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The mucosal immune system constitutes a physical and dynamic barrier against foreign

antigens and pathogens and exerts control mechanisms to maintain intestinal tolerance

to the microbiota and food antigens. Chronic alterations of the intestinal homeostasis

predispose to inflammatory diseases of the gastrointestinal tract, such as Inflammatory

Bowel Diseases (IBD). There is growing evidence that the frequency and severity of

these diseases are increasing worldwide, which may be probably due to changes in

environmental factors. Several stromal and immune cells are involved in this delicate

equilibrium that dictates homeostasis. In this review we aimed to summarize the role of

epithelial cells and fibroblasts in the induction of mucosal inflammation in the context of

IBD. It has been extensively described that environmental factors are key players in this

process, and the microbiome of the gastrointestinal tract is currently being intensively

investigated due to its profound impact the immune response. Recent findings have

demonstrated the interplay between dietary and environmental components, the gut

microbiome, and immune cells. “Western” dietary patterns, such as high caloric diets,

and pollution can induce alterations in the gut microbiome that in turn affect the intestinal

and systemic homeostasis. Here we summarize current knowledge on the influence

of dietary components and air particulate matters on gut microbiome composition,

and the impact on stromal and immune cells, with a particular focus on promoting

local inflammation.

Keywords: gut inflammation, inflammatory bowel disease, intestinal epithelial cells, intestinal fibroblasts, immune

cell activation/modulation, intestinal microbiota

GUT INFLAMMATION

Inflammation is a central component of innate immunity, comprising the physiopathological
response to infection or tissue damage. As a local response to cellular injury, it is initiated when
tissue-resident cells of the innate immune system detect the damaging insult and alarm resident
cells and circulating neutrophils. These cells migrate to the inflamed tissue, promote recruitment
of inflammatory monocytes and potentiate the pro-inflammatory environment, allowing to deal
with the harmful agent (1). Hence, the acute inflammatory response is marked by increased
blood flow, capillary dilatation, leukocyte infiltration, and the localized production of chemical
mediators, which serves to initiate the elimination of toxic agents and the repair of the damaged
tissue. Hence, the acute inflammatory response is a physiological process committed to control an
offending stimulus.
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The intestinal mucosa has evolved as a well-structured
barrier against physical, chemical, and microbial insults.
The epithelial layer, mucus, antimicrobial peptides, secreted
immunoglobulin A, and innate and adaptive immune cells,
together help to establish a beneficial environment to tolerate
the diverse community of microbes of the microbiota and food
antigens. The intestinal mucosal surface constitutes the major
interface between the internal tissues and a potentially hostile
outer environment. To deal with this universe of antigenic
components, intestinal homeostasis has been evolutionary
developed through a constant crosstalk between metabolites and
microbes of the microbiota, intestinal stromal cells, and the
mucosal immune system. Perturbations of the homeostatic state
can result in severe inflammatory conditions in the gut that may
lead to tissue damage. Therefore, intestinal inflammation is a
double-edge sword that should be tightly regulated. Although
it is an essential component for immunosurveillance and host
defense, chronic inflammatory processes may promote pathology
such as inflammatory bowel diseases (IBD) (2), irritable bowel
syndrome (IBS) (3), diverticular disease (4), food allergy (5),
celiac disease (4), etc.

In this homeostatic scenario, the controlled and physiological
inflammation of the gut promotes a barrier permeability that
allows the penetration of luminal antigens to the underlying
mucosal tissue. In chronic inflammatory disorders, such as
IBD, microbial components of the microbiota are translocated
through the damagedmucosal barrier, and trigger andmaintain a
sustained inflammatory response, as it is represented in Figure 1.
Epithelial cells, dendritic cells (DCs), macrophages, and innate
lymphocytes (ILCs), which sense the presence of microbes or
an altered tissue environment, are activated and promote the
induction of the adaptive immune response. As it is summarized
in Figure 1, the pro-inflammatory cytokines secreted by innate
cells and activated T cells are key to amplify and perpetuate
mucosal inflammation. Therefore, the mucosal immune system
is responsible for the induction of the inflammatory process,
while tissue damage results from continuous activation and
differentiation of local cells, such as myofibroblasts, that release
noxious mediators (2, 6).

