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Purinergic signaling modulates systemic and local inflammatory responses.

Extracellular nucleotides, including eATP, promote inflammation, at least in part

via the inflammasome upon engagement of P2 purinergic receptors. In contrast,

adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers

immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role

of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several

inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis.

Our experimental data generated over the years have indicated both CD39 and CD73

serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune

cell responses are regulated by the balance between eATP and adenosine, potentially

impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease,

ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and

other inflammatory conditions, such as cancer. In this review, we report the most recent

discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the

regulation of intestinal and hepatic inflammation. We discuss the present knowledge,

highlight the most intriguing and promising experimental data and comment on important

aspects that still need to be addressed to develop purinergic-based therapies for these

important illnesses.
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INTRODUCTION

The “purinergic signaling hypothesis” dates back to 1972 when Geoffrey Burnstock discovered
that eATP and derivatives modulate gut and urinary tract neurotransmission (1). Nucleotides
modulate cell responses upon binding to purinergic receptors (2–6) and also provide mediators
after ectonucleotidase-mediated hydrolysis into adenosine (7, 8). Adenosine regulates cellular
immune responses upon binding P1 adenosine receptors (3, 9, 10).

Ectonucleotidases include ecto-nucleoside triphosphate diphosphohydrolases (ENTPDases),
ecto-5′-nucleotidase (NT5E)/CD73, ecto-nucleotide pyrophosphate phosphodiesterases (E-NPPs);
CD38/NADase; NAD glycohydrolases; nucleoside diphosphate kinase; ecto-F1-F0 ATP synthases
(11) and adenylate kinases. ENTPDase1, 2, 3, and 8 are surface-located enzymes that
hydrolyze ATP/ADP into AMP. ENTPD2 however displays preferential ecto-ATPase activity
(12). NTPDases4,5, 6, and 7 are intracellular proteins, with ENTPD5 and 6 being secreted upon
heterologous expression.
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NT5E/CD73, which converts AMP into adenosine, has been
described both as GPI-anchored protein or soluble enzyme (13,
14). Soluble CD73 (sCD73) mainly derives from shedding of
lymphocytes (13) and is present in both serum and cell-free
lymph of healthy individuals (15). Increase in sCD73 levels
has been reported in inflammatory conditions (16) and was
negatively correlated with disease severity in patients with acute
pancreatitis (17).

While being constitutively present on different immune cells,
ENTPD1/CD39 and NT5E/CD73 can be further induced upon
exposure to oxidative stress and hypoxia, stimulation with pro-
inflammatory cytokines or following aryl hydrocarbon receptor
(AhR) engagement (4, 18–21).

In this review, we focus on the role of ENTPD1/CD39 and
NT5E/CD73 in gastrointestinal and hepatic inflammation.

ECTONUCLEOTIDASES IN ACUTE AND
CHRONIC GI ILLNESS

Aberrant immune responses in gastric and intestinal disease
might result in the development of chronic and progressive
inflammatory statuses. In this setting, several studies emphasize
the crucial role of the purinergic signaling in the modulation of
GI conditions (Figure 1) (22).

Gastrointestinal Infections
T-helper-cells are pivotal players in anti-bacterial responses
(23). Protracted release of Th1-related cytokines, however,
contributes to chronic inflammation that might ultimately result
in peptic ulcer disease and gastric cancer, as in the context
of Helicobacter (H.) pylori infection. However, inadequate Th1
immunity can lead to persistent infection as result of regulatory
T-cell (Treg) accumulation (24–26) that supports pathogen
persistence. Adenosine generation by ENTPD1/CD39 and CD73
on Treg and memory T-cells, strongly inhibits effector T-cell
immunity (8, 27), as shown in vitro and in experimental models
of H. felis-induced gastritis in vivo (28).

Cd73−/− mice develop a more severe gastritis, associated with
heightened levels of pro-inflammatory cytokines and impaired
Treg function (28). Administration of an A2A adenosine receptor
(A2AR) agonist to Il-10−/− and Helicobacter-bearing mice
attenuates gastritis lowering TNF-α and IFN-γ levels (29).

