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Local Na+ balance emerges as an important factor of tissue microenvironment. On the

one hand, immune cells impact on local Na+ levels. On the other hand, Na+ availability

is able to influence immune responses. In contrast to macrophages, our knowledge of

dendritic cells (DCs) in this state of affair is rather limited. Current evidence suggests that

the impact of increased Na+ on DCs is context dependent. Moreover, it is conceivable

that DC immunobiology might also be influenced by Na+-rich-diet-induced changes of

the gut microbiome.
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Dendritic cells (DCs) represent important sentinel cells that continuously scan their
microenvironment and play a key role in inducing immune responses and maintaining
immunogenic tolerance [reviewed in (1–3)]. It is accepted that DCs are able to respond to a
plethora of proteinaceous, lipid or carbohydrate molecules as well as nucleic acids via specialized
receptors and signaling pathways [reviewed in (4–6)]. Recently, however, it emerged that the local
Na+ electrolyte abundance impacts on innate and adaptive immune cell function and vice versa
[reviewed in (7, 8)].

EXTRARENAL Na+ STORAGE

In general, body Na+ and fluid homeostasis are known to be regulated in very narrow
limits. Disturbing this balance by excessive dietary salt intake is linked to various diseases
including hypertension and autoimmunity, which ultimately results in increased morbidity
and mortality [reviewed in (9, 10)]. Traditionally, the kidney was seen as the sole organ
that controls body salt content and fluid regulation. For that purpose, Na+ concentrations
of about 400mM can be reached at the renal loop bend accompanied by osmolalities of up
to about 1,200 mOsm/kg in the renal medulla (11). The remaining extracellular body fluids
are thought to readily equilibrate with plasma. Therefore, extra-renal regulation of total body
and certain tissue Na+ content and concentration was largely ignored [reviewed in (7, 12–
15)], even though evidence of interstitial salt storage was provided already in 1909, when
chloride storage was found in the skin during pre-clinical studies (16, 17). Within the last
twenty years, however, the interstitium of the skin has emerged as important organ involved
in maintaining body Na+ balance. For instance chemical analysis in rodents revealed that the
effective osmolyte concentration in skin tissue (i.e., skin (Na++K+)/skin water) can reach levels
of about 190mM which is substantially higher than the effective osmolyte concentration in
plasma of about 145mM (18). Recent evidence using 23Na MRI and mathematical modeling
demonstrate that very high Na+ concentrations are present at the epidermal and dermal junction
zone (19, 20). Of note, chemical analysis of skin biopsies confirmed that the skin may serve as
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a Na+ buffer also in humans (21). This Na+-storage is reversible
by dialysis (22, 23) and is able to strengthen the innate immune
barrier by invigorating macrophage-dependent responses against
intruding pathogens (24).

Elevated Na+ deposition is paralleled by changes in the gel-
like cutaneous collagen matrix (25–27). Upon Na+-rich diets,
there is an increased sulfation of glycosaminoglycan (GAGs)
which might enable cutaneous Na+ storage [reviewed in (15)].
In addition to high Na+ containing diets (18, 27–29), it emerged
that superficial skin infections (24) and chronic inflammatory
processes (30) are able to trigger local Na+ accumulation.
The mechanisms underlying both, the diet-dependent and
diet-independent Na+ accumulation in the skin are, however,
unknown. It is tempting to speculate that soluble or cell-bound
mediators are able tomodulate the GAG network’s ability to serve
as a negative charge capacitor facilitating local Na+ accumulation
(27). Moreover, aldosterone and glucocorticoids may play an
important role in this state of affair (31).

DENDRITIC CELLS AS POTENTIAL
REGULATORS OF CUTANEOUS
Na+ STORES

While the mechanisms that allow for local cutaneous Na+

accumulation remain elusive, depletion of mononuclear
phagocytes using clodronate liposomes unraveled that these
cells play an important role in regulating cutaneous Na+ stores
(18, 28). In addition, targeting the osmoprotective transcription
factor nuclear factor of activated T cells 5 (Nfat5) in myeloid
cells using Lyz2 (Lysozym2)/ LysM-Cre deleter mice revealed
that this transcription factor plays an important role in sensing
Na+-rich diet-induced local hypertonic environments (29).
This myeloid cell specific osmoprotective response included the
upregulation of the Nfat5 target gene vascular endothelial cell
growth factor C (Vegfc) which ultimately leads to lymphcapillary
hyperplasia facilitating removal of Na+ from the skin (18, 29).
Recent evidence also suggests that local Na+ storage additionally
increases lymph flow in muscle and skin (32).