NON-IMMUNE CELLS INVOLVED IN GUT
INFLAMMATION

Epithelial Cells
The alteration of the intestinal epithelial barrier permeability
leads to local inflammation. The fact that mice expressing
dominant negative N-cadherin adherent junction protein suffer
from spontaneous inflammatory bowel disease, clearly highlights
the fundamental role of barrier integrity in the development of
colitis and, probably, IBD (7). Many cytokines that are increased
in IBD favor gut permeability, such as TNF-α. Indeed, impaired
barrier function has been described for Crohn’s disease (CD) and
ulcerative colitis (UC) patients and it is a marker for predicting
the course of these relapsing diseases (8, 9). Intestinal pro-
inflammatory cytokines have been documented to modify the
expression of different tight junction proteins. Claudins showed

deregulation and differential expression in human active IBD
(8, 9). However, studies in mice null for claudins and other
tight junction proteins were controversial, demonstrating that
other factors may contribute to gut permeability (10). Overall,
these reported evidences highlight the relevance of epithelial
cells in intestinal inflammation. Amongst these, Paneth cells
secrete antimicrobial peptides that modulate the gut microbial
composition (11), and it has been recently described that
metabolites produced by luminal microbes control the secretion
of these peptides (12). In other words, there is a mutual
monitoring of the microbiota composition and the mucosal
immune system. Defects in defensin production have been found
in patients with CD and NOD-2 mutations (13). Taking into
account the role of the microbiome in intestinal homeostasis,
these findings should not be underestimated. Recently, a study
involving Paneth cell deficient mice showed that they develop
dysbiosis and visceral hypersensitivity (14). Other relevant
epithelial cell type are Goblet cells, responsible for secretion of
mucus and sampling of luminal antigens (15, 16). These cells
showed a protective role in gut inflammation since MUC2-null
mice developed spontaneous colitis (17), and patients with UC
showed polymorphism in MUC2 in the Dutch population (18).
Goblet cell loss and decreased mucous levels are commonly
observed in UC patients, with endoplasmic reticulum stress and
accumulation of MUC2 precursors (17, 19). In addition, micro-
fold cells, or M cells, found in the follicle-associated epithelium
of the gut, have a key function in the immunosurveillance of
the luminal content (16, 20, 21). There is no report showing M
cell dysfunction in colitis or any other inflammatory condition.
Enteroendocrine cells, which are also sensors of gut luminal
content, were found to be altered in mouse models of colitis and
in patients with active IBD (22).

The most abundant cells in the epithelial compartment are
the absorptive cells, which not only constitute a physical barrier
against luminal antigens, but mediate the crosstalk between
intestinal microbiome and the host immune system, mainly
through innate immune receptors. Conservedmolecular patterns
aremainly recognized by Toll-like receptors (TLRs) andNod-like
receptors (NLR), among others, which are expressed along the
intestinal tract (23–26). Healthy human small intestine expresses
TLR-2 and−4 proteins, whereas high levels of TLR-5 are found
in the colon. These receptors show a polarized distribution, being
located in the basolateral membranes, ensuring that commensal
bacteria do not trigger an inflammatory response in homeostasis
(27). These particular expression patterns of innate receptors
are modified in an inflammatory setting. IBD patients have
increased levels of TLR4 expression, and lower level of TLR2 and
TLR5 in epithelial cells, while TLR4 was shown to be expressed
in the apical surface of epithelial cells (28). Current studies
have demonstrated the importance of TLR1 in the prevention
of gut inflammation (29). In addition to NOD-2 mutations,
abnormal mucosal NLRP3 activity has been reported in IBD and
in experimental colitis; GWAS studies revealed polymorphisms
in these receptors (30–33).

Intestinal epithelial cells (IECs) also contribute to intestinal
homeostasis through interaction with microbiota and secretion
of TGF-β and IL-10 (34, 35). Although IECs crosstalk with T
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FIGURE 1 | Contribution of epithelial cells and intestinal fibroblasts to the induction and modulation of mucosal inflammation in IBD. In this disorder the intestinal

barrier permeability is impaired, allowing the passage of luminal antigens into the lamina propria. The exposure of stromal and immune cells to the luminal content

induces cell activation, inflammatory soluble-mediators release (IFN-γ, TNF-α, IL-1β, IL-6, IL-17A), cell-crosstalk (represented with arrows) and neutrophil recruitment

to the inflamed tissue. Several environmental factors can modulate the microbiota composition and the activation of stromal and immune cells in the gut. iDC,

innactivated dendritic cells; aDC, activated dendritic cells; ILCs, innate lymphoid cells; Th, T helper cells.

cells through cell-cell interactions (36), the role of these cells
as antigen presenting cells in vivo is controversial (37). They
express class 2 MHC, but no co-stimulatory molecules, though
they do express the ICOS-L; of note, variants in this gene
have been related to the IBD early onset clinical entity (38).

