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Leishmaniasis is a parasitic disease of humans, highly prevalent in parts of the tropics,

subtropics, and southern Europe. The disease mainly occurs in three different clinical

forms namely cutaneous, mucocutaneous, and visceral leishmaniasis (VL). The VL affects

several internal organs and is the deadliest form of the disease. Epidemiology and

clinical manifestations of VL are variable based on the vector, parasite (e.g., species,

strains, and antigen diversity), host (e.g., genetic background, nutrition, diversity in

antigen presentation and immunity) and the environment (e.g., temperature, humidity, and

hygiene). Chemotherapy of VL is limited to a few drugs which is expensive and associated

with profound toxicity, and could become ineffective due to the parasites developing

resistance. Till date, there are no licensed vaccines for humans against leishmaniasis.

Recently, immunotherapy has become an attractive strategy as it is cost-effective, causes

limited side-effects and do not suffer from the downside of pathogens developing

resistance. Among various immunotherapeutic approaches, cytokines (produced by

helper T-lymphocytes) based immunotherapy has received great attention especially

for drug refractive cases of human VL. Therefore, a comprehensive knowledge on the

molecular interactions of immune cells or components and on cytokines interplay in the

host defense or pathogenesis is important to determine appropriate immunotherapies

for leishmaniasis. Here, we summarized the current understanding of a wide-spectrum

of cytokines and their interaction with immune cells that determine the clinical outcome

of leishmaniasis. We have also highlighted opportunities for the development of novel

diagnostics and intervention therapies for VL.
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INTRODUCTION

Leishmaniasis is a neglected tropical disease (NTD) caused by
an obligatory intracellular protozoan parasite that belongs to the
genus Leishmania. It is a vector-borne infection transmitted by
female sandflies and the disease is highly prevalent in poor and
malnourished populations of the world living in tropical and
subtropical countries. The life cycle of Leishmania is simple and
the parasite propagates in two different morphological forms.
The promastigote stage of the parasite exists in the insect body
fluids and enters the mammalian host when sandfly takes a
blood meal. Promastigotes transform into amastigotes inside the
mononuclear phagocytes of hosts and establish the infection
by evading host defense system (1). The infected individuals
could develop self-healing cutaneous ulcers to life-threatening
visceral disease (2). World-wide, 0.7–1.0 million new cases of
leishmaniasis and 20,000 to 30,000 deaths are reported each
year (3). Visceral leishmaniasis (VL) or kala-azar is the deadliest
clincial form of leishmaniasis, typically caused by L. donovani and
L. infantum in the Old World and L. chagasi in the New World.
Occasionally, L. tropica and L. amazonensis have also been found
to cause VL in the Middle East and South America, respectively
(4). The anthroponotic transmission of VL is prevalent in the
Indian subcontinent (5). The annual report of global VL indicates
that there are 50,000 to 90,000 new cases each year with high
incidence in the Indian subcontinent and East Africa (3). VL
is an opportunistic infection and has been identified as a co-
infection in HIV patients (6). HIV infection amplifies the risk
of developing active VL and the severity by 100–2,320 times
(7). Fever, weight-loss, anemia, pancytopenia, hyperpigmentaion
of skin and hepatosplenomegaly are some of the manifestations
of VL and the mortality rate is over 95% (3). Children under
the age of 1 year and adults above 50 years of age are highly
susceptible to VL (8, 9). The susceptible host genetic background
(10), nutritional status especially malnutrition (11) and immune
suppression (12) ameliorates the clinical outcome of the disease.
The current VL treatment relies mostly on chemical drugs like
pentavalent antimonials (SbV), amphotercin B, miltefosine, and
paromomycin etc. But their misuse, life-threatening toxicity, and
development of resistance by the parasites (13) highlight the
need for drug-sparing alternative therapeutic strategy to combat
the clinical disease. Recently, immunotherapy has emerged as a
promising option to control various diseases including VL. This
review presents an in-depth critical analysis of immune responses
to leishmaniasis and highlights prospective cytokine candidates
that could be used for the diagnosis and therapy of VL.

Leishmania Infection and Innate
Immune Cells
Leishmania infection in humans is usually subclinical and
parasites may persist for life-time of the host through several
escape mechanisms (14). For example, Leishmania blocks the
maturation of complement system and C5–C9 membrane
attacking complex formation, reduces the expression of B7
and CD40 that are required for T-cell anti-parasitic activity,
promote overexpression of the iron transporters, modifies the
toll-like receptor (TLR)-2/TLR-4 signaling and inhibits Janus

tyrosine kinase/signal transducer and activator of transcription
(JAK/STAT) pathway in macrophages (M8s) thereby turnoff
the cytokine cascade, and alters the expression profile of
cytokines and chemokines etc. It is clear that Leishmania
parasites manipulate several key aspects of host defense for
their survival. Consequently, targeting immune components is a
reliable method to combat the disease. In addition, host innate
immune signatures that are specific to Leishmania infection
could help early prediction of the disease outcome. These
include aspects of innate immune response, such as front-
line defense led by the natural killer (NK) cells, mononuclear
and polymorphonuclear phagocytes (15). In general, Leishmania
parasite resists their uptake by phagocytic dendritic cells (DCs)
and M8s (16, 17) by inhibiting reactive oxygen species (ROS)
production that delays phagolysosome formation (18) and
blocks lysosomal proteolytic degradation (19). The complement
protein C3b, a potent immune opsonin accelerates phagocytosis
of Leishmania (17) by interacting with the parasite surface
glycoprotein gp63 (20). M8s and DCs that engulfed Leishmania
activate their TLR-9 signaling and produce interleukin (IL)-
12, which stimulates NK cells to produce interferon (IFN)-γ,
a key cytokine that is responsible for skweing Th1 response
(16, 21) and stimulate the M8s to produce ROS and nitric
oxide (NO) for oxidative killing of intracellular amastigotes
thereby protects the host (22–25). To establish an early infection,
L. major inhibits the NK cell proliferation and IFN-γ production
(26) and L. donovani evades inducible nitric oxide synthase
(iNOS)-dependent killing of intracellular amastigotes in M8s
via downregulation of iNOS mRNA expression (27, 28) and
induction of arginase expression (29) as the arginine is a common
substrate for both iNOS and arginase enzymes. Thus, M8s play
a complex role in Leishmania pathogenesis and are associated
with both survival and death of the parasites (30). Further, the
induction of FasL-mediated apoptosis in Leishmania infected
M8s is a part of host defense mechanisms in innate immunity
(31). Similarly, other immune cells also play a key part in the
early host defense against leishmaniasis. For example, a drastic
reduction in IL-8 and eotaxin secretion from neutrophils and
eosinophils, respectively (32), and an elevated number of IL-
4+ neutrophils and IL-10+ eosinophils and reduced number
of IFN-γ+ and IL-12+ eosinophils are observed in active VL
patients (33).

Origin of Th1-Th2 Dichotomy
in Leishmaniasis
While the host innate immune response against leishmaniasis
is important, it is now clear that the T-cell mediated immunity
and the cytokines produced from various immune cells play
a crucial role in determining the disease outcome (shown in
Figure 1). However, the cytokines function in autocrine (locally)
and paracrine (at a distance from the site of synthesis) fashion
to regulate the immune response (34). A longitudinal study on
Leishmania pathogenesis and disease recovery highlighted the
role of helper T (Th)-cell responses (35). Therefore, immune
cells and their cytokines have been recognized as potential targets
for immunotherapy to modulate the activity of factors that

Frontiers in Immunology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 670

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Dayakar et al. Cytokines in the Immunotherapy of VL

FIGURE 1 | The interaction of innate and/or adaptive immune cells via cytokines during host defense or disease progression in VL.

are crucial in the immune system for healing. In this context,
the phenomenon called “Th1-Th2 dichotomy” became popular
based on the role of the cytokines produced by these cells
in disease progression and/or host protection. Mosmann et al.
reported for the first time that the cloned murine Th-cells are
in two functional subsets namely Th1 and Th2 based on the
production of IFN-γ and IL-4, respectively (36). Thereafter,
several studies demonstrated the key role of major cytokines
[e.g., IL-10, Transforming growth factor (TGF)-β, IL-4, IL-6,
IL-12, and IFN-γ] that implicated the role of Th1/Th2 balance
in disease progression or host protection. In general, Th1
type response mediates host resistance and Th2 type response
associates with disease progression (37). In resistant mouse
strains, the abundance of Th1 type cytokines; IFN-γ, IL-2,
and lymphotoxin spontaneously cleared the L. major infection,
whereas, in susceptible mouse strains, infection led to the fatal
disease by the action of Th2 type cytokines; IL-4, IL-5 and IL-
10 (38). IL-4 and IL-10 associated with the visceralization of
cutaneous L. major infection (39, 40). However, the Th1-Th2
dichotomy is more complex than previously recognized, which
is more evident in certain cases of leishmaniasis (41), such as
L. donovani infection where the susceptibility of mouse strains
is variable (42). Unlike in cutaneous leishmaniasis (CL), T-cells
with Th2 phenotype are difficult to demonstrate in the mouse
model of VL (37, 40–43). Similarly, the association between Th1
response and disease resistance to VL is complex in humans
(44, 45). Occasionally, individuals respond to the exposure of
Leishmania antigens via T-cells even they have no prior exposure

to the parasite; this is possible due to the cross-activity by other
microorganisms (46).