A comparable regulatory pathway has been observed in
murine models of intestinal (and systemic) Toxoplasma gondii
(T. gondii) infection. In the intestine of naive mice, conventional
CD4+ T-cells and Tregs express both ENTPD1/CD39 and
CD73. During acute T. gondii infection, CD73 expression
is downregulated, with consequent diminished generation
of immunosuppressive adenosine. As levels of the type-1
purinergic adenosine receptors are maintained, administration of
receptor agonists ameliorates disease symptoms and associated
dysbiosis (30).

The key role of ENTPD1/CD39 in the modulation of
cellular immune response in the intestine has been suggested
in a macacus rhesus model of simian immunodeficiency virus
(SIV) infection. Infection with SIV results in rapid expansion

of CD25+FOXP3+CD8+CTLA-4+CD39+ Tregs, especially in
colorectal mucosal and lymphoid tissues, the preferential sites
of virus replication. This development limits anti-viral responses
by suppressing the proliferation of SIV-specific T-cells. Treg
accumulation is also observed in HIV patients, implicating
that therapeutic strategies aimed at containing Treg expansion
might improve the control over HIV by restoring anti-viral
responses (31, 32).

Purinergic signaling regulates also Th17-cell immunity (33).
ENTPD7 expression in the epithelial cells of small intestine
controls luminal ATP levels, therefore regulating Th17-cell
development (34). In this regard, high ATP levels and Th17-
cell accumulation are noted in the lamina propria of Entpd7−/−

mice and homeostasis can be restored by oral administration of
ATP antagonists or antibiotics (34). In the absence of ENTPD7,
commensal microbiota-dependent eATP release supports Th17-
cell development (34). Accordingly, Entpd7−/− mice are resistant
toCitrobacter rodentium infection although suffering from severe
experimental autoimmune encephalomyelitis, resulting from
accumulation of IL-17 and IFN-γ (34). Control of intestinal
microbiota by purinergic mediators has been also supported
by recent data showing that mice deficient in the ATP-
gated ionotropic P2X7 receptor display intestinal microbiotic
imbalance and altered glucose metabolism (35).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a chronic, debilitating
illness characterized by excessive inflammation of the colon
and small intestine that is associated with thrombophilia and
heightened risk for cancer (36, 37).

Experimental and clinical evidences indicate a protective role
of ENTPD1/CD39 in Crohn’s disease (CD). Global Entpd1/Cd39
deletion in dextran-sulfate-sodium (DSS)-induced colitis in
mice increases susceptibility to injury (38). Accordingly, high
ENTPD1/CD39 expression by circulating Tregs correlates with
clinical remission in IBD patients while single nucleotide
polymorphisms, associated with low Entpd1/Cd39 mRNA levels,
increase predisposition to Crohn’s disease (39).

Crohn’s patients have decreased suppressor (sup)Th17-cells, a
unique effector cell subtype endowed with immunosuppressive
functions. In contrast to conventional pathogenic Th17-cells,
supTh17-cells express higher levels of ENTPD1/CD39 (33), more
effectively generate eAMP and adenosine and hence can also
potently suppress effector T-cell responses via A2A receptors.

Expression of ENTPD1/CD39 can be induced upon
engagement of AhR, a mediator of toxin responses and adaptive
immunity (40, 41). AhR activation induces accumulation of
CD39+ and granzyme+ human Tregs in vitro and treatment
with the AhR agonist 2-(1′H-indole-3′- carbonyl)-thiazole-4-
carboxylic acid methyl ester has a protective effect in colitic
humanized mice by increasing Foxp3+, CD39+, granzyme B+,
and IL-10+ Tregs (42).

We have recently reported that in vitro exposure to
unconjugated bilirubin (UCB), a product of heme oxidation that
serves as AhR endogenous ligand, results in increased levels of
ENTPD1/CD39 and FOXP3 in Th17-cells derived from healthy
individuals but not from Crohn’s disease patients (18). We
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FIGURE 1 | Modulation of gastro-intestinal disease by ectonucleotidases. (A) There are potent immune responses to gastrointestinal bacterial and parasitic infections

e.g., Helicobacter pylori, Helicobacter felis and Toxoplasma gondii. The balance between pro and anti-inflammatory signals controls the development and outcome of

the disease. Protracted release of Th1-related cytokines contributes to the establishment of chronic inflammation that might ultimately result in peptic ulcer disease

and gastric cancer. ENTPD1/CD39 expression by regulatory T-cells (Tregs) modulates Th-cell responses; however, excessive immune regulation can also lead to

pathogen persistence. (B) In a macacus rhesus model of pathogenic simian immunodeficiency virus (SIV) infection, there is rapid expansion of