Colonic epithelial cell isolated from active IBD patients have
shown to secrete the neutrophil-attracting IL-8/CXCL8 (39, 40)
and IL-33 (41–44), which contribute to inflammation (Figure 1).
IL-1β, produced through activation of the inflammasome, and
IL-17 are also secreted (45, 46), contributing to Th1 and Th17
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responses in IBD. IL-21R expression is up-regulated in IECs of
IBD patients, which leads to increased CCL20 synthesis, a T
cell and DC chemo attractant (47, 48). IL-22, IL-31, and IL-33
have been also described to be augmented in IBD, which leads
to deregulation of IEC proliferation and migration functions,
whereas they stimulate IL-1, TNF-α, IL-6, and IL-8 secretion
(49–51). Cytokines generated by innate and adaptive responses,
on the other hand, interact with IECs, activating them and
altering barrier permeability. It is well known that TNF-α induces
IECs apoptosis (52) and that IFN-γ alters epithelial permeability
by affecting tight junctions and bacterial translocation (53), as
represented in Figure 1. All these factors contribute to immune
cell activation and cytokine secretion which, in the context of
IBD, favor an inflammation and damage perpetuation.

In conclusion, IECs are relevant cell sources of pro-
inflammatory and regulatory mediators, which should be tightly
controlled to achieve intestinal homeostasis.

Fibroblasts
Intestinal myofibroblasts are localized beneath the epithelial
compartment, particularly around the crypts of the small
intestine and the colon, and participate in the repair process.
Fibroblasts, which are involved in formation of the extracellular
matrix (ECM), differentiate into contractile myofibroblasts,
which are also involved in the inflammatory response to injury
through the secretion of cytokines (54–56). Furthermore, the
origin of myofibroblasts in chronic inflammation is not clear,
and they may have an epithelial origin through an epithelial-
mesenchymal transition (57).

Myofibroblast activation is associated with tissue injury and
inflammation (Figure 1). They have the ability to migrate to the
injured sites, where they contract the wound area and produce
extracellular matrix components that restore and remodel the
damaged mucosal tissue. However, persistent myofibroblast
activation in an inflammatory environment may promote an
irreversible damage of the affected tissue with fibrosis and cell
proliferation in the submucosa (58). Cells can secrete a number
of soluble cytokines (IL-6), chemokines (IL-8, MCP-1), growth
factors (TGF-β, GM-CSF), collagen, metalloproteinases (MMP-1,
MMP-3, MMP-9, MMP-12), andMMPs’ inhibitor (TIMP-1), that
attract other cells to perpetuate the inflammation. Depending
on the balance of MMPs and TIMP-1, and collagen deposition,
it will be the consequence of tissue remodeling in IBD, thus
resulting in fibrosis, stricture formation or ulceration (59–62).
It is unknown why in some cases the intestinal inflammation
induces penetrating damage with perforation and fistulae, and
with increased risk of colorectal cancer in UC patients, whereas
in CD patients the long-term complications include abscesses,
granuloma, strictures, obstruction, fibrosis, and stenosis. Overall,
the control of myofibroblast differentiation is critical to prevent
or reverse complications in CD and UC patients.

INFLAMMATION IS MODULATED BY
DIFFERENT FACTORS

It has been previously described that the immune system is
regulated at different points for homeostasis, while aberrant or

inappropriate regulation may result in failure to protect the body
from pathogens or any injury.