Immune Response During VL
Immune response in VL patients is characterized by abundant
anti-leishmanial antibody titers and low or absence of
Leishmania-specific T-cell proliferation and IL-2 and IFN-γ
production. Recovery from VL is mostly dependent on the
induction of T-cell immunity; preferably Th1 response, which is
primed by IL-12+ DCs and M8s (47, 48). IFN-γ produced from
IL-12 primed T-cells induce NO-mediated killing of the parasites
(49, 50). In contrast, VL progression in humans is associated
with abundant production of Th2 type cytokines IL-10, TGF-β,
and IL-4 or presence of IL-10+ regulatory T cells (Tregs), which
diminish the anti-parasitic activity of M1-type M8s and Th1
response (51–53). However, the presence of abundant IL-10 is
crucial rather than a lack of IFN-γ in the VL clinical disease
progression (54). IL-10 partially inhibits IFN-γ production
but strongly resists IFN-γ mediated activation of M8s while
killing the intracellular parasites (55–57). Likewise, the lack of
IFN-γ may result in relatively higher levels of IL-10 in human
leishmaniasis resulting in M8 deactivation (58) and parasite
proliferation (59). Murine model of VL demonstrates higher
disease susceptibility due to the presence of high IL-10 levels
during initial phase of infection (60). The splenic infection of
L. donovani causes a constitutive expression of chemokine ligand
2 (CCL2) or monocyte chemoattractant protein 1 (MCP-1),
which triggers IL-4 secretion from Th2 cells that activates
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FIGURE 2 | Cytokines balance in VL pathogenesis and host protection.

the M8s in alternative manner. These M2-type M8s express
arginase in abundant quantity and help in the biosynthesis of
polyamines, which favor the survival and growth of the parasite
(61). During chronic VL, the high expression of programmeded
death protien-1 (PD-1) or Cytotoxic T-lymphocyte Antigen
4 (CTLA-4) causes unresponsiveness in CD4+ T-cell, which
produce TGF-β in abundant levels and helps in persistence
of infection (62). Taken together, there is mounting evidence
suggesting that Th1-Th2 imbalance and T-cell unresponsiveness
are critical issues in VL pathogenesis.

Objective of the Review
Role of a whole host cytokines in the resistance and disease
progression during VL is increasingly being uncovered. Till
date targeting either Th1 or Th2 cytokines produced promising
results for leishmaniasis cure. Th1/Th2 balance is not the only
determinant of the outcome of leishmaniasis as previously
thought because a range of other cytokines have recently been
implicated in both disease progression and host protection
(Figure 2). Hence, there is a need for in-depth analysis of
the role of cytokines and Leishmania pathogenesis to get a
comprehensive view of the complex interplay of Leishmania
parasite and their hosts. This review aims to summarize and
critically analyze the state-of-the-art knowledge relating to
cytokines and VL pathogenesis. Special emphasis has been made
for the identification of potential cytokine targets that could
be used for the development of novel diagnostic assays and
immunotherapies for the detection and treatment of VL.

CYTOKINE RESPONSE IN LEISHMANIASIS

It is well-known that cytokines play a role in pathogenesis
and hosts resistance of VL. Cytokines that play crucial role
in Leishmania pathogenesis or host defense are tabulated in
Tables 1, 2, respectively. However, there are several cytokines
that are play a dual role both in the disease progression
and host resistance are summarized in Table 3. Cytokines
targets for diagnosis and/or immunotherapy are shown
in Table 4. Functions of individual cytokines as relates to

pathogenesis and/or host resistance are discussed in detail in the
sections below.

IL-10 Is a Key Player in
Disease Progression
IL-10 is an 18 kDa pleiotropic cytokine, primarily produced
by alternatively activated M8s, DCs, and lymphocytes. As an
immunoregulatory cytokine, IL-10 exerts multiple biological
effects on different cell types (205). IL-10 is the product of Th2
subset, also known as cytokine synthesis inhibitory factor (CSIF)
since it suppresses IFN-γ production from Th1 cells (112). IL-
10 is known to inhibit production of cytokines like IL-1, IL-6,
IL-12, and tumor necrosis factor (TNF)-α. In addition, Il-10 also
inhibits M8 mediated activation of T-cell through the reduced
expression of class II major histocompatibility complex (MHC)
and co-stimulatory molecules on the surface of M8 and results
in the inhibition of both innate and T-cell mediated immunity
(188). The suppressive role of IL-10 in human VL results in the
drastic fall in accumulation of monocyte derived macrophages,
which is regulated by migration inhibitory factor (MIF). Further,
IL-10 plays a substantial role in the pathogenesis of leishmaniasis
by causing the downregulation of Th1 response, M8 activation
(114) and antigen presentation by DCs (58). Furthermore, IL-10
inhibits the leishmanicidal functions ofM8 (206) by diminishing
the production of reactive nitrogen intermediates by M8, IFN-
γ by T and natural killer (NK) cells (115), and IL-12 mediated
activation of M8 (48). High levels of IL-10 during the initial
phases of infection due to decreased multifunctional CD4T
cells results in higher susceptibility to VL. Despite elevated
levels of IFN-γ during the steady state of infection, parasite
burden is not reduced due to higher levels of IL-10 (60). The
unfavorable clinical outcome in localized CL was correlated
with IL-10 but not with inadequate Th1 response (207). High
levels of serum IL-10 is associated with symptomatic VL but
absent in asymptomatic individuals. A key function of IL-10 is
to protect the tissues from collateral damage due to excessive
inflammation (116). However, in the face of parasitic infection an
acute inflammatory response is necessary to control the parasite
proliferation, hence, the anti-inflammatory role of IL-10 may
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TABLE 1 | Cytokines involve in the host protection.

Cytokine Relative functions in leishmaniasis References

IFN-γ Activates M8s and monocytes to release oxygen radicals and TNF-α, IL-l, and IL-6 secretion

Blocks the production of IL-10

(63–67)

Absence leads to Th2 skewing (48)

IL-12 Drives Th1 response and IFN-γ production (68)

Controls Th2 expansion and IL-4 production (69, 70)

Induces NOS2 expression and NO production (71)

Induces cell proliferation and lymphokines production (71, 72)

TNF-α Activates the M8s to kill amastigotes (73)

Induces NO production to kill the parasite or inhibit visceralization (74)

Induces granuloma response and wound healing process (75, 76)

Shows IFN-γ-independent leishmanicidal activity (77, 199)

Promotes IL-10 producing T-cells for immune homeostasis (78)

IL-2 Activates T-cells and NK cells and induces IFN-γ production (79, 80)

Induces the production of IL-4 (81)

Endogenous IL-2 shows host protection (82)

Exogenous IL-2 exerts anti-leishmanial action even in the absence of IFN-γ (83)

IL-15 Synergizes with IL-2 and IL-12 functions (84, 85)

Induces T-cell proliferation and inhibits apoptosis, preserves memory T-cells, and induces B-cell maturation

and isotype switching

(86–88)

Activates both Th1 and Th2 subtypes and shows pleiotropic role (89, 90)

Stimulates Th1 response, IL-12 production and downregulates IL-4+ Th2 cells (86, 91)

IL-22 Promotes inflammatory response and is crucial in tissue repair (92, 93)

Protects the liver from chronic infections (94)

Induces the production of antimicrobial peptide-β-defensin (95)

Complementary to Th1 cytokines and requires IL-6 for production (96–98)

IL-7 Induces proliferation of thymocytes, NK and mature T-cells, and production of cytotoxic T-cells (99–104)

Promotes the synthesis and secretion of IL-6, TNF-α, IL-1α, IL-1β, and MIP-113 by monocytes

With the combination of IFN-γ, it induces TNF-α and NO production to kill the amastigotes (105)

IL-8 Promotes the recruitment of neutrophils and granulocytes at lesion site (106, 107)

Declines in the serum of active VL and polymorphism at −251 position associates with active VL (32, 108)

IL-23 Shows IL-12 independent protection against visceral infection (76, 109, 110)

P19 pairs with IL-12p40 to become active and protects the host (111)

help the disease progression (117). During active VL, CD8+ T-
cells could also play an important role in disease progression via
abundant production of IL-10 (208). However, the role of IL-10
in VL appears to be species-specific as it was suggested that IL-10
may not be a regulatory cytokine in canine VL. In experimental
CL, a group of Treg cells namely, CD4+CD25+Foxp3+ and
CD4+CD25−Foxp3− are possible source of IL-10 (209). In
contrast, IL-10 in human VL is not produced from thymic
Foxp3 Tregs; rather they are produced from IFN-γ co-producing
CD4+ T cells which are called type 1 regulatory (Tr1) cells
(143). The role of Tregs was elucidated in modulating both
Th1 (210, 211) and Th2 (210, 212) activity during murine
L. major infection.