CD25+FOXP3+CD8+CTLA-4+CD39+ Tregs, especially in the colorectal mucosal and lymphoid tissues. This event limits anti-viral responses by suppressing the

proliferation of SIV-specific T-cells. Treg accumulation is also observed in HIV patients, implicating that therapeutic strategies controlling the expansion of

CD25+FOXP3+CD8+CTLA-4+ CD39+ Tregs might effectively control HIV infection restoring the anti-viral response. (C) Celiac disease is a chronic inflammatory

disorder triggered by aberrant immune responses to dietary gluten. Exposure to gluten induces protective accumulation of FOXP3+CD39+ Tregs that, however,

display defective suppressive function, and do not adequately control aberrant inflammatory responses. (D) ENTPD1/CD39 and CD73 are the dominant

ectonucleotidases expressed by tumor endothelial cells and Tregs. Extracellular adenosine generated by CD39+ Tregs isolated from the blood of cancer patients

inhibits and suppresses anti-tumor responses. Further, the tumor microenvironment impacts the phenotype and function of local cells, substantially limiting

immunotherapeutic strategies. In this regard, most of the colorectal cancer-infiltrating Tregs are Helios+ and express higher levels of ENTPD1/CD39 and cytotoxic

T-lymphocyte antigen 4 (CTLA-4), when compared to peripheral blood and colon-derived counterparts. (E) Low levels of ENTPD1/CD39 expression by Tregs and

Th17-cells are observed in the peripheral blood of patients with inflammatory bowel disease (IBD). Moreover, single nucleotide polymorphisms associated with low

ENTPD1/CD39 mRNA levels, increase susceptibility to the disease. On the other hand, in vitro exposure to unconjugated bilirubin (UCB) results in increased levels of

ENTPD1/CD39 and FOXP3 expression in Th17-cells derived from healthy individuals, through a mechanism mediated by aryl hydrocarbon receptor (AhR). However,

Crohn’s-derived Th17-cells remain refractory to UCB immunoregulation due to altered responses to hypoxia that inhibits AhR signaling by inducing ATP-binding

cassette (ABC) transporters that promote UCB efflux out of Th17-cells.

have also noted that UCB treatment ameliorates DSS colitis in
mice, this protective effect being dependent on ENTPD1/CD39
and AhR (18). Resistance of Crohn’s-derived Th17-cells to AhR
stimulation results from altered response to hypoxia that inhibits
AhR signaling in IBD through induction of ABC transporters;
these promoting UCB efflux out of Th17-cells (43).

Furthermore, co-expression of ENTPD1/CD39 and
CD161 by T-cells supports Th17 effector phenotype
through alterations in both extracellular nucleotide-mediated
responses and acid sphingomyelinase catalytic bioactivity
that promote IL-17 expression (44, 45). Pro-inflammatory

CD4+CD39+CD161+ T-cells are increased in the blood
and lamina propria of Crohn’s disease patients and levels
directly correlate with the disease activity (44). CD3/CD28-
mediated stimulation of IFN-γ-producing CD8+ T-cells,
another effector subset involved in Crohn’s disease pathogenesis
(46), not only increases IFN-γ production by CD8 T-cells,
but also induces reactive oxygen species and ENTPD1/CD39
expression (47).

Increase in CD73+CD4+ T-cells, which are enriched in IL-17
producing lymphocytes, is detected in the lamina propria and
peripheral blood of IBD patients during active inflammation.
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FIGURE 2 | Ectonucleotidases in inflammatory liver conditions. (A) Ischemia/reperfusion injury (IRI) is triggered by the vascular damage consequent to blood

reperfusion of oxygen deprived ischemic tissues, as with organ transplantation. ENTPD1 expression by donor livers and treatment with exogenous adenosine at high

concentrations in preservation solutions protects grafts from ischemic damage with extended cold preservation times. Pharmacologic preconditioning through

stimulation of adenosine receptors has been also associated with protection from ischemia by increasing ENTPD1/CD39 expression, via Sp1 transcription factor

activation. This protective effect is abrogated in the absence of ENTPD1/CD39 but can be restored by adenosine administration. There is also evidence that

exogenous and cautious ATP infusions can improve the hepatic function and post-ischemic clinical condition, (at least in part) by decreasing the plasma levels of IL-6

and TNF. (B) Numerical and functional impairment of Tregs contributes to immune imbalance in autoimmune hepatitis (AIH). Tregs and Th17-cells isolated from AIH

patients display defective ENTPD1/CD39 expression and fail to control eATP mediated pro-inflammatory Th17 accumulation. Treg acquisition of pro-inflammatory

properties together with low ENTPD1/CD39 expression might result from dysfunction in TGF-β signaling. (C) Liver fibrosis is driven by activation and accumulation of

myofibroblasts and hepatic stellate cells (HSC), the predominant source of extracellular matrix and collagen in the organ. ENTPD1/CD39 and CD73, are upregulated in