Environmental factors influence the incidence and
development of IBD in many ways that are not fully understood,
with a higher incidence in developed countries and urban
populations, compared to rural areas and underdeveloped
regions of the world. It has been shown that young migrants
from low incidence countries have a similar incidence of IBD
compared to non-immigrants, highlighting the importance of
the environment in these diseases (63). Several studies discuss
associations of different dietary components in gut inflammation
and IBD. High meat/fat (64) consumption has been linked to a
higher risk of IBD onset, and studies in animal models correlate
this finding with the high heme intake (65). Also, trans- and
poly-unsaturated long-chain fatty acids have been related to the
disease (66, 67), while unsaturated fatty acids seem to exert a
preventive role (67). Emulsifiers, which are commonly found
in processed foods, have a pro-inflammatory effect in the gut
(68). On the other hand, dietary fiber, especially from fruits, has
been associated to a lower IBD incidence (69). Also, vitamin
consumption is thought to be beneficial (70). These results
should now be reevaluated after the recently published study in
which the effect of different dietary ingredients was addressed
in the context of IBD, using experimental colitis models in
pathogen-free and germ-free mice in order to identify specific
triggers (71).

More recently, the microbiota has been targeted as a critical
player in establishing and sustaining the tight equilibrium of
the immune system that is constantly exposed to a myriad
of antigens in the mucosal surfaces. The intestinal microbiota
is key for maintaining intestinal homeostasis, and it may be
involved in inflammatory disorders when the composition and
diversity is modified, which is called dysbiosis. In all mucosa an
associated microbiota has been described and it is known that
the gut microbiota might be the most complex and dynamic
one. It is established during the intrauterine life and modified
after birth. Several factors have been described as contributing
to condition the composition of the microbiota throughout life.
There is a link between diet, gut composition and gut metabolism
which undoubtedly impact on the gastrointestinal health. There
is growing evidence that a dysbiotic intestinal microbiota is
associated with immune and non-immune disorders. However,
it is debatable whether dysbiosis is a cause or a consequence
of the inflammatory process (72, 73). Commonly, dysbiosis
implies a change from a diverse anaerobe community, rich in
Firmicutes and Bacteroidetes to a lower diversity community with
enrichment of facultative anaerobes including Proteobacteria and
Bacilli, although it depends on the pathology (74). There is broad
consensus that pathology-associated dysbiosis is accompanied
with a restriction in the diversity of species (75).

Microbiota composition may be affected by different external
factors: diet (fiber, calories, etc.), urbanization, use of antibiotics,
age, mode of birth, exposure to air pollutants, etc. (76–78).
A westernized diet with high red meat-high fat and processed
carbohydrates content, is associated with a loss in gut microbial
diversity, with an increase of pathogenic adherent-invasive E. coli
(AIEC), as it has been reported in IBD patients (79). It has been
demonstrated that a high-fat/high-sugar diet leads to dysbiosis
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with increased Bacteroides spp and Ruminococcus torques in mice
(79). On the other hand, digestible fibers, which are fermented
by bacteria in the gut, generate beneficial, anti-inflammatory
short-chain fatty acids (SCFA). Modern diet components such
as artificial sweeteners and emulsifiers are being subjected to
investigation as they are suspected to induce dysbiosis (80–
82). Human and murine studies have demonstrated that the
use of antibiotics generates variations in gut microbiota mostly
according to the type and the period of time used (78). Antibiotics
directed to anaerobes, such as vancomicin, seem to have a
more severe impact on gut microbiota composition (76). The
contamination of food with particulate matter, as occurs in
a contaminated environment, has shown to impair intestinal
permeability and to generate inflammation, altering microbial
gut composition (77, 83).

There are several evidences that highlight the relevance
of the microbiota in IBD: germ-free animals do not develop
experimental colitis (84), and antibiotic therapy has been
successful in the treatment of CD, while it has given promising
results in some forms of UC (84), etc. Dysbiosis has been well
characterized in CD, with a decrease in Clostridiales and an
increase in Enterobacteriales (85), while a diminished, but less
defined, microbial diversity has been described for UC (85).
Emerging insights on intestinal dysbiosis during immune and
non-immune disorders has attracted the attention to target the
microbiota composition as a novel therapeutic approach to
control intestinal and extra-intestinal inflammation. However, it
should be considered that the microbiota-derived metabolites are
the truemessengers that control the development, differentiation,
and activity of the immune system associated to the local,
and also, distant mucosa. Microbiota transfer strategies, or
fecal microbiota transplant (FMT), have been used in Chinese
ancestral medicine for centuries and have proven to be
useful for Clostridium difficile recurrent infections (86). Several
clinical trials have demonstrated that FMT restores gut
microbial diversity, diminishing disbiosis and controlling
mucosal inflammation. More recently, FMT has been explored
in IBD (87). Most clinical trials and randomized controlled
studies have been made in UC, with promising results when
they were performed early in the disease course (88). Results
in CD have been variable and rigorous randomized controlled
trials are needed (89). More studies are mandatory to confirm the
beneficial effect of this therapy.