TGF-β Functions Synergistically With IL-10
in Disease Progression
TGF-β is a 28 kDa homodimer and a potent anti-inflammatory
cytokine produced by antigen-activated T-cells and mononuclear
phagocytes (75). TGF-β has potent immunosuppressive effects

in infectious and autoimmune diseases (118), which include
inhibition of T-cell proliferation and M8 activation. TGF-
β inhibits the functions of TNF-α and IFN-γ and controls
the expression of inducible nitric oxide synthase (iNOS) and
the development of Th1 and Th2 response. Unlike IL-10, the
impact of TGF-β on parasite burden and IFN-γ dependent
host resistance is marginal during L. donovani infection (119).
Locally activated TGF-β favors the parasite growth bymodulating
innate and adaptive immune responses (120) and enhancing
arginase expression (121, 122). In animal models, TGF-β secreted
by Leishmania infected lymphocytes diverts the arginine pool
from iNOS to arginase for the production of polyamines, which
helps in the growth of the parasite (123). Both pro and anti-
inflammatory roles of TGF-β have been demonstrated (62, 124).
L. chagasi infection induces TGF-β secretion by human M8s
through activation of latent TGF-β itself. L. chagasi infection
also induces the expression of TGF-β in spleen and liver tissues
of both symptomatic and asymptomatic dogs (213). TGF-β
exposure delays the killing of Leishmania parasite and TGF-β
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TABLE 2 | Cytokines involve in the disease progression.

Cytokine Relative functions in leishmaniasis References

IL-10 Inhibits IFN-γ, IL-1, IL-6, IL-12, and TNF-α production and downregulates the innate and T-cell

specific immunity

(112, 113)

Downregulates Th1 response, M8 activation and DC’s antigen presentation (58, 114)

Inhibits reactive nitrogen intermediates and IFN-γ production (115)

Protects the tissues from inflammatory damage (116)

Inhibits acute inflammation required for the parasite clearance (117)

TGF-β Inhibits T-cell proliferation, M8 activation, iNOS expression, TNF-α and IFN-γ functions (118)

Shows marginal effect on the parasite load and IFN-γ dependent host resistance (119)

Modulates immune response in favor of the parasites growth (120)

Enhances arginase expression and polyamines synthesis (121–123)

Shows the biphasic kinetics; promotes as well as inhibits the inflammation (62, 124)

Impairs the rate of disease cure in murine models (125, 126)

IL-5 Higher production at lesion site and declines Th1 polarization (127, 128)

Favors the parasite growth and dissemination (129)

IL-6 Induces differentiation of monocytes from DCs to M8s (130)

Favors Th2 response and suppresses M8 activation (75)

Endogenous IL-6 shows host suppressive role in L. donovani infection

Inhibits IFN-γ mediated gene expression (131)

Absence of signaling induces Th1 response, tissue inflammation and parasite killing (132)

Induces IL-27 and IL-10 production in L. donovani infection model (54, 133–135)

IL-9 Regulates Th1-Th2 balance and expresses in L. major susceptible mice even after 4-weeks but not in

resistant mice

(136)

Neutralization induces Th1 response and delays the disease progression (137)

IL-27 Mediates anti-inflammatory response by suppressing Th17 cells (138, 139)

Induces T-bet expression and IL-10 secretion by autocrine action of IL-21 on CD4+ T-cells (140, 141)

IL-4 induced IL-6 and TGF-β inhibits IL-27 mediated Th1 response (142)

IL-27 is not required for Th1 development and induces IL-10 in L. donovani infection (140, 143–145)

Absence of signaling leads to Th1 response, tissue inflammation, and rapid parasite killing in L. donovani

infection to liver

(71, 146)

Elevates in human plasma and spleen during active VL (140)

IL-33 ST2-expressing T-cells accumulates in lesion site and polyclonal anti-ST2 antiserum reduces Th2 response

and lesion growth

(147)

IL-33 is abundant in serum and IL33+ cells in liver of VL patients (148)

ST2−/− induces IFN-γ and IL-12 and controls the parasite load in liver

rIL-33 reduces Th1 immunity and infiltration of PMNs and monocytes in liver (149)

overexpression impairs the rate of cure in murine leishmaniasis
models (125, 126). In human VL, the elevated levels of IL-10
and TGF-β postively correlate with the parasite load and with
increased absolute numbers of FoxP3 Treg cells suggesting the
role of Tregs in secretion of these cytokines. There is a significant
correlation between the parasite load and circulating antigen
specific TGF-β levels in VL patients suggesting its role in parasite
multiplication and disease progression in humans (214).

IL-4 Is Involved in the Pathogenesis of
Leishmaniasis but Its Role in VL
Is Conflicting
IL-4 is a 20 kDa Th2 subset cytokine that plays a critical role
in the regulation of mast cell or eosinophil-mediated immune
responses, B-cell mediated IgE class-switching and antibody

production. It functions as a growth factor for mast cells
and naive CD4+ Th2 cells which produce anti-inflammatory
cytokines IL-5, IL-10 and IL-13. Both IL-4 and IL-13 inhibit IFN-
γ-producing CD4+ T-cells and suppress protective Th1 immune
response (150) and trigger M8s to undergo alternative activation
resulting in parasite survival and persistence of infection (151,
152). The similarities in IL-4 and IL-13 biological activities are
due to a common receptor γ-chain that they both share, which
is involved in the signal transduction via signal transducer and
activator of transcription (STAT)-6 (215). Studies on murine
model established the pathogenic role of IL-4 in leishmaniasis
(39). IL-4 inhibits the oxidative burst by inducing low level
production of reactive oxygen intermediates and NO in M8s
(153, 154). L. major infected Langerhans cells show increased
IL-4R expression and decreased IL-12 production in susceptible
mice but not in resistant mice (155).
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TABLE 3 | Cytokines with dual role in leishmaniasis.

Cytokine Relative functions in leishmaniasis References

IL-4 Inhibits IFN-γ production and triggers alternative activation of M8s and parasite survival (150–152)

Inhibits oxidative burst through reducing ROS and NO in M8s (153, 154)

IL-4R expression is abundant in L. major infection (155)

Modulates antigen-uptake and endosomal processing, promotes humoral response in favor of disease (156)

Induces IFN-γ secretion from CD8+ T cells in L. donovani infection (157)

Produces from PBMCs of cured VL patients in response to L. donovani crude or purified gp63

antigen stimulation

(158)

IL-13 IL-13 knock-out depletes granuloma response and IFN-γ secretion, and enhances IL-4 and IL-10 production

in L. donovani infection

(159)

Protects from L. major infection via IL-1β and IL-12 production (160)

IL-4 and IL-13 involves in pathogenesis of L. mexicana, L. amazonensis, and L. (V.) panamensis infections (161)

Parasite species and the host genetic background influence the dual role of IL-13 (162)

IL-17 Induces TNF-α, IL-1, and chemokines production (163)

Affects neutrophils function, reduces apoptosis, induces the production of pro-inflammatory cytokines and

tissue damaging molecules at inflammatory foci

(164, 165)

Induces GM-CSF, G-CSF, CXCL8, CXCL1, CXCL6, and CXCL10 (96, 97)

Induces IL-6 production and mediates pro-inflammatory and regulatory functions (96)

Complementary to Th1 response and protects from L. donovani infection but increases susceptibility for

L. major and L. (V.) braziliensis

(166, 167)

IL-18 Drives Th1 and NK cell development and induces IFN-γ production (168–170)

Regulates the expansion of Th2 cells and stimulates TNF-α secretion by human PBMCs (171, 172)

In combination with IL-12, it activates memory cells and prevents reinfection of L. major (173)

Deficiency induces the susceptibility for L. donovani infection (174)

Induces IFN-γ independent protection from L. donovani infection and stimulates IL-4 and IL-13 production (175, 176)

IL-18−/− increases the resistance to L. mexicana infection by inducing the secretion of IFN-γ and IgG2a and

reducing IL-4, IgG1, and IgE

(177)

Regulates Th1 and Th2 balance in vivo (168)

IL-1 Induces inflammation and controls parasite dissemination (178, 179)

IL-1β coordinates immune-to-brain communication

IL-1α inhibits disease progression in L. major infected mice (180)

Deficiency of IL-1 family genes delays the disease progression in L. major infection (178, 181)

Low IL-1 induces the susceptibility for L. donovani infection

Impaired production of IL-1 from human PBMCs with L. donovani-antigen stimulation and successful therapy

recovers IL-1 levels

(182–184)

rIL-1α induces granuloma response and IFN-γ production but not able to clear the parasite (185)

IL-3 With the combination of GM-CSF, M-CSF, and IFN-γ, it induces oxidative burst and TNF-α secretion and

inhibits the parasite growth

(186)

With M-CSF combination, it induces superoxide ions production and kills the parasites during acute VL

Provokes the infection in murine model of CL

IL-4 modulated antigen-uptake, endosomal processing, and
humoral response are suggested to promote the disease
development in Leishmania infection in humans (156). Inmurine
L. donovani infection, IL-4 induces the host protective response
(216) and vaccine mediated protection by IFN-γ secretion from
CD8+ T-cells (157). The peripheral blood mononuclear cells
(PBMCs) harvested from cured VL patients produced IFN-γ or
IL-4 in response to stimulation by L. donovani promastigote or
amastigote crude antigen. In response to purified gp63 antigen,
the proliferation capability of the same PBMCs was weak and
produced IFN-γ or IL-4 (158). Cytokine analysis in VL unveils
the induced expression of IL-10 and/or IL-4 mRNA in tissues and
abundant levels of IL-4 in circulation of patients with progressive

disease (217). Likewise, the conflicting role of IL-4 in VL is
described, though it has a leading role in pathogenesis of VL as
it is belonging to Th2 phenotype and anti-inflammatory cytokine
subset. Recent studies on human splenic aspirates suggest that
blockade of IFN-γ and TNF-α results in increased production of
IL-4 which does not contribute to parasite replication and IL-10
production. The biological role of IL-4 in target organ of human
VL still remains an outstanding question (218).

