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Objectives: The importance of immunoglobulin G (IgG) oligoclonal bands (OCB)

in the diagnosis of multiple sclerosis (MS) was reaffirmed again in the recently

revised MS diagnostic criteria. Since OCB testing is based on non-quantitative

techniques and demands considerable methodological experience, measurement of

CSF immunoglobulin free light chains (FLC) has been suggested as quantitative

alternative to OCB. We aimed to establish reference values for FLC measures and

evaluate their diagnostic accuracy with regard to the diagnosis of MS.

Methods: Immunoglobulin kappa (KFLC) and lambda (LFLC) free light chains were

prospectively measured by nephelometry in CSF and serum sample pairs in 1,224

patients. The analyzed cohort included patients with MS, other autoimmune or infectious

inflammatory diseases of the nervous system as well as 989 patients without signs for

nervous system inflammation.

Results: Regarding diagnosis of MS, the diagnostic sensitivity and specificity

of intrathecal KFLC ratio were 93.3 and 93.7% using the CSF-serum albumin

ratio-dependent reference values, 92.0 and 95.9% for intrathecal KFLC ratio applying the

ROC-curve determined cut-off levels, 62.7 and 98.3% for IgG index, 64.0 and 98.8% for

intrathecal IgG synthesis according to Reiber diagrams, and 94.7 and 93.3% for OCB.

Diagnostic sensitivity and specificity of intrathecal LFLC were clearly lower than KFLC.

Conclusions: Intrathecal KFLC and OCB showed the highest diagnostic sensitivities

for MS. However, specificity was slightly lower compared to other quantitative IgG

parameters. Consequently, CSF FLC may not replace OCB, but it may support diagnosis

in MS as a quantitative parameter.

Keywords: immunoglobulin free light chains, oligoclonal bands, OCB, intrathecal IgG synthesis, IgG index, multiple

sclerosis, cerebrospinal fluid, serum
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease of the central nervous system (CNS) affecting
predominantly young adults and leading to neurological
disability (1–3). CSF investigation is indispensable in the
diagnostic process of MS and the detection of immunoglobulin
G (IgG) oligoclonal bands (OCB) again gained more importance
in the recently revised MS diagnostic criteria (4). So far, OCB
are the most widely used CSF test to support or rule out the
diagnosis of MS (5–7). Furthermore, OCB offer prognostic
information concerning the development of MS after a first
clinical suggestive event, known as clinically isolated syndrome
(CIS) (8, 9). In these cases, detection of OCB has prognostic
relevance and can help to identify patients with a high risk of
future relapses. However, determination of OCB using isoelectric
focusing (IEF) on gels followed by immunoblotting demands
considerable methodological expertise and is both labor-
intensive and difficult to standardize (10). Human IgG molecules
contain two identical heavy chains and two identical light
chains, which exist either as kappa or lambda isotypes and are
linked to the heavy chains by covalent and non-covalent bonds
(11, 12). During the production of intact immunoglobulins,
B cells produce an excess of kappa and lambda light chains,
which are secreted as free light chains (FLC) (i.e., not bound
to heavy chains within an Ig) (13). These FLC can exist as
monomers (22–27 kDa, usually kappa) or dimers (44–55 kDa,
usually lambda) (14), and can be detected in many biological
fluids including serum, urine, synovial fluid as well as, in the
CSF (15, 16).

Several studies have indicated that elevated immunoglobulin
kappa (KFLC) and lambda (LFLC) free light chains in the CSF
may represent a quantitative tool to demonstrate intrathecal IgG
synthesis and thereby support the diagnosis of MS (17–28), some
even proposing FLC quantification as an alternative to OCB
analysis (29, 30). However, diverse methods, both qualitative,
e.g., IEF with immunoblotting (31), and quantitative, e.g.,
radioimmunoassay (24), ELISA (18), and nephelometry (20–22),
have been applied for FLC determination. In addition, divergent
approaches to calculate intrathecal FLC synthesis were employed,
e.g., FLC CSF-serum ratios, CSF KFLC to LFLC ratio, and FLC
index. In summary, comparability between the published studies
is limited due to different methodologies, lack of appropriate
disease controls (usually non-inflammatory neurological cases
were used as controls with a lack of other autoimmune CNS
diseases than MS), and finally rarity of prospective data.