Another therapeutic approach aimed to modify the gut
microbiome has been the use of probiotics. Numerous studies
using animal models (90–93) and in vitro approaches (94–96)
provide evidence on the beneficial use of probiotics in colitis.
Results depend on the specific strain of probiotics used, and vary
with the experimental model used. In particular, Bifidobacterium
and Lactobacillus are the most widely used probiotic bacteria
(97), although strains of E. coli (98–101), Propionibacterium
(102–105), Bacillus (106–108), and Saccharomyces (109, 110) are
amongst those mostly studied.

Different mechanisms of action have been described for
probiotics, including binding to IECs and thus preventing the
binding of pathogenic microorganisms (109, 110), acidification
of the lumen of the colon by nutrient fermentation, production

of SCFA like acetate, propionate, and butyric acid as a source of
energy, but also with immune modulating properties and anti-
inflammatory effects (109, 110), as enhancement of epithelial
barrier integrity (97), etc. Mack et al. (111) described an
increased production ofMUC2 andMUC3 secretion by epithelial
cells stimulated with Lactobacillus plantarum and Lactobacillus
rhamnosus in HT-29 intestinal cell line, while Anderson et al.
described that L. plantarumMB452 increased the trans-epithelial
electrical resistance of Caco-2 cells monolayer through the
induction of tight junction proteins (112). Recently, components
of L. amylovorus DSM 16698 cell wall demonstrated to have
protective effects toward E. coli induced damage on Caco-
2/TC7 cells, protecting membrane leakage and reducing the
phosphorylation of the p65 component of the NF-κB intracellular
signaling pathway (113). The inhibition of NF-κB activation
has also been described for other Lactobacilli strains and for
Bifidobacterium (114–116). The increased expression of tight
junction proteins is linked to an activation of the ERK and p38
MAPK signaling cascades, via Toll like receptors (114). Probiotics
have also been described for preventing IECs apoptosis by
reducing oxidative stress, as in the case of L. amylovorous
DSM16698 (117), and to inhibit apoptosis through the activation
of the epidermal growth factor receptor by the release of a
soluble protein known as p40 by L. rhamnosus GG (114, 118).
In addition, probiotics act by diminishing pro-inflammatory
responses and contributing to tolerogenic responses, modulating
TLR-2 and TLR-4 signaling (114), and driving DCs to a
suppressive phenotype, which further promote the generation of
Tregs (119, 120).

It has been demonstrated in the inflamed gut, that the mucosal
damage not only affects the epithelial compartment, but also
colonic myofibroblasts located beneath the epithelium. It has
been reported that the exposure to colonic microbiota products
promotes cell activation through TLR (121). Beswick and col.
demonstrated that isolated myofibroblasts from normal human
colonic mucosa respond to TLR4 stimulation by LPS with the
induction of PD-L1, which mediates the suppression of activated
CD4+ PD-1+ T cell response and inhibition of IFN-γ secretion
in vitro. Authors also showed that in vivo up-regulation of PD-
L1 in colonic myofibroblast is MyD88-dependent in colitis (122).
This provides evidence that colonic myofibroblasts might help
to maintain the equilibrium between tolerance and immunity
to protect the colonic mucosa against inflammatory responses
toward the microbiota. In agreement with these findings, Scheibe
and col. reported that IL-36R ligands released upon mucosal
damage activate IL-36R+ colonic fibroblasts via MyD88, thereby
inducing expression of chemokines, granulocyte-macrophage
colony-stimulating factor and IL-6. These mediators induce the
migration and recruitment of leukocytes and neutrophils to the
inflamed colon and contribute to control mucosal healing (123).