IL-13 Promotes Host Protection in VL and
Its Role Is Leishmania Species-Specific
IL-13 is a 12-kDa cytokine that is expressed by Th2 and is
important in host protection against Leishmania infection. For
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TABLE 4 | Cytokines used in diagnosis and chemo/immunotherapy of VL.

Cytokine Relative functions in leishmaniasis References

Anti-IL-

10R

Controls the experimental VL and induces antimonials activity in IL-10 knock-out or transgenic mice and

IFN-γ production

(53, 56)

IL-10 Neutralization increases IFN-γ and TNF-α production and reduces parasite burden in VL patients (187)

Abundant in antigen-stimulated PBMCs of L. chagasi infection

In asymptomatic individuals, IL-10 not directly correlates with Montenegro test positivity (188)

Balanced IL-10 and IL-12 response induces chemotherapy efficacy (17)

Disease relapse in human VL associates with IL-10 and IL-10+ IFN-γ+ antigen-specific T-cells (189)

Clinical symptoms strongly correlates with IL-6, IL-27, TNF-α, and IL-10 in L. infantum infected

Brazilian population

(190)

IL-4 Upregulates in VL and associates with impaired treatment (191, 192)

IFN-γ, IL-4, and IL-13 certainly upregulates in active VL and declines after cure (193)

IFN-γ Absence of antigen-specific lymphocyte proliferation and IFN-γ production indicates clinical disease (45)

Useful in assessing candidacy of vaccine antigens (194)

Sbv with rIFN-γ had shown 82.3, 75, and 87% efficacy against VL patients from Brazil, Kenya, and

India, respectively

(195–197)

IL-12 Induces better response than anti-IL-10 alone or in combination with anti-IL-4 from PBMCs of VL patients (115)

VL cure restores the IFN-γ and IL-12 production (48)

Useful as effective adjuvant for a killed vaccine against L. major (198)

rIL-12 mediates the cure of L. major infection, induces Th1 cytokines and inhibits IL-4 (75, 81, 200)

Neutralization exacerbates L. major and L. donovani infections (49, 69, 199)

IL-15 Liposomal amphotericin-B induces plasma IL-15 levels in VL (86)

IL-15 with combination of IFN-γ or IL-12 increases efficacy of antimonial therapy for VL (201)

TNF-α Anti-TNF-α therapy for arthritis increases susceptibility to VL (202, 203)

In HIV co-infection, high levels of serum TNF-α and IFN-γ predicts the onset of acute VL (204)

TGF-β &

IL-13

Antagonists of these clears the VL marginally and had no synergy with SbV (119)

example, IL-13 knock-out mice infected with L. donovani show
retarded hepatic granuloma formation and maturation, depleted
IFN-γ secretion and enhanced production of IL-4 and IL-10
(159). IL-13 protects rats from L. major infection through the
production of IL-1β and IL-12 (160), which is in contrast to the
earlier studies that showed pathogenic role of IL-13 (16, 219).
However, studies with BALB/c mice infected by L. mexicana
and L. amazonensis have established the pathogenic impact of
IL-4 and IL-13 (161). The susceptibility to L. (V.) panamensis
infection is predominantly associated with IL-13 but not IL-4.
The parasite species and the host genetic background may also
influence the dual role of IL-13 and it may not be a potential
target for immunotherapy (162).

Targeting Endogenous IL-6 May Offer
Better Protection
IL-6 is a 26 kDa pleiotropic cytokine produced by a number
of cell types, including monocytes, endothelial cells and T-
lymphocytes (220). The main biological activities associated
with IL-6 are the induction of acute-phase protein synthesis in
hepatocytes, terminal differentiation of B-cells and activation
of T-cells (221). It also induces the production of anti-
inflammatory proteins, such as IL-1 receptor antagonist (IL-1rα)
and soluble TNF receptor (222). IL-6 plays a major role in the
switching of monocytes from DC to M8s (130). IL-6 favors the

development of Th2 response, which suppresses the activation
and antimicrobial effect of M8s (75). Contradicting roles of IL-
6 have been demonstrated in experimental CL and VL models
(223–225). IL-6 has been shown to either promote (226, 227),
suppress (228), or do not change (229) the intracellular host
defense to leishmaniasis. Function of endogenous IL-6 as a
host suppressive cytokine in case of L. donovani infection has
outshined its potential pro-host defense effect.

During adoptive transfer of testing splenic DCs, IL-6 induces
leishmanistatic effect but not host suppressive effect (226).
IL-6 inhibits the IFN-γ mediated gene expression (131) and
absence of IL-6 receptor signaling in L. donovani liver infection
contributes to enhanced Th1-type response, accelerated tissue
inflammation, and rapid parasite killing (132). IL-6 induces the
secretion of IL-27 which in turn induces IL-10 production (133–
135) in the L. donovani infected mouse model (54). However,
L. donovani-infected IL-6−/− mice do not show effect on
the IL-10 expression (226). This observation raises a potential
possibility to target endogenous IL-6 as an anti-leishmanial
therapeutic strategy (230). Expansion of CD25−FoxP3−IL-
10+CD4+ T-cells in vivo and therapeutic efficacy of adoptively
transferred DCs against L. donovani infection are regulated by
DC-derived IL-6 (226). IL-6 is produced by dogs with active
leishmaniasis and is a key player in the pathogenesis of canine
leishmaniasis (144, 231). The presence of TNF-α and IL-6

Frontiers in Immunology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 670

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Dayakar et al. Cytokines in the Immunotherapy of VL

transcripts was found in both Leishmania antigen stimulated
and unstimulated cells of asymptomatic infected and uninfected
dogs (232). Further, increased anti-leishmanial antibody titers
(hypergammaglobulinaemia) in canine VL are usually associated
with high levels of IL-6 (224). Contrary to murine VL, the role of
IL-6 in human VL is associated with disease severity and death,
which is due to the inhibition of TNF-α in the early phase of
infection and later by inhibiting the Th1 responses (190, 233).

IL-27 Contributes to VL Pathogenesis and
a Potential Target for Anti-VL Therapy
IL-27 is a member of the IL-6/IL-12 cytokine family and a
heterodimer composed of EBI3 and p28. The main cellular
source of IL-27 is CD14+ spleen cells (140) in particular
M8s and DCs. The anti-inflammatory properties of IL-27 have
been demonstrated in various models of infectious diseases
and autoimmunity (234). IL-27 mediates anti-inflammatory
response by suppressing Th17 cells (138, 139) and inducing IL-
10 secretion from activated CD4+ T-cells via autocrine action
of IL-21 (140). IL-27 plays a multifaceted role characterized
by the induction of T-bet (141) in turn inhibition of parasite
driven Th2 and Th17 development and Th1 polarization via
IL-10 mediated feedback mechanism. IL-27 plays a critical
role in the induction of IFN-γ and IL-10 from CD4+ T-
cells, and suppression of inappropriate Th17 development to
achieve immune-balance during intracellular parasite infections.
In L. major infection, early burst of IL-4 suppresses IL-27
mediated development of normal Th1 by inducing IL-6 and
TGF-β and promote the development of Th17 cells (142). In
contrast, IL-27 is not required for the normal development of
Th1 response to L. donovani infection (140) but induces IL-10
production (143, 145).

Absence of IL-27 receptor signaling in L. donovani liver
infection contributes to the accelerated Th1-type response, tissue
inflammation, and rapid parasite killing with reduced parasite
burdens in spleen and liver (71, 146). Blocking IL-27 evoke
different responses in different mice models. For example,
blocking IL-27 results in reduced parasite loads in BALB/c
mice and augmented parasite burden is seen in C57BL/6. This
dichotomy in the production of IL-27 could be due to the
consequence of host immune modulation by the parasite to
establish infection (235). IL-27 levels were elevated in human
plasma with active VL and splenic mRNA levels of IL-27 and
IL-21 were higher in pre-treated biopsies compared with post-
treatment samples (140). During VL caused by L. infantum, the
sequential pathway of TLR3 and TLR9 recruitment, production
of type I IFN and activation of IRF1 in macrophages is induced
by IL-27. The secretion of IL-27 increases the Th1 response but
also dampens the production of IL-17 which directly impacts
the reduced recruitment of neutrophils to target organs (236).
Inhibition of IL-27 could be targeted for design of anti-VL
treatment in the future.