However, clodronate liposomes are known to
deplete various mononuclear phagocytes in the
skin including monocytes, macrophages and DCs (33).
Moreover, although Lyz2 Cre primarily induces recombination
in granulocytes, monocytes and macrophages, there is some
recombination occurring in DCs (34, 35). In the Immgen
Database (www.immgen.org), DCs, for instance, from skin
draining lymph nodes (LN) (CD11c+, MHCIIhi, Langerin−,
CD11b− CD103− CD8a− CD4−; CD11c+, MHCIIhi, Langerin−,
CD11b+ CD103− CD8a− CD4−; CD11c+, MHCIIhi, Langerin+,
CD11blow, CD103+, CD8a−, CD4−; CD11c+, MHCIIhi,
Langerin+, CD11b+ CD103− CD8a− CD4−) express very high
Nfat5 levels, suggesting that these cells might be involved in
organization and regulation of cutaneous Na+ balance. To the
best of our knowledge, the relative contribution of different
mononuclear phagocyte subtypes including various DC subtypes
in this state of affair is, however, unexplored. The use of novel
DC- and macrophage-specific (transcriptional) reporter mouse
strains and ablation strategies might be useful to uncover

the relative contribution of distinct mononuclear phagocyte
subtypes [reviewed in (36–38)]. It is likely that, in addition
to macrophages, DCs might fulfill distinct tasks in regulating
cutaneous Na+ balance. Recently, Randolph and colleagues
demonstrated that lymphatic vessel permeability is controlled by
DCs in a G protein-coupled homing receptor CCR7-dependent
manner. Further analysis revealed that this task is fulfilled
by IFN regulatory factor 4-positive DC subset (39). Taking
these observations and the data from the Immgen database
into account it is possible that DC-mediated regulation of the
lymphatic vessels might be involved in facilitating the drainage
of excess Na+ from cutaneous interstitial space (Figure 1).

DENDRITIC CELLS AS POTENTIAL
REGULATORS OF RENAL Na+ HANDLING

In addition to regulating local Na+ balance in the skin, it is
conceivable that DCs play a key role in orchestrating renal
electrolyte handling. It is well-established that there is a dense
network of mononuclear phagocytes including macrophages and
DCs throughout the kidney. These cells play an important
role in various inflammatory and fibrotic kidney injury models
[reviewed in (40–43)]. Furthermore, they are able to change their
shape and motility upon tissue damage (44, 45) and are involved
in curtailing and/ or promoting inflammatory responses after
various insults (46–52). Under steady state, the mononuclear
phagocyte compartment of the mouse kidney mainly consists
of CD103+ and CD11b+ renal mononuclear phagocyte subsets
[reviewed in (41, 43, 53)]. The CD103+ mononuclear phagocytes
are derived from bona fide DC precursors and these renal DCs
play an important anti-inflammatory role upon renal damage
(52, 54). The CD11b+ renal mononuclear phagocytes represent
over 90% of the renal mononuclear phagocyte population and
comprise DCs and macrophages [reviewed in (41, 43, 53)].
In contrast to the CD103+ renal mononuclear phagocytes/
DCs, the DC subset of these CD11b+ mononuclear phagocytes
exerts proinflammatory functions (54). Of note, recent evidence
using a transcriptional reporter mouse for DCs (zinc finger
and BTB domain containing 46 [Zbtb42]-GFP; visualizing both
CD103+ and CD11b+ DCs) demonstrates that CD103+ and
CD11b+ renal DC subsets are round-shaped and located around
blood vessels while in contrast counterintuitively most of the
other renal mononuclear phagocytes (i.e., macrophages) are
dendritically shaped (54).

While there is substantial evidence that these DCs are
involved in inflammatory responses in the kidney it is currently
unclear whether DCs contribute to the regulation of renal
Na+ excretion. Recent data indicates that renal mononuclear
phagocytes play an important role as accessory cells in regulating
Na+ transport of renal tubular cells. Crowley and co-workers
uncovered that IL-1-signaling modulates tubular Na+ excretion
via mononuclear phagocytes in mice (55). Moreover, using a
CD11b-Cre deleter mouse strain, Zhang et al. reported that
prostaglandins derived from renal mononuclear phagocytes
modulate the activity of renal Na+-Cl− cotransporters (56).
As the CD11b-Cre deleter mouse strain recombines in DCs
as well (35), it is tempting to speculate that renal DCs are
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FIGURE 1 | Role of DCs in homeostatic cutaneous and renal Na+-handling.

involved in this state of affair. This idea is further supported
by the fact that murine DCs express specific molecules that
facilitate the transport of Na+ and thus sensing of increased
extracellular Na+ levels such as the sodium-potassium chloride
cotransporter-1 (NKCC1), chloride cotransporter (NCC), the
sodium-calcium exchanger (NCX) and the α and γ subunits
of the epithelial sodium channel (ENaC) (57). Murine DCs
are able to express gap junction proteins such as Connexin 43
(58), which are able to facilitate Na+ entry in addition to other
molecules (59). It is tempting to speculate that DCs are able to
form functional syncytial cell aggregates with tubular cells and
thereby regulate renal Na+ handling. However, the contribution
of these molecules in electrolyte physiology is unexplored and
warrants further studies.