The aim of the present study was (i) to prospectively measure

FLC (both KFLC and LFLC) in CSF and serum by nephelometry
in a large cohort, (ii) to establish reference values for FLC as

a function of the blood-CSF barrier function based on patients
without any clinical and laboratory signs for nervous system
inflammation, and (iii) to compare the diagnostic value of
different previously proposed methods to calculate intrathecal
FLC synthesis, e.g., CSF-serum ratio of FLC (Q FLC), FLC index
(Q FLC/Q Albumin), CSF KFLC-LFLC ratio, with well-proven
indicators of intrathecal IgG synthesis (OCB and IgG Index)
within the same cohort.

METHODS

Patients
Cross-sectional data of CSF and serum sample pairs of 1,224
patients from the Department of Neurology, University of Ulm
(Germany) were investigated prospectively over a period of
18 months.

The analyzed cohort included 75 patients with multiple
sclerosis (MS), diagnosed according to the modified McDonald
criteria (32), five with clinically isolated syndrome (CIS), 36
patients with other autoimmune CNS diseases (AI-CNS-D),
13 with chronic inflammatory demyelinating polyneuropathy
(CIDP), 13 with Guillain-Barré syndrome (GBS), 29 with
viral and bacterial CNS infection (CNS-I), seven with CNS
tumor, 38 with post-infectious CSF syndrome (P-CNS-I), five
with metabolic encephalopathy (ME), 14 with paraproteinemic
neuropathy and/or neuropathy with monoclonal gammopathy of
unknown significance (PP-PNP), and 989 patients without any
signs of nervous system inflammation (no signs of inflammation
in CSF, no clinical signs of inflammation, no signs of blood
contamination in CSF, and no evidence of haemorrhagic or
inflammatory lesion in cerebral MRI, NIND) (Table 1). Lumbar
puncture was performed as part of the routine diagnostic work-
up. All samples were handled and stored in accordance with
BioMS guidelines (33).

Determination of OCB
OCB were detected by isoelectric focusing (IEF) on
polyacrylamide gels followed by immunoblotting using an
IgG-specific antibody staining. Paired CSF and serum samples
were adjusted for IgG concentrations and analyzed on the same
gel run as we previously described in detail (34). OCB were
evaluated by at least two long-standing experienced technicians
and at least two board-certified neurologists with extensive
experience in the field of CSF analysis. Two or more IgG bands
restricted to the CSF were rated as positive OCBs.

Determination of KFLC and LFLC
Immunoglobulin kappa and lambda free light chains (KFLC and
LFLC) were measured by nephelometry (Siemens N Latex FLC
kappa and lambda assays on Siemens BN ProSpec R©) according
to the instructions supplied by the manufacturer. The detection
antibodies in these assays are monoclonal. All samples were
analyzed within the same working day together with other CSF
measurements according to the sampling protocol of BioMS (33).

We calculated the CSF-serum ratio of albumin (Q Alb), KFLC
(Q KFLC), and LFLC (Q LFLC) and determined the KFLC index
(Q KFLC/Q Alb) and LFLC index (Q KFLC/Q Alb) by correcting
for Q Alb. In addition, the CSF KFLC to LFLC ratio (CSF
KFLC/CSF LFLC) was calculated.

CSF leukocyte count (cells/µl), CSF total protein (g/L), CSF
lactate (mmol/L), the albumin CSF-serum concentration ratio (Q
Alb), CSF and serum immunoglobulin G, A, and M levels were
obtained as previously described (35, 36).

MRI Analysis
MRI scans of the brain and spinal cord were performed on
a 1.5 tesla whole-body MRI (Symphony Siemens, Erlangen,
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TABLE 1 | Demographic data and basic cerebrospinal fluid findings.

