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Immunoglobulin (Ig) M is the first antibody isotype to appear during evolution, ontogeny

and immune responses. IgM not only serves as the first line of host defense against

infections but also plays an important role in immune regulation and immunological

tolerance. For many years, IgM is thought to function by binding to antigen and activating

complement system.With the discovery of the IgM Fc receptor (FcµR), it is now clear that

IgM can also elicit its function through FcµR. In this review, we will describe the molecular

characteristics of FcµR, its role in B cell development, maturation and activation, humoral

immune responses, host defense, and immunological tolerance. We will also discuss the

functional relationship between IgM-complement and IgM-FcµR pathways in regulating

immunity and tolerance. Finally, we will discuss the potential involvement of FcµR in

human diseases.
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INTRODUCTION

B cells produce different classes of antibodies (Ab), including IgM, IgD, IgG, IgA, and IgE. Ab
constitutes a variable F(ab) region that binds to antigen (Ag) and a constant Fc region that
mediates effector function. Cellular receptors for the Fc region mediate a variety of functions
including phagocytosis of Ab-opsonized pathogens and induction of cellular cytotoxicity. Recent
studies have unveiled three Fc receptors for IgM, including Fcα/µ receptor (Fcα/µR), polymeric
immunoglobulin receptor (pIgR), and Fcµ receptor (FcµR). Fcα/µR, pIgR, and FcµR are all type
I transmembrane proteins belonging to the immunoglobulin (Ig) gene superfamily. Fcα/µR is
expressed by both hematopoietic and non-hematopoietic cells (1, 2), and has been shown to play
an important role in humoral immune responses, especially in pro-inflammatory functions of
marginal zone B cells in sepsis (3). pIgR is expressed on the basolateral surface of ciliated epithelial
cell in the mucosal epithelium (4, 5), but not in hematopoietic cells (6). The main function of
pIgR is to transport dimeric IgA and polymeric IgM from the lamina propria across the epithelial
barrier to mucosal surfaces (7). FcµR was discovered relatively recently and its function has not
been fully elucidated. Here we summarize the results of FcµR published over the past several years,
and discuss how it contributes to immunity and tolerance.

MOLECULAR CHARACTERISTICS OF FCµR

The existence of a receptor for IgM was noted more than 40 years ago (8–16). Biochemical analysis
revealed that human FcµR had a molecular weight of ∼60-kDa (17). Molecular cloning of FCMR,
the gene encoding human FcµR, revealed that it is a single copy gene located on chromosome
1q32.2, adjacent to two other IgM associated Fc receptor genes, polymeric Ig receptor gene (PIGR)
and the gene of FcR for IgA and IgM (FCAMR) (18). Human FcµR is a type I transmembrane
protein of 390 amino acids (aa), composed of a 234-aa extracellular domain, a 21-aa transmembrane
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segment, and a 118-aa cytoplasmic tail (19, 20). BW5147T cells
ectopically expressing human FcµR exhibited specific binding
to IgM but not any other Ab isotypes, demonstrating that
FcµR is the bona-fide receptor for IgM (18). Unlike many
other FcRs, the cytoplasmic tail of human FcµR does not
contain any immunoreceptor tyrosine-based activation (ITAM)
or inhibitory (ITIM) motifs. Instead, it contains conserved serine
and tyrosine residues, which match the recently described Ig-
tail tyrosine (ITT) motif (21, 22). Crosslinking human FcµR
with either anti-FcµR monoclonal antibodies or preformed IgM
immune complexes triggered the phosphorylation of these serine
and tyrosine residues in FcµR-overexpressing BW5147T cells,
suggesting that FcµR could serve as an ITT phosphorylation
molecule to interact with and influence the B cell receptor (BCR)
signaling (23). Human FcµR is predominantly expressed by B, T,
and NK cells, but not by monocytes, granulocytes, erythrocytes,
and platelets (18). Human FcµR binds more efficiently to the
Fc portion of IgM reactive with surface proteins than to the Fc
portion of free IgM (24), suggesting that FcµR might modulate
the signal of B, T, and NK cell surface receptors or proteins
recognized by natural or immune IgM.