IL-5 Exerts Moderate Effects on
VL Progression
IL-5 is a glycosylated homodimeric 45–60 kDa protein, functions
as an anti-inflammatory cytokine and is produced by Th2 cells,
mast cells, and eosinophils. IL-5 stimulates the B-cell growth and

promotes the production of cytotoxic T-cells from thymocytes;
however, the key function of IL-5 is in the activation, maturation,
and survival of eosinophils. Eosinophils activated by IL-5 expel
antibody bound parasites while releasing proteins associated with
cytotoxic granules. In the case of CL and MCL, PBMCs induce
secretion of both IL-4 and IL-5 at the site of the lesion (127, 128),
which results in declined Th1 polarization. Several studies have
reported that IL-4, IL-5, IL-10, and IL-13 provide favorable
atmosphere for intracellular parasite growth and dissemination
(129). Patients with chronic lesions produce abundant levels
of IL-5 and IL-13, which further inhibits parasite killing by
an additive effect of IL-13. IL-5 plays a minor role in the
susceptibility to L. major infection in BALB/c mice (237).

IL-9 Increases Disease Susceptibility
IL-9 is a 14 kDa pleiotropic cytokine produced by Th-cells,
primarily identified as a mouse T-cell growth factor (237)
and mast cell differentiation factor. Erythroid precursors, B-
lymphocytes, eosinophils, bronchial epithelial cells and neuronal
precursors are the secondary targets of IL-9 (238). It is a Th2-
type cytokine produced via both IL-4 dependent (239) and IL-4
independent (240) pathways and involved in the physiological
regulation of Th1-Th2 balance in vivo. Very little is known
about the role of IL-9 in leishmaniasis. In L. major infection,
IL-9 is transiently expressed in susceptible BALB/c as well as in
resistant C57BL/6 and DBA mice during early days of infection,
but 4-weeks onwards, its expression was only seen in susceptible
mice but not in resistant mice (136). In vivo neutralization of
IL-9 delays disease progression in BALB/c mice by inducing
protective Th1 response suggesting, IL-9 promotes susceptibility
to L. major infection. Further, IL-9 induces classical M8 activity
and production of IFN-γ in L. major infected BALB/c mice,
which serves as a model system to study the role of IL-9 in human
diseases (137).

IL-33 Is a Prognostic Cytokine for
VL Pathogenesis
IL-33 is a member of IL-1 family, which includes IL-1 and IL-
18. IL-33 is a crucial player in the defense against nematode
infections and allergic reactions, since it causes Th2-type immune
response via inducing the production of IL-5 and IL-13 by T-
cells, mast cells, basophils, and eosinophils. In addition, IL-33
also induces non-Th2-type inflammation, suggesting its pro-
inflammatory role like IL-1 and IL-18. Schmitz et al. first
reported that IL-33 functions through ST2 (IL-1R4) orphan
receptor present on different immune cell types (241). During
L. major infection in BALB/c mice, ST2-expressing CD4+ T-cells
accumulated in local lesions (147). However, administration of
polyclonal anti-ST2 antiserum depleted ST2-expressing cells as
well as Th2 cells/cytokines and induced Th1 cytokine production,
which in turn reduced the lesion development (148). Rostan et al.
reported that the serum IL-33 levels were higher in VL patients
besides the presence of IL33+ cells in liver biopsy of a patient.
Similar results were observed in BALB/c mice infected with
L. donovani, additionally, ST2+ cells were also observed inmouse
liver. ST2 deficient BALB/c mice had shown strong Th1-type
immune response via IFN-γ and IL-12 that controlled the hepatic
parasite load and hepatomegaly. Recombinant IL-33 treatment of
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L. donovani infected BALB/c mice dramatically reduced the Th1
immunity and infiltration of polymorphonuclear neutrophils
(PMNs) and monocytes in liver. In summary, IL-33 could be
a very useful cytokine to determine the host susceptibility and
disease prognosis of VL (149).

IFN-γ Is an Anti-leishmanial Cytokine
IFN-γ is a homodimeric glycoprotein consisting of two subunits
each about 21 to 24 kDa. It is the most potent type II interferon
that helps in M8 activation to the leishmanicidal state (63). The
main cellular sources of IFN-γ production are activated CD4+

and CD8+ T-cells, and NK cells in response to IL-12 signaling
(242). Of the several anti-leishmanial cytokines (23), IFN-γ is
the most significant cytokine in host protection, which plays a
prominent role in M8 priming (64) to produce leishmanicidal
molecules (243). IFN-γ acts as monocyte-activating factor (65)
and enhances release of oxygen radicals, secretion of pro-
inflammatory cytokines (TNF-α, IL-l, and IL-6) (66), expression
of MHC class-II, and antigen-presentation. In addition, IFN-
γ blocks the production of IL-10, which decreases all the
above functions of monocytes (67). Several studies demonstrated
that the leishmanicidal activity of M8s can be induced by
a variety of cytokines, either alone or in combination. For
instance, lipopolysaccharide (LPS) is required to induce the M8

leishmanicidal activity in vitro (244). In human VL, the response
is predominantly Th2-type with absence of PBMCs derived IFN-
γ (47). But drug treatment induces a shift in the response so that
individuals cured of VL often respond to Leishmania antigen by
the production of both IFN-γ and IL-4 (158). In CL patients,
however, the response is mainly dominated by IFN-γ and IL-
4 is rarely detected (245), indicating that the immunological
response to Leishmania in these individuals does not polarize
as observed in inbred mouse strains. In vitro studies with T-cell
clones (246) and in vivo studies using models of CL (40, 43)
have demonstrated that IFN-γ can inhibit the expansion of CD4+

Th2-cells, resulting in the preferential expression of Th1 cell-
mediated response. Reciprocal regulation is provided by the
action of IL-10 on the IFN-γ producing capacity of Th1-type
CD4+ T-cells (16). A recent study showed that the variation
in single nucleotide polymorphisms (SNPs) of IFN-γ gene at
the position +874 (A/T) influences the susceptibility to VL
such that individuals in southwest of Iran with an AT genotype
are susceptible and those with a TT genotype are resistant to
VL (247).

IL-12 Is a Promising Candidate for
VL Immunotherapy
IL-12 is a heterodimer consisting of two subunits (35 and 40
kDa) linked by a disulfide bond, mainly produced by activated
M8s and DCs. It is a proinflammatory cytokine that plays a key
role in bridging innate and adaptive immune responses (248).
Protective immunity against leishmaniasis is typically associated
with the production of IL-12 (16, 219). IL-12 drives Th1 response
and induces IFN-γ production from both NK cells and T-cells
(68), and mediates the leishmanicidal activity by inducing NOS2
expression and NO production (146). In addition, IL-12 also
mediates T-cell proliferation and lymphokines production (71,

72). The presence of IL-12 reduces the ability of CD4+ T-cells
to produce IL-4 and increases the ability to produce IFN-γ. Thus,
IL-12 and NK cells seem to play important role in determining
the development of Th1 response (249). In vivo studies showed
that IL-12 produced in infected mice (219, 250) is important
to control Th2 expansion and to promote Th1 type response
(69, 70). Neutralization of IL-12 leads to disease exacerbation
in L. major and L. donovani infections (49, 69, 77). In contrast,
the addition of IL-12 to lymphocyte cultures from VL patients
restored IFN-γ production and increased cytotoxic activity of NK
cells (48).

Endogenous TNF-α Offers Protection in VL
TNF-α is a 51 kDa homodimeric cytokine, mainly secreted by
the activated M8s, T-cells, NK cells and mast cells. TNF-α is
important in mediating both innate and adaptive inflammatory
responses. The regulation of TNF-α production appears to be
important because it has potential role in the formation and
maintenance of granuloma (76). Antiparasitic activity of TNF-
α is mediated through activation of infected M8s for the
destruction of intracellular amastigotes (73). TNF-α production
is absent in susceptible mice but present in L. major infected
resistant mice. Protective role of TNF-α in L. major infection
is characterized by M8 activation, NO production and parasite
clearance or suppression of visceralization (74). Protective T-
cell response induced by TNF-α in L. major infected mice is
due to the induced production of parasite-specific IgG1 and
IgG2a. Acute infection with L. braziliensis resulted in the lack of
production of parasite-specific IgG1 and IgG2a antibodies (251).
The role of TNF-α in L. braziliensis infection is attributed to
controlling the parasite numbers in the skin, lymph nodes and
spleen and wound healing process (75). Brazilian patients with
MCL had increased levels of TNF-α in both sera (252) and tissue
lesions (253).

Treatment with TNF inhibitors, such as pentoxifylline
in combination with anti-leishmanial pentavalent antimony,
pentoxifylline promotes the re-epithelialization of mucosal
tissues (254). However, infection of TNF−/− mice with L. major
shows some delay but no defect in antigen-dependent T-cell
activation (74). IFN-γ independent anti-leishmanial mechanism
mediated by endogenous TNF-α was described in IFN-γ
knockout (GKO)-1 mouse infected with L. donovani (77, 199).
The L. donovani infection provoked endogenous TNF-α level are
enough to offer initial resistance to the parasite invasion and
critical for the resolution of visceral infection. This is contrasting
with the effect of exogenous TNF-α, which has no protective role
in established infection and its continuous administration leads
to impaired anti-leishmanial activity (255). The polymorphism
and upregulation of TNF2 promoter transcription could be
involved in enhancing clinical VL infection (256). TNF-α cannot
be considered as a good marker of active disease in both human
VL and canine VL due to its labile nature (224). The production
of TNF-α follows biphasic kinetics due to its effect on target
cells mediated by membrane-bound receptors (117). The high
expression of IL-32 (especially γ-isoform) in CL and mucosal
lesions is associated with endogenous TNF-α production but
not with IL-10, suggesting the inflammatory role of IL-32
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in host defense against Leishmania infection (257). Absence
of IL-32 leads to high infection index but its overexpression
opposed the parasite growth via NO cathelicidin and β-defensin 2
syntheses (258). In response to excessive inflammation, increase
in the levels of TNF-α might promote the generation of IL-10
producing T-cells as a homeostatic response (78).