N (female/male) Age (years) CSF cell count (/µl) Q Alb (× 10−3) CSF lactate (mmol/L) OCB pos (%)

MS 75 (56/19) 37 (25–49) 4 (1–10) 5.3 (4.2–6.3) 1.6 (1.5–1.8) 71 (94.7)

AI-CNS-D 36 (18/18) 58 (40–70) 3 (1–5) 7.25 (4.9–10.5) 1.9 (1.6–2.2) 22 (61.1)

CIS 5 (2/3) 31 (28–33) 2 (2–3) 4.7 (3.6–5.0) 1.7 (1.5–1.8) 5 (100.0)

CIDP 13 (5/9) 66 (60–75) 1 (1–1) 10.6 (8.9–12.6) 1.8 (1.6–2.0) 1 (7.7)

GBS 13 (7/6) 62 (52–75) 2 (1–2) 16.5 (9.8–30.6) 2.1 (1.9–2.4) 0 (0.0)

CNS-I 29 (12/17) 55 (42–74) 52 (13–196) 11.7 (6.2–15.3) 1.9 (1.7–2.6) 12 (41.4)

CNS tumor 7(2/5) 56 (43–76) 1 (1–2) 5.7 (5.5–9.5) 1.9 (1.7–2.3) 1 (14.3)

P-CNS-I 38 (23/15) 51 (36–73) 1 (0–2) 5.2 (3.9–7.6) 1.7 (1.5–2.0) 34 (89.5)

ME 5(3/2) 66 (63–72) 1 (1–3) 10.3 (8.5–11.0) 1.9 (1.9–2.0) 1 (20.0)

PP-PNP 14 (9/5) 71 (53–75) 2 (0–3) 6.6 (5.2–9.1) 1.6 (1.4–1.7) 1 (7.1)

NIND 989 (493/496) 58 (43–72) 1 (0–1) 5.9 (4.5–7.9) 1.7 (1.5–1.9) 0 (0.0)

Data are shown as numbers or median with interquartile range. AI-CNS-D, other autoimmune disease of the central nervous system; CIDP, chronic inflammatory demyelinating

polyneuropathy; CIS, clinically isolated syndrome; CNS, central nervous system; CNS-I, viral and bacterial CNS infection; CSF, cerebrospinal fluid; GBS, Guillain-Barré syndrome;

ME, metabolic encephalopathy; MS, multiple sclerosis; PP-PNP, paraproteinemic neuropathy and/or neuropathy with monoclonal gammopathy of unknown significance; NIND,

non-inflammatory neurological diseases; OCB, oligoclonal bands; P-CNS-I, post-infectious CSF syndrome.

Germany) according to a previously fixed protocol including T1-
weighted spin-echo (SE) axial slices with and without application
of gadolinium-DTPA as well as T2-weighted SE axial slices.

Statistical Analysis
Statistical analysis and the graphical representation of the data
was performed using SPSS (version 24.0; SPSS Inc., Chicago, IL,
USA), GraphPad Prism (version 6.0, GraphPad Software, San
Diego, CA, USA), and R software (version 3.4.0). Differences
of FLC levels between two disease groups were analyzed using
the non-parametric Mann-Whitney U-test due to skewed data.
The correlation between two parameters was analyzed using
Spearman rank order correlation. P-values below 0.05 were
considered to be significant.

FLC reference values dependent on Q Alb were estimated by
linear quantile regression (37, 38) using the R package quantreg
and plotted on the log scale. Receiver Operating Characteristic
(ROC) curve analysis, calculating the area under the ROC curve
(AUROCC), was used to determine the diagnostic accuracy of
FLC values as diagnosis markers for MS. The Youden index
(sensitivity+specificity-1) was calculated for a range of cut-off
values to find for each FLC value the optimal value with the
highest discriminatory accuracy (39).

Sensitivity was calculated as [true-positive/[true-positive +

false-negative]], specificity was calculated as [true-negative/[true-
negative + false-positive]]. The positive predictive value (PPV)
was calculated as [true-positive/[true-positive + false-positive]],
and the negative predictive value (NPV) as [true-negative/[true-
negative + false-negative]]. For all diagnostic values the exact
95% confidence intervals were given (40).