The mouse FcµR gene (Fcmr) is also a single copy
gene located on chromosome 1 (56.89 cM), adjacent to Pigr
and Fcamr (25). Although mouse and human FcµR have
similar molecular structure, they share only 54% aa identity.
Mouse FcµR also specifically binds to IgM (25, 26). Unlike
human FcµR, we found that mouse FcµR is predominantly
expressed in B lymphocytes by both microarray of a panel
of immune cell types and FACS analyses (25, 27, 28).
However, others have reported that monocytes, macrophages,
granulocytes, and dendritic cells also express FcµR (29, 30).
The expression levels of Mouse FcµR are different among
different B cell subsets. The hierarchy of FcµR levels on various
B cell subsets is as follows: marginal zone precursor (MZP,
IgMhiCD21hiCD23hi) > follicular B (FOB, IgMloCD21loCD23hi)
>marginal zone B (MZB, IgMhiCD21hiCD23lo)> newly formed
B (CD93+CD21−CD23−) cells (28, 31). FcµR expression level
is indistinguishable between B1 (CD5+) and B2 (CD5−) cells
in the spleen. In the peritoneal cavity, FcµR expression level
in each B cell subsets follows the order: B2 (CD11b−CD5−) ∼=
B1a (CD5+) > B1b (CD11b+CD5−) cells (31, 32). In addition,
FcµR expression is very low in pro-B (B220+CD43+) and
pre-B (B220+CD43−IgM−) cells, and slightly upregulated in
immature B cells (B220dullIgM+) in the bone marrow (BM)
(27, 31, 33). FcµR expression in the germinal center (GC) B cells
(CD95+GL7+) is much lower than that in naïve B cells (27),
suggesting that FcµR is down-modulated during GC reaction.
FcµR is expressed at higher levels in plasmablasts compared to
plasma cells. Intriguingly, FcµR is also expressed by IgG- or IgA-
positive B cells, suggesting that it may play a role in switched B
cells (32).

It is intriguing that genes encoding FcµR, Fcα/µR, and pIgR
are located in the same chromosomal region (18, 25), suggesting
that these genes are evolutionarily related andmight have derived
from a common ancestor gene. However, in contrast to FcµR
which only binds to IgM, Fcα/µR binds both IgM and IgA (3, 34,
35). Moreover, pIgR binds both IgM and IgA via their associated

J chains and is essential for the transcytosis of polymeric IgA and
IgM to the gut (36). The expression pattern is also quite different
among these receptors. FcµR is predominantly expressed by B
cells in mice and by B, T, and NK cells in humans (18, 25). In
contrast, Fcα/µR is expressed by macrophages, B cells, intestinal
lamina propria and several other cell types (35), and pIgR is
mainly expressed on the intestinal epithelial cells (4, 5). Although
FcµR was originally designated as Fas apoptotic inhibitory
molecule 3 or TOSO (37), it is now clear that both human and
mouse FcµR have no inhibitory activity against Fas-mediated
apoptosis (38, 39).

FCµR IN B CELL DEVELOPMENT AND
MATURATION

Several Fcmr-deficient (KO) and B-cell-specific deletion of Fcmr
(BKO)mouse strains have been generated. (1)We and Kubagawa
et al. share the constitutive FcµR knockout strain (Fcmrtm1Ohno)
in which exons 2–4 were deleted in 129/Sv ES cells and the
mutant mice had been backcrossed to C57BL/6 mice for > 12
generations. The neo gene used in drug selection was removed
by crossing with Cre-Tg mice (27, 28, 32, 40–42); (2) Mak et al.
and Coligan et al. share the constitutive FcµR knockout strain
(Fcmrtm1Mak) where exons 2–8 were deleted in 129/Sv ES cells
and themutant mice had been backcrossed to C57BL/6mice. The
neo gene remained in the targeted allele (29–31, 43, 44); (3) Lee
et al. have the constitutive FcµR knockout strain (Fcmrtm1.2Khl)
and a strain with floxed Fcmr allele, with exons 4–7 were deleted
or flanked by loxP sites, respectively. No neo gene remained in
the targeted allele and both mice are on a pure B6 background
(45–47); Baumgarth et al. generated the Fcmrflx/flxCd19-Cre+

strain in which exon 4 was deleted by CD19-driven Cre. The
mutant mice are on a pure B6 background (33, 48). A comparison
of the phenotypes of Fcmr−/− mice generated and/or analyzed by
different groups is shown in Table 1.