HSC, portal fibroblasts and in fibrous septa. This overexpression, mediated by SP1 and SMAD promoter elements, is a direct consequence of the myofibroblastic

differentiation. Interestingly, in the setting of CCl4-derived-fibrosis, ENTPD2 expression and re-distribution from the portal areas to the fibrotic septa, has a protective

role against excessive collagen accumulation. (D) In hepatic steatosis and alcoholic hepatitis, Entpd1/Cd39 deletion correlates with increased insulin resistance and

aberrant hepatic glucose metabolism. Accordingly, disruption of A2AR expression in hepatocytes and macrophages also directly correlates with the severity of

obesity–associated non–alcoholic-fatty-liver-disease, promoting inflammation and lipogenic events. (E) ATP scavenging by ENTPD1/CD39 expressed by

CD4+FOXP3+ Tregs, endothelial cells and myeloid derived suppressor cells (MDSC) promotes hepatic tumor growth in mice. Once exposed to hypoxic

microenvironment, HCC upregulates ENTPD2 expression, further supporting MDSC accumulation and immunosuppressive activity. On the other hand, recent

experiments have documented occurrence of liver cancer also in Entpd1/Cd39−/− mice. These latter findings would result from eATP-P2 receptor-mediated

suppression of tumor cell autophagy and boosting of cell proliferation.

In Crohn’s disease, accumulation of pathogenic Th17-cells
has been also associated with heightened CD73 levels (48).
Interestingly, exposure to TNF increases CD73 expression on
CD4+ T-cells, while anti-TNF monoclonal antibody (infliximab)
has the opposite effects, therefore implicating CD73+ Th17-
cells as a surrogate marker of disease activity and response to
treatment (48).

Recent data have shown a protective role for ENTPD2
and ENTPD3 in neuro-immune interactions in Crohn’s disease
(49). ENTPD2-3 are expressed by enteric nervous system cells

in both the human and murine colon. Both Entpd2−/− and
Entpd3−/− mice are more susceptible to DSS-induced colitis
and Entpd2−/− colonic macrophages display a more pro-
inflammatory phenotype as compared to wild type controls
(49). A significant proportion of the microparticle-associated
ectonucleotidase activity is sensitive to POM6, inferring the
presence of NTPDases, either −2 or/and −3. Further, human
plasma samples obtained from Crohn’s patients, show overall
decreases in ADPase activity, this alteration being directly
correlated with disease activity (49).
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Celiac disease is a chronic inflammatory disorder frequently
associated with IBD and triggered by aberrant immune responses
to dietary gluten. Recent work has shown that gluten exposure
induces protective accumulation of FOXP3+CD39+ Tregs in
celiac patients. These Tregs however, are dysfunctional and
exhibit impaired suppression (50).

There is evidence that microparticles (MPs) released from
cells in the inflammatory site can be loaded with ENTPDase
mRNA (51). Such mRNA content within MPs can be taken up by
incorporating cells and be subsequently translated into functional
NTPDases. This phenomenon occurs between leukocytes and
vascular endothelial cells (51). Our collaborators, others and
we have also noted that levels of microRNAs (miRs) present
in plasma MPs are modulated by CD39 expression and that
one microRNA, miR-142-3p, might impacts CD39 levels
per se (52, 53).

Based on this evidence, MPs could serve as biomarkers of
inflammatory pathways as well as therapeutic tools to modulate
the function of cells taking up these exosomes and MPs (51–54).

Colorectal Cancer
Colorectal cancer (CRC) is the second leading cause of tumor-
related death in the United States. ENTPD1/CD39 and CD73
are the major ectonucleotidases expressed by tumor endothelial
cells and Tregs. Extra-cellular adenosine generated by circulating
CD39+ Tregs of cancer patients not only inhibits anti-tumor
responses and stimulates vascular endothelial cell proliferation,
but also reduces monocyte ability to activate the endothelium,
limiting migration of effector T-cells into the tumor (55–58).