RESULTS

Clinical Findings and Main CSF
Examination Results
A total of 1,224 CSF-serum pairs from 1,224 patients were
included in this study. Demographic, clinical and main CSF
characteristics are summarized in Table 1.

FLC in Non-inflammatory Neurological
Diseases—Establishment of
Reference Values
In NIND (n = 989), CSF FLC levels correlated significantly with
serum FLC levels (KFLC: p < 0.001, r = 0.744; LFLC: p < 0.001,
r = 0.737) as well as with the respective Q Alb (KFLC: p < 0.001,
r = 0.638; LFLC: p < 0.001, r = 0.653) (Figure 1).

To establish blood-CSF barrier related reference values for Q
FLC, the Q FLC of all NIND was plotted against the respective
Q Alb on the log scale. The 99% quantile estimated by linear
quantile regression was indicated as the upper reference value of
the respective Q FLC (Figure 2). This resulted in the following
equations for the Q Alb-dependent upper reference values:

QKFLC = 14.85+ 2.41 ∗QAlb;QLFLC = 18.86+ 2.06 ∗Q Alb.

FLC in CSF and Serum—Group Differences
In the 75MS patients, Q KFLC was positive (i.e., above Q
Alb-dependent reference value described in Figure 2) in 70
(93.3%) and Q LFLC in 53 (70.7%) (Figure 3). OCB were
detected in 71 of 75 patients (94.7%) (Table 1) and IgG-
index was elevated (>0.7) in 47 (62.7%) and intrathecal IgG
synthesis according to Reiber was found in 48 (64%). One
of the four OCB negative MS patients showed positive Q
KFLC, and two of the five patients with normal Q KFLC
showed positive OCB. Thus, either increased Q KFLC or CSF
OCB or both were found in 72/75 (96%) of the patients
with MS. Q KFLC was significantly more often elevated
than the IgG index (p < 0.0001) and Q IgG according to
Reiber (p < 0.0001).

Q KFLC was higher than the Q Alb-dependent upper
reference value in 55.6% of patients with AI-CNS-D, in 80.0%
of patients with CIS, in 23.1% of patients with CIDP, in 0% of
patients with GBS, in 51.7% of patients with CNS-I, in 42.9%
of patients with CNS tumor, in 36.8% patients with P-CNS-I, in
20.0% of patients withME, in 21.4% of patients with PP-PNP, and
in 0.9% of patients with NIND.

Frontiers in Immunology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 641

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Senel et al. FLC in Multiple Sclerosis

In comparison, Q LFLC was higher than the Q Alb-
dependent upper reference value in 36.1% of patients with AI-
CNS-D, in 40.0% of patients with CIS, in 7.7% of patients
with CIDP, in 7.7% of patients with GBS, in 37.9% of
patients with CNS-I, in 42.9% of patients with CNS tumor,

in 21.1% patients with P-CNS-I, in 20.0% of patients with
ME, in 7.1% of patients with PP-PNP, and in 0.9% of patients
with NIND.

Patients with MS showed significantly elevated CSF KFLC
levels as compared with all other groups except for CIS and

FIGURE 1 | Correlation among cerebrospinal fluid free light chain levels in non-inflammatory neurologic diseases (n = 989) with the respective serum levels (KFLC: p

< 0.001, r = 0.744; LFLC: p < 0.001, r = 0.737) and the respective CSF-serum ratio of albumin (Q Alb) (KFLC: p < 0.001, r = 0.638; LFLC: p < 0.001, r = 0.653)

are shown.