B cell development proceeds from pro-B, pre-B to immature B
cells in BM (49). Immature B cells then migrate to the periphery
where they further differentiate into various mature B cell subsets
that play distinct roles. The survival and maturation of B cells are
dependent on the strength of tonic BCR signal (50, 51). Studies
from our group, Honjo et al. and Nguyen et al. revealed that
FcµR deficiency did not significantly affect B cell development,
but altered the numbers of different B cell subsets (32, 33).
We and Honjo et al. found that MZB were severely reduced
in KO mice (27, 32) whereas Nguyen et al. found decreased
proportion of MZB but the absolute numbers of MZB were not
affected (Table 1) (33). Honjo et al., Choi et al., and Nguyen et al.
reported that the splenic B1 cells were increased in KO mice
(31–33). More recently, we found reduced tonic BCR signaling
in FcµR-deficient MZB, which we think led to their decreased
numbers in KO mice (28). In contrast, Honjo et al. suggested
that the reduction of MZB in KO mice was due to their rapid
differentiation into plasma cells (41). Lee et al. found decreased
numbers of B cells in the spleen and lymph nodes (47). Choi
et al. found that B-1a were increased but B-2 were decreased
in the peritoneal cavity and that FOB were decreased in the
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FIGURE 1 | B cells express two types of Fc receptors of opposing functions. FcµR promotes B cell activation via interacting with the BCR and potentiating BCR

signaling. In contrast, B cells express FcγRIIB, which inhibits B cell activation upon binding to immune complexes containing IgG and the cognate Ag, which then

results in colligation of FcγRIIB and the BCR. Therefore, B cells express two types of Fc receptors of opposing functions. It is suggested that these two receptors

function in a spatial-temporal manner to positively and negatively regulate B cell activation during humoral immune responses (see Figure 2).

spleen (Table 1) (31), which were similar to the phenotypes
found in Sµ−/− mice that lack secreted IgM (52, 53). Taken
together, these results indicate that FcµR affects the maturation
or differentiation of various B cell subsets.

FCµR IN B CELL SURVIVAL AND
ACTIVATION

We found that FcµR cell surface expression was upregulated
after BCR cross-linking with anti-IgM Abs but only moderately
increased by CD40L or LPS stimulation under in vitro culture
conditions (40). Choi et al. reported that FcµR transcript levels
were markedly reduced by stimulation of spleen B cells with anti-
IgM, LPS or anti-CD40 (31), suggesting that FcµR expression
is regulated at both transcriptional and posttranscriptional
levels. Moreover, we and others demonstrated that FcµR
specifically enhanced B cell survival induced by anti-IgM
stimulation (Table 1) (27, 31, 40). Immunofluorescence and
co-immunoprecipitation revealed physical interaction between
FcµR and BCR on the plasma membrane of primary B cells (40).
Although FcµR deficient B cells exhibited normal Ca2+ influx
after BCR crosslinking, their survival was reduced compared with
WT B cells (27), indicating that FcµR did not affect the early
BCR signaling event such as Ca2+ influx but affected the late
response such as B cell survival. Analysis of signaling molecules
downstream of BCR revealed that FcµR promoted the activation
of the non-canonical NF-κB pathway and the induction of BCL-
xL (40). These results suggest that FcµR and BCR cooperate in
signal transduction to promote B cell survival. FcµR does not
contain any ITAM motifs but instead contains several conserved
tyrosine and serine residues in its cytoplasmic tail (19, 20, 23, 26).
A detailed mutational analysis has revealed that the tyrosines
315, 366, and 385 are not required for ligand (IgM) binding.

However, tyrosine 315, as well as the entire intracellular domain,
was shown to be required for inhibiting an IgM anti-FAS Ab-
induced apoptosis (24). It remains to be investigated how FcµR
specifically affects the late phase of BCR signaling and whether
these tyrosine and serine residues are involved.

It is well-known that B cells express FcγRIIB, which inhibits
BCR signaling and B cell activation upon binding IgG-Ag
immune complexes, which then results in colligation of FcγRIIB
and the BCR. Therefore, B cells express two types of Fc receptors,
FcµR and FcγRIIB, which promotes and inhibits BCR signaling
and B cell activation, respectively (Figure 1). More recently,
Nguyen et al. reported that FcµR limited tonic BCR signaling in
immature B cells by regulating the expression of IgM BCR (33).
Therefore, FcµR regulates both the cell surface expression and
the function of BCR.