IL-2 Promotes Anti-leishmanial
T-Cell Response
IL-2 is a 15 kDa cytokine, produced by activated T-cells
and was initially identified as a T-cell growth factor. IL-
2 stimulates the proliferation and differentiation of B-cells,
NK cells, monocyte/M8s, oligodendrocytes and lymphocyte
activated killer (LAK) cells. IL-2 does not directly stimulate
the intracellular antimicrobial activity of M8s (259) but exerts
a range of immunoregulatory effects on T-cells and NK cells
and induces the production of IFN-γ (79, 80). IL-2 may act as
a susceptibility factor in leishmaniasis (250, 260) by inducing
the production of IL-4 from CD4+ T-cells (81). But in IL-4
deficiency, the inhibition of disease progression is attributed to
IL-13 and IL-2. Interestingly, in CL, both IL-2 and IL-15 are
attributed in host protection, while inMCL IL-2 is only protective
but not IL-15 (200). Rapid production of IL-2 was observed
after successful treatment or acquisition of resistance against
L. donovani infection but not during acute phase (261, 262). The
endogenous IL-2 could act as a defensive cytokine, only when
the mice subsequently challenged after a prior infection with
the parasite (82). In contrast, exogenous IL-2 exerts the anti-
leishmanial action using L3T4+ and Lyt-2+ T-cells in acutely
infected euthymic mice. IL-2 exerts leishmanicidal activity in
splenocytes in vitro even in the absence of IFN-γ (83).

IL-15 Synergizes IL-2 and IL-12 in Host
Defense and Has Scope in VL Therapy
IL-15 is a 14–15 kDa cytokine with four α-helix bundles
and plays a central role in the innate and adaptive immune
responses to infections (86). Themain source of IL-15 is activated
peripheral monocytes (263). Due to the common receptor β-
chain, immunological functions of IL-15 are similar to IL-2
(84), which includes the induction of T-cell proliferation (87),
inhibition of T-cell apoptosis and preservation of memory T-
cells (88), B-cell maturation and isotype switching (264). IL-15
also stimulates the proliferation and activation of NK cell (265)
and induces the production of IFN-γ and TNF-α, synergistically
with IL-12 (85). Nevertheless, IL-15 also shows distinct biological
functions from IL-2 due to a different α-chain (266, 267). The
possible pleiotropic role of IL-15 is reflected by its action on both
Th1 and Th2 subtypes and the ability to induce the activity of
IFN-γ and IL-12 (89) as well as IL-5 and IL-13 (90) in various
experimental models. Endogenous IL-15 stimulates protective
Th1 response by inducing the downregulation of IL-4+ Th2 cells
(86). IL-15 could be a potential therapeutic agent in acute VL
since it upregulates IL-12 production and Th1 development (91).
In contrast, other studies have demonstrated that endogenous
IL-15 is not necessary for basal expression of IL-12 and M8

activation and is not able to influence the IL-12 activity and

Th1 development in acute VL (268). IL-15 in combination with
IFN-γ and/or IL-12 may increase the efficacy of conventional
antimonial therapy for VL, because of low toxicity in vivo (201).

IL-17 Role Is Contradictory
in Leishmaniasis
IL-17 is a 35 kDa proinflammatory cytokine, primarily produced
by activated T-cells (CD4+ > CD8+) (269) and also by other
subsets of T-cells including NKT cells and Th17 cells (96). The
development of Th17 subset from naïve T-cells happens in the
presence of IL-6 and TGF-β+ Tregs (270). IL-17 stimulates
different immune cells to produce inflammatory molecules
including TNF-α, IL-1, and chemokines (163). At the site of
inflammation, IL-17 affects the neutrophil function, reduces
the apoptosis, and promotes the secretion of pro-inflammatory
cytokines as well as tissue damaging molecules (164, 165). IL-
17 induces the secretion of granulocyte macrophage-colony
stimulating factor (GM-CSF) and G-CSF, which increase the
production of neutrophils, monocytes, and chemoattractants for
neutrophils (CXCL8, CXCL1, and CXCL6) as well as Th1 cells
(CXCL10) (96, 97). IL-17 induces the production of IL-6, which
mediates both proinflammatory and regulatory functions (96).
IL-17 of Th17 subset and Th1 subset play a complementary role
in the host protection from L. donovani infection. Contrastingly,
the susceptibility for L. major infection is not only associated
with uncontrolled Th2 immunity (271) but also with excessive
IL-17 secretion, which mediates neutrophil recruitment (166).
Other studies have also demonstrated that IL-17 dependent
neutrophil recruitment is essential only during the late stages
but not early stages of L. major infection (272). Mucosal disease
caused by L. (V.) braziliensis is also associated with elevated
levels of IL-17 response (167). Treating VL using curdlan, a b-
glucan immunomodulatorymolecule induces Th1 cytokines with
IL-12, IL-22 and IL-23 (273), while another immunomodulator
Astrakurkurone is effective against experimental VL by inducing
IL-17 along with IFN-γ (274). While these reports are suggestive
of a protective role of IL-17 in VL, other reports suggested
the involvement of IL-17 in exacerbating experimental VL in
murine model (275) raising questions about its precise role in
VL pathogenesis.

IL-18 Protects From VL but Favors Other
Forms of Leishmaniasis
IL-18 is a 22 kDa pleiotropic cytokine produced by activated
M8s and Kupffer cells of liver (276). IL-18 promotes Th1
and NK cell development (168), induces IFN-γ production by
lymphocytes and NK cells and synergizes with IL-12 (169, 170).
IL-18R is expressed on Th1 cells but not on Th2 cells. IL-18
induced Th1 subset produces IFN-γ which indirectly regulates
the expansion of Th2 cell (171). IL-18 promotes NK cell activity
due to a constitutive expression of IL-18R on NK cells (277) and
stimulates TNF-α secretion by human PBMCs (172). IL-18 also
induces the activation of memory cells and in combination with
IL-12 it prevents the reinfection of BALB/c mice with L. major
(173). IL-18−/− mice are highly susceptible to L. donovani
infection when compared to the wild-type mice. However,
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endogenous IL-18 induces an initial IFN-γ independent anti-
leishmanial effect in L. donovani infection (174). Paradoxically,
IL-18 can also stimulate Th2 cytokines production, such as IL-
4 from basophils (175) and CD4+ T-cells (176) and IL-13 from
mast cells. While IL-18 protects BALB/c mice from L. donovani
infection, it increases the susceptibility of BALB/c mice to
L. major infection. Notably, the resistance and susceptibility of
BALB/c mice to L. mexicana infection are not mediated by IL-18
and are influenced by different genetic and immunoregulatory
controls (278). IL-18−/− BALB/c mice are highly resistant to
L. mexicana infection due to increased IFN-γ production and
antigen-specific IgG2a, reduced splenic IL-4, antigen-specific
IgG1 and total IgE (177). IL-18 plays a critical role in the
regulation of Th1 and Th2 balance in vivo, which frequently
determines the outcome of many important infectious and
autoimmune diseases (168).

IL-22 Offers Protection From VL
IL-22 is a 16.7 kDa cytokine, primarily produced by Th17
cells and to a lesser extent by Th1 and NK cells (96).
Immunological functions of IL-22 are associated with the
epithelium and mucosal surfaces (92), which include promoting
inflammatory response and tissue repair (93, 279). IL-22
stimulates the production of pro-inflammatory molecules, such
as S-100A proteins and CXCL5 (93). IL-17 and IL-22 act
synergistically on epithelial cells to produce an antimicrobial
peptide called β-defensin (95). IL-22 is also involved in
protecting the liver (94) during chronic infections. During
L. donovani infection, both IL-17 and IL-22 are produced by
PBMCs and may exert complementary function along with Th1
cytokines (96, 97). The production of IL-22 requires IL-6 but
not TGF-β (98).