FIGURE 2 | CSF-serum ratio of kappa (Q KFLC) and lambda (Q LFLC) free light chain is plotted against the respective CSF-serum ratio of albumin (Q Alb) on the log

scale. The upper line is the 99% quantile estimated by linear quantile regression and indicates the upper reference value of Q KFLC and Q LFLC dependent on Q Alb

and based on a control group of 989 non-inflammatory neurologic diseases and a range of Q Alb from 1.6*10−3 to 25.7*10−3. Formula for the Q Alb dependent

upper reference value (upper line): Q KFLC = 9.50 + 2.08*Q Alb; Q LFLC = 16.37 + 1.36*Q Alb. The lower line is the 1% quantile line and the dashed line in the

middle is the 50% quantile (median) line.
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CSF LFLC levels were also elevated significantly as compared
with NIND, PP-PNP, P-CNS-I, and CIS (Figure 4). CSF KFLC
and CSF LFLC were also elevated significantly in other disease

groups as compared with NIND. In contrast, serum KFLC and
serum LFLC were significantly lower in cases of MS (p < 0.001)

but showed otherwise no significant difference as compared

with NIND.

Diagnostic Accuracy of Different FLC
Values, OCB, and IgG-Index for the
Diagnosis of MS
ROC analysis was performed to determine optimal cut-off levels
of Q KFLC, Q LFLC, KFLC index, LFLC index, and CSF KFLC to
LFLC ratio (Figure 5 and Table 2). To distinguish MS patients
from all other patients, KFLC index (Q KFLC/Q Alb) showed

FIGURE 3 | CSF- serum ratio of kappa free light chain (Q KFLC) (left) and lambda free light chain (Q LFLC) (right) is plotted against CSF-serum ratio of albumin (Q

Alb). Solid line indicates the upper reference value introduced in Figure 2. AI-CNS-D, other autoimmune disease of the central nervous system; CIDP, chronic

inflammatory demyelinating polyneuropathy; CIS, clinically isolated syndrome; CNS-I, viral and bacterial CNS infection; GBS, Guillain-Barré syndrome; ME, metabolic

encephalopathy; MS, multiple sclerosis; PP-PNP, paraproteinemic neuropathy and/or neuropathy with monoclonal gammopathy of unknown significance; P-CNS-I,

post-infectious CSF syndrome.

FIGURE 4 | Immunoglobulin Free light chain levels in neurological diseases. Horizontal solid line indicates median. All groups have been compared to NIND and MS.

Significant P-values for pairwise comparisons (Mann-Whitney U-test) are displayed. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. AI-CNS-D, other

autoimmune disease of the central nervous system; CIDP, chronic inflammatory demyelinating polyneuropathy; CIS, clinically isolated syndrome; CNS-I, viral and

bacterial CNS infection; CSF, cerebrospinal fluid; GBS, Guillain-Barré syndrome; ME, metabolic encephalopathy; MS, multiple sclerosis; PP-PNP, paraproteinemic

neuropathy and/or neuropathy with monoclonal gammopathy of unknown significance; NIND, non-inflammatory neurological diseases; P-CNS-I, post-infectious CSF

syndrome. CSF (A) and serum (B) levels of KFLC as well as CSF (C) and serum (D) levels of LFLC are displayed.
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the highest AUC with 97.0% (95% CI: 94.6–99.4) as compared
to other quantitative FLC values. AUCs of KFLC measures were
generally larger than those of LFLC measures.

Sensitivity, specificity, positive, and negative predictive values
of all parameters investigated are given in Table 2. Of all markers
investigated, OCB and Q KFLC (applying the Q Alb-dependent
reference values described in Figures 2, 3) showed the highest
sensitivities with 94.7 and 93.3%, respectively. Combination of Q
KFLC and Q LFLC improved the sensitivity to 94.7%. IgG-index
(above >0.7) and intrathecal IgG synthesis calculated according
to Reiber showed the highest specificities of 98.3 and 98.8%,
respectively. The KFLC index showed the highest combined
sensitivity (92%) and specificity (97%).

DISCUSSION

Several findings support the role of B cells and intrathecal
immunoglobulins in the pathogenesis of MS including
(i) presence of B-cell infiltrates in the CNS parenchyma
and meningeal tissues (41, 42), (ii) elevated CSF B-cell
activation markers (e.g., the polyspecific intrathecal B cell
response against neurotropic viruses MRZR as well as
the B-cell attracting chemokine CXCL13) in MS (43, 44),
(iii) upregulation of Ig-related genes in cortical sections
of MS patients (45), and (iv) efficacy of B-cell targeting
therapies (e.g., rituximab, ocrelizumab) (46, 47) as well
as positive effect of apharesis treatments (plamapheresis,
immunoadsorption) (48).

