effective antitumor response (70).
The authors also showed that treatment with vaccine alone
upregulated the expression of several inhibitory immune
checkpoint molecules, including PD-1 and LAG-3 on CD8+

tumor-infiltrating lymphocytes. Another study reported
increased PD-1 expression on CD8+ tumor-infiltrating
lymphocytes after vaccination and significantly enhanced tumor
growth inhibition when vaccine was combined with anti-PD-L1
(71). These results strengthen the rationale for vaccine and ICB
combination and suggest that multiple checkpoint inhibition
could help enhance the synergy of action with vaccine strategies.

Following this idea, Duraiswamy et al. showed that dual
blockade of PD-1 and CTLA-4 combined with GVAX vaccine
resulted in the rejection of CT26 colorectal tumor in 100% of
mice and of ID8-VEGF ovarian carcinoma in 75% (72). Murine
studies therefore support the concept that anti-CTLA-4 and anti-
PD-1 mAbs increase the frequency of activated T cells and the
effector T cell to Treg ratio in vaccinated tumors. While studies
have focused on the scheduling of anti-CTLA-4 mAbs with
vaccination, this issue has been less studied for the combination
of anti-PD-1 mAbs and vaccine.

Clinical Trials Combining ICB And Vaccines
Following preclinical studies, clinical trials have tested the
efficacy of such combinatorial approaches in cancer patients.

In melanoma patients, peptide vaccines have been tested
in combination with ipilimumab (anti-CTLA-4), but were not
associated with improved outcomes compared to ipilimumab
alone (73–75). Nevertheless, some of these peptide vaccines
have not shown great immunogenicity when tested alone in
preclinical trials.

But combinatorial trials have also yielded promising results.
In a phase Ib study, ipilimumab was tested in combination with
GVAX vaccine in patients with pancreatic adenocarcinoma. The
combination of the vaccine with anti-CTLA-4 therapy improved
OS compared to ipilimumab alone (76). In another study,
the authors showed that antibody-mediated CTLA-4 blockade
increases tumor immunity in some patients who were previously
vaccinated with GVAX (77).
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In a phase I clinical trial, MART-1 peptide-pulsed DCs
combined with tremelimumab (anti-CTLA-4) resulted in
objective and durable tumor responses in melanoma patients
(78). Of 16 patients, 4 had an objective response, 2 had a
partial response, and 2 a complete response. TriMixDC-MEL,
autologous monocyte-derived DCs electroporated with synthetic
mRNA, combined with ipilimumab in advanced melanoma
has shown an encouraging rate (38%) of highly durable tumor
responses in a phase II trial, including 8 complete responses and
7 partial responses (79).

Viral vector-based vaccines combined with ICB have also
shown great promise in human studies. The PROSTVAC vaccine
combined with ipilimumab in treatment of mCRPC in a phase
I dose-escalation trial proved safe, but clinical outcome has not
been studied (80) and a randomized phase II trial is currently
recruiting (NCT02506114). Aside from CTLA-4 blockade,
PROSTVAC efficacy is also being assessed when combined with
nivolumab (anti-PD-1) (phase I/II recruiting) (NCT02933255).

Clinical studies of a combination of anti-PD-1 antibodies
and vaccines are still limited, but some early trials show
encouraging results.

In a phase I study, patients with advanced solid cancers
received p53MVA vaccine combined with pembrolizumab (anti-
PD-1) (81). Clinical responses were observed in 3/11 patients,
in whom disease remained stable for 30, 32, and 49 weeks,
associated for two of them with an increased frequency and
persistence of p53-reactive CD8+ T cells.

In a single-arm, phase II clinical trial, 24 patients with
incurable HPV-16–positive cancer were vaccinated with ISA 101,
a synthetic long-peptide vaccine composed of overlapping HPV
E6 and E7 peptides in combination with nivolumab (82). The
overall response rate of 33% and median OS of 17.5 months are
promising compared to the 16–22% overall response rate and
median survival of ∼9 months with PD-1 inhibitors alone in
similar patients (63).

Two phase I studies have shown that nivolumab in
combination with peptide vaccines targeting differentiation
antigens is safe and produces an immunological response in
melanoma patients (83, 84).

Although clinical data on the combination of anti-
CTLA-4 or anti-PD-1 mAbs and vaccines are still limited,
some phase I or II clinical trials are ongoing (85).
Table 2B lists ongoing clinical trials combining those
mAbs but also involving PD-L1 blockade with therapeutic
vaccines with or without more conventional therapies
(radiotherapy, chemotherapy).

Regarding the complexity of assessing real clinical
improvement in such combinatorial trials, an effort should be
made in terms of trial design to determine whether the efficacy of
vaccine-induced immune responses is improved when combined
with immune checkpoint inhibition. It will also be necessary
to evaluate immune mechanisms involved in the response to
treatment in patients. Those parameters will then allow better
scheduling for combination therapy, depending on the nature of
the therapeutic vaccine and inhibitory molecules used.

CONCLUSIONS AND PERSPECTIVES

Although therapeutic cancer vaccines have been associated with
past failures, the era of combinatorial strategies in the treatment
of cancer prompts their reconsideration. Strategies have been
optimized and immunologic enhancement due to vaccines is
now accepted. The overwhelming immunosuppressive tumor
microenvironment that reduces the clinical efficacy of vaccines
can now be modified by different approaches. Combinations
of cancer vaccines and antiangiogenic therapies or ICB have
emerged and shown promising results. To date, very impressive
results for those combinations described in mice have not yet
been recapitulated in humans. However, studies in mice have
mainly used sub-cutaneous tumor grafts growing rapidly and
representing an early stage of the disease. Conversely, clinical
trials mainly concern patients with advanced cancers, i.e., at a
late phase of the disease when immunosuppressive mechanisms
are induced. Consequently, we currently lack clinical data
showing any breakthrough, a better understanding of the tumor
microenvironment will allow us to consider new combinations.
Questions remain concerning the timing of treatments,
adjuvants, immunization routes, optimal immunogenic vaccines,
and tumor remodeling. There is also a need to set up clinical
trials in patients at early disease stages. Combinations including
newly developed ICB or costimulatory pathways as well
as other antiangiogenic strategies such as vaccines directly
targeting angiogenic compounds could also bring new hope
and lead to clinical success. Finally, in the near future, multiple
therapies involving distinct but complementary aspects of
antitumor responses may be considered as the combination of
vaccines, antiangiogenic therapies and ICB.
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