In a murine model of hepatic metastatic cancer, resulting
from portal vein infusion of MCA38 colon cancer cells and
melanoma B16/F10 cells, ENTPD1/CD39 expression on Tregs
strongly suppresses natural killer (NK)-mediated anti-tumor
immunity (59); whereas ENTPD1/CD39 inhibition restores anti-
cancer responses, significantly limiting tumor growth (58, 59).
The correlation between levels of ENTPD1/CD39 in the host and
CRC progression has been confirmed in orthotopic transplanted
murine cancer models; while in clinical samples, lower levels of
ENTPD1/CD39mRNA in malignant CRC tissues correlates with
prolonged survival and less invasiveness (60).

The tumor microenvironment strongly impacts the
phenotype and function of immune cells, substantially limiting
immunotherapeutic strategies. In this regard, most of the
CRC-infiltrating Tregs are Helios+ and express high levels of
ENTPD1/CD39 and cytotoxic T-lymphocyte antigen4 (CTLA-4).

There is also evidence that CD8+ lymphocytes infiltrating
human CRC recognize a wide range of epitopes unrelated to
the tumor, including those recognized during previous viral
infections. Such CD8+ lymphocytes display wide variability in
ENTPD1/CD39 expression, which correlates with the clinical
status of patients (61).

ECTONUCLEOTIDASES IN ACUTE AND
CHRONIC LIVER DISEASES

Ectonucleotidases can be also expressed in the liver in different
cell populations, including resident immune cells and endothelial

cells. As observed in the rat, the specific cellular localization
and function are strongly affected by variations in the organ
homeostasis. In healthy rat liver, CD73 expression partially
overlaps with that of ENTPD1/CD39 in fibroblastic cells
underneath vascular endothelial cells and smooth muscle cells,
and with that of ENTPDase8 in bile canaliculi. In portal spaces,
CD73 is expressed in a fibroblast subpopulation, which is
adjacent to ENTPDase2+ portal fibroblasts. At variance with
healthy, quiescent states, the expression, and activity of these
ectonucleotidases are largely altered in fibrotic livers (62).

Below we discuss the role of ectonucleotidases, especially
that of ENTPD1/CD39, in major pathological hepatic
conditions (Figure 2).

Acute Liver Injury
Ischemia Reperfusion
Ischemia/reperfusion injury (IRI) is triggered by the vascular
damage consequent to blood reperfusion of oxygen deprived
tissues. IRI is driven by accumulation of inflammatory
mediators, including adenine nucleotides and is associated
with platelet activation and, ultimately, organ rejection (63).
ENTPD1 expression by donor livers and treatment with high
concentration adenosine protect grafts from ischemic damage
(64). Pharmacologic preconditioning through stimulation
of adenosine receptors also protects from ischemia (65, 66)
by increasing ENTPD1/CD39 expression via Sp1 (66). This
protective effect, abrogated in Entpd1/Cd39−/− mice, can be
restored in hemizygous Cd39-deficient mice following apyrase
or adenosine administration.

ENTPD1/CD39 expression reduces pro-inflammatory activity
and promotes protective phenotypes in conventional liver
myeloid dendritic cells (mDC) in IRI and transplant models
(67, 68). However, there is also evidence that ATP infusion
improves hepatic function and post ischemic clinical condition
by downregulating IL-6 and TNF plasma levels (69). Similar
anti-inflammatory effects are achieved by specifically deleting
ENTPD1/CD39 in NK cells, suggesting a regulatory role for
ATP/P2 receptor axis during liver injury and subsequent
regeneration (70). These results clearly show that, although
adenosine and ENTPD1/CD39 are commonly known as
immunosuppressive factors, the mechanisms regulating the
inflammatory response are complex and markedly impacted by
specific cellular conditions.

Sepsis
Recent studies have revealed that eATP scavenging has protective
effects in sepsis-induced liver injury (71). ENTPD1/CD39
expression by macrophages strongly suppresses pro-
inflammatory responses, especially those P2X7-mediated.
Accordingly, in the same experimental settings, Entpd1/Cd39
genetic deletion exacerbates end-organ injury (72).