FIGURE 5 | ROC curves of different FLC measures for discrimination between

MS (n = 75) and non-MS (n = 1,149) patients. AUC and 95% confidence

interval are given. KFLC, immunoglobulin kappa free light chain; LFLC,

immunoglobulin lambda free light chain; Q Alb, CSF-serum ratio of albumin; Q

KFLC, CSF-serum ratio of KFLC; Q LFLC, CSF-serum ratio of LFLC; KFLC

index (Q KFLC/Q Alb); LFLC index (Q LFLC/Q Alb); ROC, receiver operating

characteristics; AUC, area under the curve.

The presence of OCB in the CSF is known since the
1970s (49, 50) as the most prominent immunological
hallmark of MS. In concordance with this, the CSF B-cell
immunoglobulin transcriptome shows remarkable overlap
with the corresponding immunoglobulin proteome (51–53)
indicating immunoglobulin production by intrathecal B-cells.
Besides intact immunoglobulins B-cells produce FLC as a
by-product, which have been reported to be increased in the CSF
of MS patients and proposed to be a quantitative diagnostic and
prognostic biomarker for MS (17–26).

In line with previous studies from others and us (17,
18, 26) the present study confirms elevated intrathecal KFLC
and LFLC production in patients with MS leading to high
diagnostic accuracy. To allow an assessment of the utility and
strengths of different FLC measures, we determined not only
CSF and serum levels of FLC but also compared various FLC
measures including CSF-serum ratio (Q KFLC, Q LFLC), FLC
index (KFLC index, LFLC index), and CSF KFLC to LFLC
ratio within one large cohort for their diagnostic accuracy
in MS.

TABLE 2 | Sensitivity, specificity, positive, and negative predictive value with

corresponding 95% confidence interval for different FLC values, IgG-index, and

OCB regarding diagnosis of multiple sclerosis.

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Q KFLC >

reference line**

93.3

(85.1–97.8)

93.7

(92.1–95.1)

49.3

(40.8–57.8)

99.5

(98.9–99.9)

Q LFLC >

reference line**

70.7

(59.0–80.6)

95.7

(94.3–96.8)

51.5

(41.4–61.4)

98.0

(97.0–98.8)

Q KFLC > 60

×10−3*

92.0

(83.4–97.0)

95.9

(94.6–96–9)

59.5

(50.0–68.5)

99.5

(98.8–99.8)

Q LFLC > 23.85

×10−3*

78.7

(67.7–87.3)

87.7

(85.7–89.6)

29.5

(23.3–36.3)

98.4

(97.5–99.1)

CSF KFLC-LFLC

ratio > 1.37*

and/or CSF

LFLC-KFLC ratio

>12.07*

72.0

(60.4–81.8)

94.9

(93.4–96.1)

47.8

(38.3–57.4)

98.1

(97.1–98.8)

KFLC-index >

9.58*

92.0

(83.4–97.0)

97.0

(95.8–97.9)

66.4

(56.4–75.3)

99.5

(98.8–99.8)

LFLC-index >

5.85*

73.3

(61.9–82.9)

96.6

(95.4–97.6)

58.5

(47.9–68.6)

98.2

(97.3–98.9)

Q KFLC and/or Q

LFLC > reference

line**

94.7

(86.9–98.5)

92.7

(91.0–94.1)

45.8

(37.8–54.0)

99.6

(99.0–99.9)

OCB 94.7

(86.9–98.5)

93.3

(91.7–94.7)

48.0

(39.7–0.6)

99.6

(99.1–99.9)

IgG-index (>0.70) 62.7

(50.7–73.6)

98.3

(97.3–98.9)

70.2

(57.7–80.7)

97.6

(96.5–98.4)