ROLE OF FCµR IN HUMORAL IMMUNE
RESPONSES

The basal Ig levels reflect the immune homeostasis at the steady
state. We found that basal serum IgM levels were elevated in the
absence of FcµR in a gene dosage-dependent manner, suggesting
that a portion of the serum IgM actually binds to the FcµR inWT
mice (27). Nguyen et al. found the same results and attributed the
high IgM level to the elevated numbers and hyper-activation of
B1 cells in the spleen (33). In addition, Honjo et al. found that
IgM levels were elevated and that the IgG3 levels were slightly
elevated in KO mice (32). In contrast, Choi et al. reported that
only IgG1 levels were reduced in 3-month old mice and IgG3
and IgA levels were slightly elevated in 6-month old mice (31).
Therefore, FcµR-deficient mice generated by different groups all
exhibited increased levels of serum IgM and/or IgG3 (Table 1).
These results implicate a role for FcµR in B cell homeostasis.
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FIGURE 2 | Positive and negative regulation of humoral immune responses by FcµR and FcγRIIB. During a typical T-D humoral immune response, Ag-specific IgM is

produced first, followed by IgG production. Based on the results that FcµR promotes B cell activation and Ab production and the earlier findings that FcγRIIB inhibits

B cell activation and Ab production, we propose an autoregulatory mechanism for T-D humoral immune responses. During the early phase of the response, B cell

activation is enhanced by FcµR-mediated positive signals. However, at a later phase of the response, further B cell activation is suppressed by FcγRIIB-mediated

inhibitory signal.

We found that KO mice had significantly decreased
production of NP-specific IgG1 during both primary and
secondary responses against a T-dependent (T-D) Ag, NP-CGG
(27, 28), likely due to impaired GC formation and reduced
memory and plasma cell differentiation. Similarly, Honjo et al.
found impaired primary IgG1 and secondary IgM anti-CGG
responses, but normal Ab affinity maturation (32). During
humoral immune responses to T-D Ag, Ag-specific IgM is
first produced, which is followed by the production of Ag-
specific IgG. Based on our results that FcµR is required for
efficient Ab production and the earlier findings that FcγRIIB
inhibits B cell activation and Ab production, we propose an
autoregulatory mechanism for T-D humoral immune responses
[(27) and Figure 2]. During the early phase of the response, when
the amount of Ag-specific IgM is greater than that of Ag-specific
IgG, B cell activation is enhanced by FcµR-mediated positive
signals. However, during the later phase of the response, when
the amount of Ag-specific IgG is greater than that of Ag-specific
IgM, further B cell activation is suppressed by FcγRIIB-mediated
inhibitory signal (Figure 2). B cell activation and Ab production
can thus be positively and negatively regulated by Ag-specific
IgM and IgG present in the local environment, respectively.

Consistent with the reduced survival in FcµR-deficient B
cells after BCR crosslinking, FcµR KO mice had decreased Ab
production against a type 2 T-independent (T-I) Ag, NP-FICOLL
(27), since response to this type of Ag is largely dependent
on BCR signal. Additionally, we found that FcµR KO mice
had impaired Ab production against a type 1 T-I Ag, NP-LPS
(28), which activates B cells through both BCR and toll-like
receptor 4. Moreover, we found that MZB in KO were not

activated upon LPS injection (28). Since MZB cells are thought
to participate in the response to LPS, the reduced Ab production
to NP-LPS immunization could be due to both a reduction
in the number of MZB cells and their impaired response to
LPS. Our results are consistent with the earlier finding by Lang
et al. that FcµR-deficient mice had reduced LPS response in
vivo (29). Choi et al. found elevated numbers of GC B cells
and accelerated plasma cell formation during type 1 and 2 T-I
immune responses and secondary T-D immune responses (31).
In addition, the plasma cell formation in primary T-D immune
response was also increased (summarized in Table 1). The reason
for the discrepancies among results from different groups is
unclear but could in part be attributable to the differences in the
targeting strategy, the immunization protocol, and the genetic
background as well as rearing environment of these mutant mice.
Collectively, these results suggest that FcµR regulates humoral
immune responses.