Toxins
Inflammatory liver injury caused by acetaminophen (APAP)
toxicity can be linked to purinergic stimulation of immune
cells and vascular endothelium. Indeed, P2X7 is crucial in
these responses as exposure to ATP ligands is required for
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manifestations of APAP-induced hepatotoxicity. APAP toxicity is
very pronounced in Entpd1/Cd39−/− mice, which show hepatic
hemorrhagic necrosis and high mortality. Exogenous apyrase
also decreases APAP-induced mortality in wild type mice (73).

Chronic Conditions
Autoimmune Hepatitis
Autoimmune hepatitis (AIH) is a severe hepatopathy mediated
by aberrant activation of CD8+ and CD4+ effectors, including
Th17-cells. Decreased numbers and functional impairment of
Tregs contribute to immune imbalance in AIH (74–76). Tregs
isolated from AIH patients display decreased ENTPD1/CD39
expression and fail to control eATP-mediated Th17 accumulation
(77). Low levels of and functional defects in Th17CD39+

cells have been also detected in juvenile autoimmune liver
disease. Here too, the impairments in ENTPD1/CD39 and A2A
expressionmight bolster and promote cellular effector properties.
Moreover, levels of adenosine deaminase are significantly
increased in AIH patients and positively correlate with
inflammation and fibrosis scores (78).

Natural killer T-cells (NKT) are another cell population
involved in AIH pathogenesis. In murine models of
Concanavalin-A induced hepatitis, genetic deletion of
Entpd1/Cd39 promotes eATP/P2X7-mediated NKT apoptosis
and paradoxically provides protection from liver injury (79).
Extracellular purines differentially impact different cell types
(Treg vs. NKT cells) in certain pathological conditions, as
previously shown in the context of hyperoxic lung injury (80).
These counter intuitive findings indicate the complexity of
purinergic immunomodulation in the liver, and elsewhere (80).

Liver Fibrosis
Hepatic fibrosis is a pathological process that develops as a
response to chronic inflammation and ongoing liver injury. The
pathological process is driven by activation and accumulation
of myofibroblasts, a heterogeneous population of activated non-
parenchymal liver cells and hepatic stellate cells (HSC). These
two cell types are likely the predominant source of extracellular
matrix and collagen in the liver.

Different ectonucleotidases, including CD73 and ENTPD
family members, are upregulated in HSC, portal fibroblasts and
in fibrous septa (62, 81, 82). Such levels of overexpression,
mediated by SP1 and SMAD promoter elements, are thought to
result from myofibroblastic differentiation.

In experimental models, Cd73-deficient mice are resistant to
development of liver fibrosis, suggesting a pathological role for
AMPase activity and adenosine generation in fibrogenesis (82).

To the contrary, ENTPD2 ATPase activity as expressed by
myofibroblasts is protective in the setting of CCl4-induced
fibrosis as null mice develop more liver scarring in this model.
ENTPD2 expression and re-distribution from the portal areas
to the fibrotic septa, has a protective role against excessive
collagen accumulation in the liver. These salutary effects
could be ascribed to anti-inflammatory effects of extracellular
ATP scavenging by members of the ENTPD family. In
contrast, after partial hepatectomy or 3,5-diethoxycarbonyl-
1,4- dihydrocollidine (DDC)-induced hepatocellular injury, the

Entpd2 deletion does not significantly impact the fibrotic
response in mutant mice (83).

There is evidence that ENTPD1/CD39 limits hepatic
accumulation of gut primed CD8 T-cells, preventing biliary
injury and subsequent fibrosis (84). In this context, Entpd1/Cd39
deletion results in increased levels of hepatic CD8 T-cells
following upregulation of the T-cell gut-tropism receptor,
integrin α4β7. Accordingly, inMdr2−/−Cd39−/− mice, CD8 cell
depletion as well as gut decontamination and administration of
stable ATP agonist or antibiotics, attenuates hepatobiliary injury
and fibrosis (47, 83).

Hepatic Steatosis/Alcoholic Hepatitis
Purinergic signaling and adenosinergic effects are important
modulators ofmetabolic disease. Entpd1/Cd39 deletion correlates
with increased insulin resistance and aberrant hepatic glucose
metabolism (85). Furthermore, A1 adenosine receptor expression
on adipocytes impacts fatty acids metabolism, including lipolysis,
diabetes, dyslipidemia, and insulin resistance (86).