Intrathecal

IgG-Synthesis

according to

Reiber

64.0

(52.1–74.8)

98.8

(98.0–99.3)

77.4

(65.0–87.1)

97.7

(96.6–98.5)

KFLC, immunoglobulin kappa free light chain; LFLC, immunoglobulin lambda free light

chain; Q KFLC: CSF-serum ratio of KFLC; Q LFLC: CSF-serum ratio of LFLC, reference

line: upper 99% quantile of the linear regression as described in Figure 2; IgG-Index: CSF-

serum ratio of IgG (Q IgG)/CSF-serum ratio of albumin (Q Alb); KFLC-Index: Q KFLC/Q

Alb, LFLC-Index: Q LFLC/Q Alb, OCB: cerebrospinal fluid oligoclonal bands of IgG class

not detectable in serum. *value determined by ROC analysis, **introduced in Figure 2.

Frontiers in Immunology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 641

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Senel et al. FLC in Multiple Sclerosis

A significant correlation of CSF FLC levels (both KFLC and
LFLC) with serum FLC levels and CSF-serum ratio of albumin
(Q Alb) in NIND patients could be shown. Based on the large
cohort of patients without any inflammatory CNS reaction we
were able to introduce reference values of Q FLC (for both KFLC
and LFLC) in relation to a wide range of Q Alb, which is a widely
accepted quantitative measure of blood-CSF barrier function
(54). Furthermore, ROC curve determined reference values were
established for Q KFLC, Q LFLC, KFLC index, LFLC index, and
CSF KFLC to LFLC ratio.

This study allowed to assess the diagnostic utility of the
different FLC measures within one large cohort. Q KFLC
(applying QAlb- depending reference values) showed the highest
sensitivity and the KFLC index showed the highest combined
sensitivity and specificity. With regard to the diagnostic accuracy
of Q KFLC in MS, however, applying the Q Alb-dependent
reference values (introduced in Figure 2) showed no relevant
difference as compared to the ROC curve determined cut-off
value. This observation is possibly due to generally intact blood-
CSF barrier function (normal Q Alb) in MS.

In general, KFLC showed higher diagnostic relevance in MS
as compared with LFLC. This could be possibly explained by the
dominance of KFLC in the human body, since the kappa chain is
rearranged first during IgG production and is quantitativelymore
common. Furthermore, LFLC are usually dimeric in form while
KFLC are generally monomeric but can exist as non-covalently
linked dimer (55).

Here we compared not only the diagnostic accuracy of FLC
values with OCB but also with other quantitative values of
intrathecal IgG synthesis (IgG index and synthesis according to
Reiber). Intrathecal KFLC and OCB showed nearly the same
value (93.3 and 94.67%) with regard to diagnostic sensitivity in
patients with MS, which is in line with earlier reports concerning
diagnostic sensitivity of OCB in MS (56–58). As it is known for
OCB (58), specificity of KFLC in MS diagnosis was significantly
reduced when other inflammatory etiologies were considered.

Does the determination of FLC have any advantage over
the established markers of intrathecal IgG synthesis? In

comparison to OCB, measurement of KFLC is reliable, rapid,
methodologically simple, can be performed using either ELISA or
nephelometry, and can be applied in the clinical setting together
with testing of basic CSF variables. In comparison to other
quantitative parameters of intrathecal IgG synthesis (according
to Reiber or IgG index), Q KFLC is more sensitive.

On the other hand, quantitative FLC values do not provide any
insight into the clonality of intrathecal IgG, while the qualitative
detection of IgG by immunoblotting can discriminate between
monoclonal, oligoclonal, and polyclonal patterns.

In conclusion, CSF FLC may not replace OCB but
may be supportive quantitative parameters in particular
cases, for example in OCB negative MS cases or equivocal
OCB findings.

Furthermore, this study again underlines the utility and
accuracy of CSF examination in the diagnostic procedure of MS
since very high diagnostic accuracy could be confirmed once
again for well-established (OCB, IgG index) and demonstrated
for promising (intrathecal KFLC) markers of intrathecal
IgG production.
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