FcµR IN INFECTIOUS IMMUNITY

As summarized in Table 1, FcµR-deficient mice generated a
higher titer of anti-phosphorylcholine Ab and a lower titer of
anti-protein Ab than did WT mice when infected with a low
dose of live non-encapsulated strain of Streptococcus pneumoniae
(R36A) (32). However, a high dose of pathogen infection induced
no significant difference in Ab production between WT and KO
mice. We found that FcµR protected mice against sepsis induced
by Citrobacter rodentium, a gram-negative bacterium that has
LPS on the outer membrane (28). Similarly, Lang et al. found that
the absence of FcµR resulted in limited cytokine production after
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FIGURE 3 | A model for FcµR-mediated immunity and tolerance. FcµR promotes the survival and activation of mature B cells by interacting with the BCR and

potentiating foreign Ag-triggered BCR signaling (left). By analogy, FcµR might also promote self Ag-triggered BCR signaling in immature B cells and contribute to the

deletion/anergy of autoreactive immature B cells in the BM (right). Ag-specific IgM/IgG are illustrated in the scheme shown in Figures 1, 2 and 4 to suggest that

those reactions occur during an immune response. In contrast, IgM shown in this scheme is not Ag-specific to implicate that these reactions can occur in the absence

of Ag-specific IgM.

Listeria monocytogenes (a gram-positive bacterium) infection
and increased death of the infected KO mice (29). They also
found that FcµR was required for the control of persistence-
prone virus infection in a lymphocytic choriomeningitis virus
model system (44). In addition, Yu et al. reported that FcµR
deficiency resulted in increased numbers of IL-10–producing
B cells, which mediated regulation of T cell immunity during
influenza infection (45). On the contrary, Nguyen et al. found
that FcµR expression on B cells, but not Fcα/uR expression
or complement activation, was important for the antiviral IgG
responses (48). B cell-specific KO mice lacked robust clonal
expansion of influenza hemagglutinin-specific B cells early after
infection and developed fewer IgG plasma cells and memory B
cells in the spleen and BM, compared with WT mice (48). These
results suggest that FcµR has important roles in B cell responses
to protein and non-protein determinants of live pathogens and
in cooperating with other immune cells to protect the mice
against infection.

FCµR IN B CELL TOLERANCE

B cell central tolerance ensures autoreactive immature B cells
to undergo clonal deletion, anergy or receptor editing while
peripheral tolerance functions to delete autoreactive B cells
generated during GC reaction. We and others found that
KO generated autoreactive antibodies including anti-dsDNA,
rheumatoid factor, and anti-nuclear antibodies (27, 32, 33, 41,
45). Honjo et al. crossed FcµR-deficient mice with the Fas-
deficient autoimmune-prone B6.MRL Faslpr/lpr mice (B6/lpr),
and found that the double mutant mice had accelerated
development of autoreactive Ab including anti-dsDNA and anti-
Sm Ab (41). They also found enhanced formation of Mott cells,
aberrant plasma cells which accumulate large amount of Ig in
the rough endoplasmic reticulum, in KO mice. Nevertheless,
KO mice with autoimmune-prone background have normal
kidney function and equal mortality compared to control group
(41). Brenner et al. reported that KO mice were protected

from the development of severe experimental autoimmune
encephalomyelitis (EAE), a mouse model for human multiple
sclerosis. Their results suggested that FcµR regulated the
function of dendritic and regulatory T cells (30). Collectively, a
common feature of KO and BKO generated by different groups
is the production of various autoantibodies (Table 1). It remains
to be investigated how FcµR regulates B cell tolerance. We
have shown that FcµR promotes B cell survival and activation
by interacting with BCR and potentiating Ag-triggered BCR
signaling (Figure 3, left panel). By analogy, we think that FcµR
might also promote self Ag-triggered BCR signaling in immature
B cells and contribute to the deletion/anergy of autoreactive
immature B cells in the BM (Figure 3, right panel). Further
studies are required to clarify whether and how FcµR contributes
to B cell central or peripheral tolerance.