On the other hand, dysbiosis and specific bacterial taxa
correlated with fibrostenosis in a CD cohort study (32), although
there are no studies showing the contribution of the microbiome
to fibrosis and fibroblasts modulation in the gut. It has recently
been published the first evidence that fibroblast activation and
the intestinal fibrosis require specific microbial cues provided
by the mouse microbiota. Authors reported that intestinal
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fibrosis is microbiota-dependent, by giving gavages of feces from
germ-free mice, pathogen-free feces or healthy human donor
feces, in TL1A-overexpressing mice. In addition, they found that
the microbial composition affects fibroblast differentiation into
myofibroblasts. Furthermore, they identified several candidates
that correlated directly with the fibrosis degree inmice (123, 124).
Although the key role of TL1A in inducing fibrostenosis is
known (125, 126), the interplay between microbiota, TL1A and
fibroblasts is novel (124).

Given that there are a number of chronic inflammatory
disorders with fibrotic evolution, such as rheumatoid arthritis,
cirrhosis, IBD, and pulmonary fibrosis, there is great effort
to develop therapies that could control or reverse fibrosis.
Particularly, intestinal fibrosis has been exclusively associated
to IBD, mostly CD. The use of probiotics is becoming
increasingly important for the prevention and treatment of
gastrointestinal conditions. In a mouse model of DSS-induced
colitis, administration of Lactobacillus acidophilus ameliorated
collagen mucosal deposition and improved intestinal fibrosis.
Indeed, L. acidophilus treatedmice showed decreased α-SMA and
collagen I expression levels, compared to untreated mice (127).
Alternatively to probiotics, a role for Vitamin D in modulating
the immune system and the integrity of intestinal epithelium
and gut microbioma has also been proposed. In this sense,
vitamin D supplementation improves IBD patient’s condition
(128) and regarding intestinal fibrosis, it was demonstrated that
vitamin D exerted protective effects on colonic fibrosis caused
by TNBS-induced chronic colitis, through direct inhibition
of TGFβ-1/Smad3 pathway and up/regulation of vitamin D
receptor in sub-epithelial myofibroblasts (129). More recently,
the overexpression of fibroblasts activation protein (FAP), an
inducible surface glycoprotein, has been associated with fibrosis
in strictured CD patients. In vitro assays with anti-FAP treatment
have shown promising results in controlling ECM deposition
(130). Overall, despite the widely described contribution of
fibroblasts to intestinal inflammation, the control of fibrosis in
chronic intestinal inflammatory disorders still remains a big
challenge for therapeutic purposes.

CONCLUSIONS

As the intestinal mucosa surface constitutes the major surface of
the body which is in direct contact with the outer environment,
intestinal immune homeostasis must be accurately regulated.
The interplay between commensal microbiota, intestinal stromal
cells, and the mucosal immune system components should
guarantee the intestinal homeostasis to avoid a sustained

inflammation that could induce tissue damage. However,
several factors can lead to inflammation through homeostasis
breakdown. Figure 1 summarizes the main points that have
been reviewed here. We have described what it is known so
far about the role of epithelial cells and intestinal fibroblasts
in the induction and modulation of mucosal inflammation
in IBD. In this chronic inflammatory disorders the intestinal
barrier permeability is compromised and the selective passage
of luminal antigens into the lamina propria is altered, triggering
cell activation, and inflammation. A plethora of evidences
demonstrate the impact of dietary and environmental factors
on the gut microbioma and on the modulation of the
intestinal immunity. Notwithstanding the efforts made to
find alternatives to conventional anti-inflammatory treatments
(steroids, antibiotics, immunosuppressive drugs and biologics)
by modulation of non-immune cells response, no current
evidences arise that support the replacement of conventional
therapies. Regarding probiotics, for instance, it has recently been
demonstrated that the use of probiotics to achieve effective
mucosal protection should be personalized according to the
individual affection (131–133).

In conclusion, in this review we summarized the most
recent findings in animal models and cohort studies, that
show the contribution of epithelial cells and fibroblasts to gut
inflammation with the influence of different environmental and
dietary factors. Considering that the frequency and severity of
IBD are increasing worldwide, changes on environmental factors
and dietary habits should not be underestimated. Based on
these observations, and those regarding the modulation of the
intestinal microbioma and mucosal immune cells, it has been
prompted to develop novel therapeutic interventions to prevent,
control or reverse gut inflammation.
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