Role of IL-1 Is Protective in VL but
Contradictory in Other Forms
of Leishmaniasis
IL-1 is synthesized as ∼35 kDa precursor, from which two
functional agonistic proteins (IL-1-α and IL-1-β each 17 kDa
M.W.) and IL-1Ra, receptor antagonist of IL-1R1, are produced.
IL-1 is a potent proinflammatory “alarm cytokine” that synergizes
the functions of TNF-α and is produced by M8s. IL-1
builds inflammation by inducing the expression of adhesion
molecules on endothelial cells and leukocytes (280, 281). IL-
1β, along with other proinflammatory cytokines, is released
into the periphery during infection and coordinates immune-
to-brain communication (180). IL-1 mediated inflammation is
coordinated by adaptive T-cell response and controls the parasite
dissemination (178, 179). IL-1 is responsible for regulating the
delicate balance between inflammation and immunity which
decides the fate of the disease progression in leishmaniasis. In
L. major infection, the acute levels of IL-1α, IL-1β, and IL-
1Ra are adequately downregulated unlike in L. amazonensis
infection (282). Disease progression is inhibited with IL-1α
treatment in L. major susceptible BALB/c mice during T-cell
differentiation. IL-1β enhances activation of DCs and T-cell
priming but do not affect the cytokine profile of DCs and
pathogenic Th-cells (178). Contrastingly, Voronov et al. reported
that BALB/c mice deficient in IL-1 family genes showed delayed

disease progression with L. major infection due to apparent Th1
response even at late stages of the disease. IL-1α deficient mice
were slightly more resistant to L. major infection than IL-1β
KO mice (181). In L. amazonensis infection, IL-1β treatment
induced DCs and cytokine production remains lower than that
of L. major infection. IL-1 therapy in murine CL results in a wide
range of outcomes depending on the course of treatment and
parasite species involved. In this context, IL-1-based treatment
may be effective for L. major but not L. amazonensis infection.
The decreased production of IL-1 has been associated with
L. donovani infection of murine peritoneal M8s in vitro and
human circulatory monocyte population (182, 183). Similarly,
human PBMCs failed to produce IL-1 in response to Leishmania-
antigen stimulation in vitro, during acute VL. However, following
anti-leishmanial therapy, IL-1 and TNF-α levels are usually
recovered, which correlates with clinical cure (184). Recombinant
IL-1α induces mature granuloma formation in liver and IFN-
γ production from spleen cells but is not able to clear the
parasite (185).

IL-3 Is Likely a Host Protective Cytokine
in VL
IL-3 is a 28 kDa glycoprotein derived from T-cells and supports
the viability and differentiation of hematopoietic progenitor cells
(283, 284) and monocytes (283). With the combination of GM-
CSF, M-CSF, and IFN-γ, IL-3 shows an additive effect on human
M8s in the induction of oxidative burst and TNF-α secretion
to inhibit the replication and growth of Leishmania parasite. In
contrast, IL-3 promotes the infection in murine model of CL
highlighting the species-specific differences in the role of IL-3
in leishmaniasis (186). In combination with M-CSF, IL-3 induces
superoxide ions production to kill the parasite and may involve
in myelopoiesis during acute VL.

IL-7 Shows Additive Effect With IFN-γ
Against Leishmania
IL-7 is a 17 kDa glycoprotein derived from bone marrow stromal
cells (285) and regulates a wide variety of functions including
multiple effects on B-cells and proliferation of thymocytes (99–
101), NK cells (102) and mature T-cells (103). IL-7 induces
the production of cytotoxic T-cells with alloreactive, antitumor,
and antiviral activities (104). It was reported that IL-7 shows
potential effects on monocytic lineages (105, 286). IL-7 enhances
the synthesis and secretion of various inflammatory cytokines,
such as IL-6, TNF-α, IL-1α, IL-1β, and M8 inflammatory
protein (MIP) 113 by human circulatory monocytes. IL-7 is
not as effective as IFN-γ but shows an additive effect with the
combination of suboptimal concentrations of IFN-γ in killing the
Leishmania amastigotes by inducing the production of TNF-α
(105) and NO.

IL-8 Attracts Neutrophils to the Site
of Infection
IL-8 is a non-glycosylated proinflammatory cytokine with aM.W.
of 8 kDa, which is primarily produced from neutrophils and
from other cell types including epithelial cells, keratinocytes,
fibroblasts and endothelial cells. In mouse system, IL-8 has
two functional homologs like MIP-2 (CXCL2/Groβ) and KC
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(CXCL1/Groα). During L. major infection in humans, IL-8
promotes the recruitment of neutrophils at lesion sites (106). In
mice infected with L. major, IL-8 causes transient production of
KC mRNA in the skin, which may associate with granulocyte
recruitment (107) which is yet to be demonstrated in vivo
(272). Notably, a reduced neutrophil count during active VL is
associated with lower IL-8 levels in serum (32). It was identified
that polymorphisms at IL-8 −251 position are associated with
impaired IL-8 activity and the development of active VL in
Iranian individuals (108) but such a correlation was not observed
in Brazilian VL patients (287).

IL-23 May Offer Protection From VL in
Association With IL-12p40
IL-23 is a pleiotropic cytokine produced by M8s and DCs which
acts on receptors expressed by T-cells, NK cells and NKT cells
(288). During L. donovani infection in BALB/c mice, the IL-
23p19 mRNA expression in the liver tissue was comparable
to that of wild-type. IL-12 independent protection in visceral
infection (76, 109, 110) was mediated by IL-18 and probably by
IL-23 also, since the p40 subunit of IL-12 shared by both IL-12p70
and IL-23 (174). IL-23p19 may pair with IL-12p40 to become
biologically active (111), which are crucial for host protection.
Therefore, IL-23 alone or in combination with other cytokines
may be a possible option in immunotherapy of VL.

INTERPLAY OF T-CELL SUBSETS VIA
CYTOKINES IN LEISHMANIASIS

It is well established that the complex interplay of pathogens with
their hosts is predominantly regulated by host-specific Th1/Th2
subset cytokines in the vicinity of several regulatory cytokines.
In this context, previous studies have demonstrated that IL-10
produced by CD4+CD25+ Tregs (211) is important for parasite
persistence in mice (289). In human VL, the elevated level of
IFN-γ mRNA in lymphoid organs (spleen and bone marrow) is
accompanied by an abundant expression of IL-10 (55, 290, 291)
where the predominant source of IL-10 is Foxp3−CD25−CD3+

cells (143). However, in leishmaniasis, healing is predominantly
associated with diminished expression of IL-10 mRNA (55,
290). The role of Th17 subset in human VL is unveiled by a
longitudinal study in Sudan, which illustrated the protective role
of Th17 subset that are employed by an induced production of IL-
17 and IL-22 from L. donovani-specific T-cells (292). In fact, Th17
cells are pleiotropic in nature, responsible for either protection
or pathogenesis and frequently associated with recruitment of
neutrophils. Th17 cells under the influence of IL-27 producing
CD4+ T-cells diminish IL-17 and IL-22 secretion (293). Disease
progression in pre or post-treated Indian VL patients is linked
with serum IL-27 and splenic IL-27 transcript but not with
splenic IL-17 transcript (140).

The pathogenic role of IL-27 in active VL is linked with
suppression of Th17 cytokines production and expression
of transcription factors. Consequently, IL-27 promotes the
parasite dissemination by inducing antigen-specific IL-10+ T-
cell differentiation and expansion, and by inhibiting activation

of effector Th17 lineage. Moreover, the host negotiates the Th17
response to control the pathogenic implications of VL that are
driven by the parasite. Th9 cells are not the unique source of IL-
9 production as Tregs and Th17 cells also produce IL-9 in lesser
quantity. Initially, Th9 subset was thought of a splinter group of
Th2 but now it is an independent lineage. Predictably, Th9 subset
has a similar detrimental role like Th2 in the development of CL
in themousemodel. Since, IL-4, IL-21, TGF-β, and IFN-α/β seem
to activate Th9 cells to produce IL-4, IL-9, and IL10, which are
involved in the pathogenesis of CL (136, 137). The “B-helper”
follicular T-cell (Tfh) lineage is also implicated in leishmaniasis
progression, which is the source for bulk production of IL-4 in
the draining lymph nodes of susceptiblemice infected by L. major
(294). As a sequel of VL, PKDL patients’ carries high plasma
IL-10 levels (295). Immunologically, PKDL is characterized by
hyper T-cell response and significant production of both Th1 and
Th2 cytokines from PBMCs in response to crude L. donovani
antigen (296). IL-10 levels in the skin and plasma could be used
to predict the severity of PKDL pathogenesis and the chance of
VL succession to PKDL.

CYTOKINES IN VL DIAGNOSIS
AND IMMUNOTHERAPY

As immunotherapy is mandatory for refractive cases of
leishmaniasis, cytokines received great attention in the search
for novel approaches for the diagnosis and immunotherapy of
VL (summarized in Table 4). For the first time, Reed et al.
used the lymphokines obtained from murine spleen cell culture
supernatant and encapsulated in liposomes against VL challenge
and reported a significant reduction in the liver parasite burden,
highlighting the importance of lymphokines in leishmaniasis
healing (297). In general, the absence of leishmanial-antigen
stimulated lymphocyte proliferation and IFN-γ production are
indicators for the clinical evaluation of a VL patient (45).
However, these two parameters may also be used as coordinates
in assessing the level of protection conferred by vaccine antigens
(194). Later, several studies have tested the effect of direct
administration of recombinant Th1 cytokines and monoclonal
antibodies against Th2 cytokines alone or in combination
against leishmaniasis. For example, prophylactic anti-IL-10R
treatment induces the rapid control of experimental VL and
antimonials activity in IL-10 knock-out or transgenic mice (51),
and IFN-γ production from T-cells with an active VL (55).
Further, it was reported that IL-10R inhibition in L. donovani-
infected mice controlled the parasite burden in liver, increased
IFN-γ titers in serum, and iNOS production in macrophages
altogether reduced the VL fatality (298). The therapeutic efficacy
of anti-IL-10R and anti-GITR (glucocorticoid-induced TNF
receptor-related protein) was tested against L. donovani challenge
in C57BL/6 mice. Blocking IL-10 alone could reduce the
parasite burden in spleen and liver but combination of these
antibodies did not inhibit the parasite proliferation in spite
of the significant increase in IFN-γ and TNF-α production
(299). In another study, the blockade of IL-2 and IL-10 was
effective in the reduction of parasite load in early and later
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phases of L. donovani infection in BALB/c mice (300). IL-10
neutralization in splenic aspirate cells increases IFN-γ and TNF-α
production and reduces parasite burden in VL patients (187). In
L. chagasi infected Brazilian population, the antigen-stimulated
PBMCs derived IL-10 titers were higher in acute VL than after
cure. However, Leishman skin test (LST) or Montenegro test
positivity is not directly correlated with the IL-10 production in
asymptomatic individuals (113). The balance between IL-10 and
IL-12 determines the effectiveness of chemotherapy (17).