IMPACT OF Na+ ON DENDRITIC
CELL IMMUNOBIOLOGY

DCsmight not only be important regulators of local Na+ balance.
For instance there is robust evidence that increases in Na+ levels
limits the anti-inflammatory capacity of macrophages while
promoting their proinflammatory status (24, 60–65). Enhanced
induction of proinflammatory macrophage activation required
the activity of the osmoprotective transcription factor Nfat5
(24, 64). Recently, Buxade et al. reported that Nfat5 regulates
the expression of MHCII molecules under standard cell culture
conditions (i.e., normal salt conditions) and thereby regulates
CD4+ T cell responses (66). This regulatory circuit only operates
in macrophages but not in DCs (66). Surprisingly, the impact of

increased Na+ levels on DC immunobiology has been studied in
less detail and the data available are controversial (Figure 2).

Jörg et al., for instance, reported that high Na+ levels do not
impact the generation, maturation or function of mouse DCs
but rather directly impact on T cells (67). In contrast to these
findings, Chessa et al. demonstrate that increasing extracellular
Na+ levels, found in the renal medulla during DC development,
skews murine DCs to a macrophage-like regulatory phenotype
and suppresses the release of the Th1 priming cytokine IL-
12p70 (68).

In line with this, Popovic et al. reported that the ability
of mouse DCs to cross-present the model antigen ovalbumin
is severely impaired (69). Decreased cross-presentation was
recorded despite enhanced antigen uptake, processing, and
presentation. Of note, increased Na+ levels resulted in enhanced
expression of co-inhibitor and co-stimulatory molecules. Using
knock out strategies and blocking antibodies the authors
exclude that enhanced expression of co-inhibitory/ -stimulatory
molecules or reduced production of IL-12 underlies this
phenotype. The authors provide evidence that the suppressive
effect of high salt conditions (HS) on cross-presentation
is dependent on TIR-domain-containing adapter-inducing
interferon-β (TRIF) regulated process. However, the TRIF-
dependent mechanism that ultimately results in impaired
cross-presentation requires further investigation (69). Recently,
Zhang et al. reported that exposure of virally infected mouse
macrophages to increased Na+ levels boosts the release of Type 1
interferon (65). Since TRIF and type 1 interferon production are
intertwined [reviewed in (70)] and type 1 interferon signaling
has the potential to inhibit antigen-presentation (71), it is
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FIGURE 2 | Impact of Na+ on DC immunobiology.

conceivable that exposure to increased Na+ levels triggers
an overshooting type 1 interferon response which ultimately
inhibits cross-presentation by DCs.

In line with enhanced degradative activity of DCs upon HS
exposure (69), Barbaro et al. found that increasing extracellular
Na+ levels result in enhanced ROS production and formation of
isolevuglandin (IsoLG)-protein adducts in mouse DCs. However,
in contrast to the study using the model antigen ovalbumin,
Barbaro et al. reported increased frequencies of IFN-γ and IL-
17 producing T cells after co-incubation of DCs with T cells.
Moreover, transfer of DCs exposed to high Na+ environments,
increased the blood pressure of mice subjected to low levels of
angiotensin II (57). These findings suggest that increased local
Na+ levels enhance the inflammatory potential of DCs and, thus
might propagate inflammatory circuits that ultimately result in
arterial hypertension and cardiovascular death.

Of note, increases in dietary Na+ might not only directly
influence the immunobiology of dendritic cells. Recently, Wilck
et al. demonstrated that dietary high salt conditions change
the composition of the microbiome by removal of Lactobacillus
murinus (72). Depletion of Lactobacillus was accompanied by
reduction of the tryptophan metabolites such as indole 3-lactic
acid (ILA) and indole 3-acetic acid. Increased levels of ILA
directly inhibit the proliferation of TH17 cells in vitro (72).
In addition, it is possible that these tryptophan degradation
products are impacting on gut dendritic cells, which in turn
orchestrate e.g., regulatory T cell, TH22 and TH17 effector cell
balance (73, 74). In line with this, there are several reports that
Na+-rich diets increases the production of cytokines that are
key players in screwing the induction of TH1 and TH17 cells in
inflamed gut tissue such as Il12b and IL-23 (75, 76).

CONCLUSION

Na+ availability emerges as a new factor of tissue
microenvironment which on the one hand is regulated by
immune cells and on the other hand is able to impact on
their immunological function. In contrast to macrophages, our
knowledge regarding DCs is rather limited. Current evidence
suggests that the impact of increased Na+ levels on DCs is
context dependent. However, the role of DCs in regulating local
Na+ stores is unexplored and warrants further studies.
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