Adenosine can be also generated during ethanol metabolism
and the effects of ethanol-induced hepatic steatosis might be
therefore mediated by adenosine receptors, especially A1 and
A2B (87). Disruption of A2AR in hepatocytes and macrophages
is directly linked to the severity of obesity-associated non-
alcoholic-fatty-liver-disease, promoting inflammation and
lipogenic events (88).

Liver Transplant Rejection
A potentially fatal consequence of liver transplantation is
that of immune-mediated organ rejection. Increasing evidences
reveal a protective role of ENTPD1/CD39, the upregulation and
augmented activity of which, achieved also upon exogenous
administration, improve liver survival in allotransplantation
models (89). Further, ENTPD1/CD39 expression in liver
allografts modulates the anti-donor effector T-cell responses and
Treg infiltration, ameliorating organ rejection and preventing
graft-vs.-host reactions (90).

Liver xenograft rejection is a consequence of vascular
inflammation and thrombosis that is partially mediated by
extracellular nucleotides (91, 92).

Hepatocellular Carcinoma and Metastatic

Liver Tumors
Hepatocellular carcinoma (HCC) is the most frequent type
of primary liver cancer in adults and is the major cause of
death in cirrhotic patients (93). HCC growth and expansion
are supported by accumulation of cellular and inflammatory
metabolites, including eATP that promotes the generation
of preneoplastic foci via P2 receptors (94–96). Further
experimentation suggests the development of autochthonous
liver cancer in Entpd1/Cd39−/− mice (97), resulting from
comparable eATP-P2 receptor-mediated changes: inclusive of
suppression of liver cell autophagy, altered metabolism, and
boosting of proliferation.

Recent work has shown that perturbations in purinergic
signaling promote HCC growth, also by supporting immune
escaping. ATP scavenging by ENTPD1/CD39 expressed by Tregs
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TABLE 1 | Ectonucleotidase expression and activity in GI and liver experimental models and human diseases.

Condition Source Ectonucleotidase Function References

GI H. felis-induced gastritis

(mouse)

CD4+CD25+Foxp3+ ENTPD1/CD39 and

NT5E/CD73

Protection from excessive

inflammation

(28)

T. gondii acute infection

(mouse)

CD4+ Foxp3− or CD4+

Foxp3+ T-cells

NT5E/CD73 Downregulation correlates with

intestinal immunopathology

during lethal infection

(30)

SIV (mouse) HIV (human) FOXP3+CD25+CD4+,

FOXP3+CD25+CD8+

T-cells

ENTPD1/CD39 Limits anti-viral responses by

suppressing the proliferation of

SIV/HIV-specific T-cells

(31, 32)

Citrobacter rodentium

infection (mouse)

Epithelial cells of small

intestine

ENTPD7 Regulation of Th17 cell

responses to the pathogen

(34)

Crohn’s disease (human)

DSS-induced colitis

(mouse)

CD4+ IL-17+CD25+

FOXP3+,

CD4+CD25+CD127loFoxP3+

ENTPD1/CD39 Single nucleotide polymorphisms

associated with low

ENTPD1/CD39 mRNA levels and

with increased predisposition to

Crohn’s disease (human);

Entpd1/Cd39 global deletion

correlates with disease activity

index (mouse)

(18, 33, 38,

39, 43, 50, 51)

CD4+CD25+CD127loFoxP3+,

CD4+ IL-17+ IL-10+
Protection from tissue damage

Global deletion increases

disease susceptibility (mouse)

(18, 38, 39)

CD4+ T-cells, CD8+ T-cells,

CD4+CD39+CD161+

T-cells

NT5E/CD73 Marker of disease activity and

response to treatment

(45–48)

Enteric nervous system ENTPD2/3 Modulation of neuro-immune

interactions and inflammation

(49)

Colorectal cancer

(human, mouse)

PBMCs, CD8+ T-cells ENTPD1/CD39 Low ENTPD1/CD39 expression

correlates with prolonged

survival and decreased tumor

invasiveness

(59, 60)

Liver Ischemia/reperfusion

injury (human, mouse)

CD11b+CD11c+NK1.