IL-4 induced in VL is usually associated with impaired
treatment (191, 192). IFN-γ, IL-4, and IL-13 are upregulated in
active VL, however, their levels are significantly declined after
cure (193). The disease relapse in humanVL patients is associated
mostly with IL-10 rather than IL-13 and is influenced by IL-
10+ IFN-γ+ antigen-specific T-cells (189). Blocking IL-4, IL-
13, and TGF-β with receptor fusion antagonists substantially
controlled the parasite replication but the clearance of visceral
infection is marginal and had no synergistic effect with SbV (119).
Though IFN-γ, IL-6, IL-27, TNF-α, and IL-10 levels increased
in Brazilian patients with active VL caused by L. infantum, the
clinical manifestation are strongly correlated with IL-6, IL-27,
TNF-α, and IL-10 (190). In general, TNF-α synergizes IFN-γ in
the activation of M8s and clearance of parasite but it is found
to elevate in serum despite the low TNF-α+ monocytes in the
circulation of active VL patients (301). To surpass the side-effects,
rIFN-γ and muramyl tripeptide (MTP-PE) encapsulated in
liposomes at varying doses of intravenous (i.v.) injections causes
substantial reduction in the splenic parasite burden in murine
VL (302). rIFN-γ was tested in combination with SbV against
VL patients from Brazil, Kenya, and India and the therapeutic
efficacy was found to be 82.3, 75, and 87%, respectively (195–197).

IL-12 orchestrates acquired resistance in liver during
intracellular L. donovani infection and parasite killing (174). IL-
12 restored responses from PBMCs of VL patients much better
than the treatment with anti-IL-10 alone or in combination
with anti-IL-4 [53]. Hence, it is clear that successful VL therapy
is associated with restoration of IFN-γ and IL-12 production
(47). IL-12 was used as an effective adjuvant for a killed
vaccine against L. major (198). The treatment of susceptible
BALB/c mice with recombinant IL-12 mediates disease healing,
which is associated with induced production of Th1 cytokines
(81, 200) and suppression of IL-4 (75). The treatment for
arthritis with anti-TNF-α results in increased susceptibility to
VL (202, 203), suggesting that TNF-α could act as a primary
effector component. Upon liposomal amphotericin B treatment,
the plasma IL-15 levels were found to be increased in VL patients
(86), suggesting the role of IL-15 as a marker in VL diagnosis and
a target in the VL therapy. In opportunistic HIV co-infection,
high levels of serum TNF-α and IFN-γ are the predictors for
onset of acute VL infection (204). Recently, we demonstrated
cytokine role and therapeutic potential of recombinant leptin
(adipokine) in BALB/c mice with experimental VL caused by
L. donovani. The serum leptin levels and splenic Th1 cytokine
response were found to be reduced in active disease. Upon leptin
administration, host protective responses including Graz-A+

CD8+ T-cells, IFN-γ, IL-12, and IL-2 production were found
to be restored (303). Hence, low systemic leptin levels could

be of prognostic and diagnostic value in the assessment of
clinical VL.

LIMITATIONS AND FUTURE PROSPECTIVE

Although cytokine-based immunotherapy is a promising
approach for VL cure, there are certain limitations associated
with this strategy. The production of recombinant cytokines as
large molecules used in therapeutics is very expensive and they
must be administrated via injections, which is certainly painful
to the patients. Administering high dose of cytokines could
result in side effects characterized by malaise and influenza-like
syndromes. As the cytokines have short half-life in plasma,
multiple doses are need which further increases the side-
effects (304). A crucial aspect is that the cytokine therapy for
leishmaniasis must be cost-effective over conventional treatment
in order to be practical. It is possible that a combination
therapy comprising a potent anti-leishmanial cytokine with the
combination of an inhibitor (monoclonal antibody) targeting
disease promoting cytokine or with current drug options could be
a future prospective of leishmaniasis treatment. However, there
is possibility that the different combinations of cytokines may
produce a divergent immune response. Hence, it is important
to further investigate the effect on immune response to develop
a clinically relevant combination therapy. This is particularly
important since several cytokines share common signaling
cascades as outlined in this review, which affects the outcome
of treatment. The gene manipulation strategy using advanced
molecular biology tools may produce desired version of cytokines
with small ligand-tags that have the potential to increase the half-
life of cytokines from minutes to days in the blood by tethering
with albumin protein, which further could reduce the number of
required doses. After finding a successful combination of these
against leishmaniasis, it would be optimal to design the chimeras
of cytokines without losing native structural and functional
properties. After administration, the chimeric cytokines should
splice inside the body fluids and act independently. As a
second option, cytokine and drug combination was also shown
to be a reliable strategy against leishmaniasis. For example,
combination of IFN-γ with antimony against experimental
VL showed that antimony dosage required for leishmanicidal
activity was reduced by 4- to 10-folds with IFN-γ combination
(305). This is a string indication that administering a drug-
cytokine mix could address the drug toxicity and possible
development of resistance. In another study, the pre-treatment
for 20 days with IFN-γ before antimony therapy has cured the
VL in 4 out of 9 Indian patients and rest of them had shown
reduced parasitemia in spleen aspirates (197). As mentioned
earlier, CTLA-4 and PD-1 causes T-cell unresponsiveness, so
targeting these for leishmaniasis treatment may yield promising
results. A study showed that the anti-CD40 and anti-CTLA-4
with the combination of SbV against L. donovani infection
in a mouse model increased IL-12 and IFN-γ production,
T-cell activation and function, and synergistic with SbV while
increasing the parasite death (306). Similarly, administration of
chimeric fusion protein OX-40L-Fc and anti-CTLA-4 improved
granuloma maturation and CD4+ T-cell proliferation to
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augment the killing L. donovani parasite but had no effect on
IL-10 and TGF-β production (307). Liposomal amphotercin
B treatment with the combination of recombinant human
granulocyte macrophage colony-stimulating factor (rHuGM-
CSF) cured the VL clinical symptoms and splenomegaly in a
patient suffering from HIV and VL (308). Another promising
therapeutic option is administration of anti-leishmanial drugs
and immunomodulators together. For example, the suboptimal
doses of miltefosine with the combination of a single dose
of TLR-ligand called Pam3Cys (tripalmytoil-Cysteine), an
immunomodulator, significantly promoted the healing of
L. donovani infection in mice by increasing the production of
Th1/Th2 cytokines, reactive oxygen and nitrogen intermediates,
and H2O2 (309). Cytokine producing immune cell-based therapy
either alone or in combination with drugs has recently emerged
as a potential treatment for cancer and other infectious diseases.
Glycosphingophospholipid (GSPL), a β-(1–4)-galactose terminal
NKT-cell ligand of L. donovani antigen induces inflammatory
signaling cascade to kill the intracellular parasite, induces
effector T-cell response and controls the acute parasite load to
an undetectable level in experimental VL (310). DCs could also
be an attractive option as they are important antigen-presenting
cells at the interface of innate and acquired immunity and can
suppress early dissemination of the parasite to the lymphoid
tissues mediated by IL-10 (311). Combination of bone marrow-
derived DCs pulsed with L. donovani antigen and antimony
treatment completely cleared the infection from the spleen
and liver (312) by inducing Th1 cytokines production (313).
Cytokines are the key players in the determination of disease
outcome during various immunotherapies. It is important
to remember that measuring the levels of a pro- or anti-
inflammatory cytokine alone to predict the disease severity may
not be reliable. Measuring the ratio of cytokines is a promising
approach. For example, IFN-γ/IL-10 ratio is predictive of disease
severity in VL (314).

CONCLUSIVE REMARKS

As the cytokines are the key focus of various immunotherapies
against leishmaniasis, it is essential to understand their role in
detail with possible scope in developing novel diagnostics and
targeted therapy for VL. There are key set of cytokines that
are involved in the disease progression namely IL-10, TGF-
β, and IL-4 and host protection namely IFN-γ, IL-12, TNF-
α, and IL-2 during VL. Notably, there are other cytokines
that are also involved in the pathogenesis and host defense
during VL. However, their role appears to be complex and is
dependent on the Leishmania species and the type of clinical
disease. For example, cytokines namely, IL-1, IL-13, IL-17, and
IL-18 are involved in the host defense during VL but have an
opposite effect by promoting the disease in CL. Nonetheless,
cytokines involved in the host protection e.g., IL-15, IL-22,
and IL-23 and pathogenesis e.g., IL-33, IL-27, IL-9, and IL-21
can be explored further as promising targets in diagnosis and
immunotherapy of VL.
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