FUNCTIONAL RELATIONSHIP BETWEEN
IgM-COMPLEMENT AND IgM-FCµR
PATHWAYS

IgM is the first Ab to appear during evolution and the only
isotype produced by all species of jawed vertebrates (54–56). It
is also the first isotype produced during a T-D immune response
and is the first line of host defense (57). IgM is not only an
effector molecule, but also regulates humoral immune response.
Earlier studies suggested that IgM promotes the production
of antigen-specific IgG via activating complement. However,
a recent study by Heyman’s group demonstrated that mice
expressing a mutant IgM unable to activate complement (Cµ13)
had completely normal humoral immune responses (58), thus
raising the possibly that in addition to complement activation,
there are alternative pathways by which IgM elicits its function.
As discussed above, IgM can elicit its function through FcµR.
Therefore, both IgM-FcµR and IgM-complement pathways
function to regulate B cell survival and activation (Figure 4). It
remains to be investigated whether these two pathways function
cooperatively, independently, or competitively.
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FIGURE 4 | FcµR and complement receptor promote mature B cell survival

and activation. IgM (pentamer; for simplicity a monomeric IgM is depicted)

binds to antigens (Ag) and the resulting IgM-Ag complexes can enhance B cell

survival and activation through at least two pathways. (1) IgM-Ag complexes

can activate complement (C’) cascade, resulting in C’ fixation on the Ag, which

can crosslink BCR and C’ receptor (CD21) on B cells (green arrows). (2)

IgM-Ag complexes can crosslink BCR and FcµR on B cells (blue arrows). It

remains to be elucidated whether these two pathways function cooperatively,

independently or competitively [adapted from Ouchida et al. (27)].

FCµR IN HUMAN DISEASES

Human FcµR was shown to be overexpressed and associated
with the anti-apoptotic characteristic in chronic lymphocytic
leukemia (CLL) (59, 60). CLL is a malignancy of mature IgM+

B cells that exhibit features of polyreactive, partially anergized
B cells related to memory B cells (60). Several studies showed
that FCMR expression in CLL was significantly higher than that
in healthy controls and other B cell lymphoproliferative diseases
(59, 61–63). In addition, CLL patients also had higher serum
titers of FcµR compared with healthy donors. The serum FcµR,
a 40-kDa soluble form of the receptor generated by alternative
splicing, was produced by both CLL B and non-CLL B cells
(64). Cox regression analysis indicated that high expression of
FCMR was an independent indicator for shorter treatment-
free survival in CLL (64). Thus, FcµR is associated with the
disease progression and patient survival and may serve as a
prognostic factor. Interestingly, FcµR can even be used as a
target for a more selective treatment of CLL by T cells expressing
a chimeric antigen receptor (CAR-T), and initial studies have
implicated a superior therapeutic index with anti-FcµR CAR-T
cells for the treatment of CLL compared with the currently used
therapies (65).

The reason that causes FcµR upregulation in CLL remains
unclear. A negative correlation was observed between age and
FcµR expression (59). In addition, overexpression of FCMR
seemed to promote the chromosomal abnormalities (61). These
shreds of evidence suggest that FcµR expression is related
to the degree of genomic activity. Intriguingly, surface FcµR
levels were also significantly elevated in the non-CLL B cells
and T cells, suggesting that abnormal expression of FcµR is

associated with systemic gene regulation (64). FcµR expression
is significantly upregulated by BCR stimulation but decreased by
CD40 ligation, which suggested that autoreactive BCR signaling
as a key mediator of apoptosis resistance in CLL (63). Besides,
FcµR expression on CLL cells is downmodulated at both the
mRNA and protein levels by TLR7 and TLR9 agonists (60).
This study also revealed that FcµR not only localized to the cell
membrane but also accumulated in the trans-Golgi network (60).
FcµR may internalize IgM-Ag complexes and thus serve as a
receptor for the delivery of therapeutic Ab–drug conjugates into
CLL cells (60). In addition, based on the findings in mice, human
FcµR may have some roles in TNFα-mediated liver damage (47),
malaria vaccine promotion (46), and the function of pancreatic
islets (66).

CONCLUSION

IgM is an old immunoglobulin isotype, which can bind to
Ag with high avidity and activate the complement cascade.
Its authentic and specific Fc receptor (FcµR) is the last one
to be explored after Fcα/µR and pIgR. Although there are
some discrepancies regarding the function of FcµR published by
different groups, the following common abnormal phenotypes
have been observed: (1) alterations in B cell maturation
and differentiation; (2) impaired humoral immune responses;
(3) autoantibody production. In addition, FcµR appears to
contribute to the initiation/progression of human CLL and has
recently been tested as a therapeutic target for treating CLL.
Yet still many questions remain to be answered, including the
function of FcµR in the generation, maintenance and activation
of memory B cells, and in host defense mediated by natural IgM
produced by B-1 and Ag-specific IgM produced by B-2 cells.
Further studies are required to fully uncover the function of FcµR
in immunity and tolerance.
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