1−mPDCA-1− (mDC),

global expression on donor

and graft tissue cells

ENTPD1/CD39 Protection from ischemic injury

Induction of protective

anti-inflammatory phenotype

(66, 67)

NK1.1+, CD49b+, CD3− ENTPD1/CD39 Entpd1/Cd39 deletion has an

anti-inflammatory effect

mediated by ATP/P2X7 toxicity

(69)

Sepsis MyD88+ macrophages ENTPD1/CD39 Protection from

inflammation-derived organ injury

(72)

Acetaminophen-

induced liver

toxicity

CD45.2+F480+ cells ENTPD1/CD39 Protection from organ toxicity (73)

AIH (human, mouse) CD4+CD25+FOXP3+

T-cells (human)

ENTPD1/CD39 Immune regulatory properties (74–77, 79)

Global deletion causes

P2X7-mediated NKT cell

apoptosis and protection from

ConA-mediated liver injury

Liver fibrosis (mouse,

rat)

Portal fibroblasts and fibrous

septa, hepatic stellate cells

CD73 Induction of fibrotic process (62, 81, 82)

Portal fibroblasts and

myofibroblasts

ENTPD2 Protection in CCl4-induced

murine model but not in the

DDC-induced model

(83)

Gut primed-CD8+ T-cells ENTPD1/CD39 Limits accumulation of

gut-primed T-cells preventing

biliary injury and fibrosis

(84)

Hepatic

steatosis/alcoholic

hepatitis (mouse)

Global expression ENTPD1/CD39 Protection from aberrant hepatic

glucose metabolism and insulin

resistance

(85)

(Continued)
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TABLE 1 | Continued

Condition Source Ectonucleotidase Function References

Liver transplant rejection

(mouse)

Host and liver allograft

expression, CD3+ CD4+

T-cells, CD8+ T-cells

ENTPD1/CD39 ENTPD1/CD39 expression in

liver allografts modulates graft

survival, anti-donor T-cell

responses and Treg cell

infiltration

(90)

HCC (mouse, human) Global expression,

CD4+CD25+Foxp3+,

CD11b+Ly6G+Ly6C+,

CD31+ cells

ENTPD1/CD39 Promotes cancer immune

escape

(58, 97, 98)

Tumor (HCC) cells ENTPD2 Promotes MDSC accumulation (100)

Soluble ectonucleotidase,

global expression

ENTPD5/CD39L4 Involvement in tumor growth (53, 101)

Hepatic metastatic

cancer (mouse)

CD4+Foxp3+ T-cells ENTPD1/CD39 Suppression of anti-tumor

immunity

(58)

H. felis, Helicobacter felis; T. gondii, Toxoplasma gondii; SIV, simian immunodeficiency virus; HIV, human immunodeficiency virus; DSS, dextran sulfate sodium; PBMCs, peripheral blood

mononuclear cells; mDC, myeloid dendritic cells; AIH, autoimmune hepatitis; ConA, concanavalin A; DDC, 3,5-diethoxycarbonyl-1,4- dihydrocollidine; HCC, hepatocellular carcinoma;

MDSC, myeloid derived suppressor cells.

and endothelial cells hence facilitates metastatic and transplanted
hepatic tumor growth in mice (59, 98, 99).

Generation of adenosine by ENTPD1/CD39 expressed
by Tregs and myeloid derived suppressor cells (MDSC)
inhibits effector cell proliferation and function (59).
Interestingly, in the presence of hypoxic microenvironment,
HCC cells upregulate ENTPD2 that preferentially converts
extracellular ATP to ADP and little AMP, further supporting
the accumulation and immune suppressive activity of
MDSC (100).

ENTPD5/CD39L4, a soluble endoplasmic reticulum UDPase
can also directly modulate tumor growth impacting N-
glycosylation and cell metabolism and has been proposed as
target for anti-cancer therapy (53). Other studies, however, have
reported contrasting findings, showing increased risk of HCC in
Entpd5 null mice (101).

Table 1 summarizes changes in ectonucleotidase expression
and activity in GI and liver experimental models and
human conditions.

CONCLUDING REMARKS

We have briefly discussed how the balance between ATP and
adenosine dictates outcomes of inflammatory conditions of the

GI tract and liver. Multiple questions, however, remain as to how
this balance is regulated, and can be possibly targeted in different
disease settings.

Development of purinergic-based therapies that could
be used alone or in combination with already existing
treatments, might be implemented to control these responses
in the gut and liver. The goal of such interventions will
be to re-establish and maintain immunologic tolerance

and promote healing in these important acute and chronic
inflammatory processes.
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