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Salvage of endogenous immunoglobulin G (IgG) by the neonatal Fc receptor (FcRn) is

implicated in many clinical areas, including therapeutic monoclonal antibody kinetics,

patient monitoring in IgG multiple myeloma, and antibody-mediated transplant rejection.

There is a clear clinical need for a fully parameterized model of FcRn-mediated

recycling of endogenous IgG to allow for predictive modeling, with the potential for

optimizing therapeutic regimens for better patient outcomes. In this paper we study a

mechanism-based model incorporating nonlinear FcRn-IgG binding kinetics. The aim

of this study is to determine whether parameter values can be estimated using the

limited in vivo human data, available in the literature, from studies of the kinetics of

radiolabeled IgG in humans. We derive mathematical descriptions of the experimental

observations—timecourse data and fractional catabolic rate (FCR) data—based on

the underlying physiological model. Structural identifiability analyses are performed to

determine which, if any, of the parameters are unique with respect to the observations.

Structurally identifiable parameters are then estimated from the data. It is found that

parameter values estimated from timecourse data are not robust, suggesting that the

model complexity is not supported by the available data. Based upon the structural

identifiability analyses, a new expression for the FCR is derived. This expression is fitted to

the FCR data to estimate unknown parameter values. Using these parameter estimates,

the plasma IgG response is simulated under clinical conditions. Finally a suggestion

is made for a reduced-order model based upon the newly derived expression for the

FCR. The reduced-order model is used to predict the plasma IgG response, which is

compared with the original four-compartment model, showing good agreement. This

paper shows how techniques for compartmental model analysis—structural identifiability

analysis, linearization, and reparameterization—can be used to ensure robust parameter

identification.

Keywords: biological systems, lumped-parameter systems, immunoglobulin G, neonatal Fc receptor, parameter

estimation, structural identifiability
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1. INTRODUCTION

Immunoglobulin G (IgG) is the most abundant immunoglobulin
(Ig) isotype in the circulation in humans, with a plasma
concentration in healthy adults of 10–16 g l−1 (1). Its high
concentration is facilitated by the neonatal Fc receptor (FcRn),
which binds IgG in intracellular endosomes and transports it
to the plasma membrane to be returned to the circulation. A
proportion of IgG molecules that are not bound by FcRn are
degraded in lysosomes. In this way, FcRn continually protects
a proportion of the circulating IgG from degradation. The
recycling mechanism is saturable, such that at high plasma IgG
concentrations a greater proportion of plasma IgG is degraded.
Conversely, at depleted plasma IgG concentrations, a greater
proportion is recycled and the half-life is extended beyond the
normal 23 days (2).

Recent publications have drawn attention to the importance
of FcRn-mediated recycling of endogenous IgG in the bone
marrow cancer multiple myeloma. In multiple myeloma, clonal
plasma cells secrete an excess of monoclonal Ig into the
circulation. Patients undergoing therapy are primarily monitored
by quantification of Ig in blood serum samples (3). Mills et al.
(4) have suggested that FcRn-mediated recycling of IgG may
result in different response rates between patients with IgG-
producing multiple myeloma and patients with IgA-producing
multiple myeloma. Yan et al. (5) have also suggested that
FcRn-mediated recycling of endogenous IgG in patients with
multiple myeloma may shorten the half-life of the therapeutic
monoclonal antibody daratumumab. These studies highlight the
need for a parameterized model of endogenous IgG kinetics for
investigating these clinical scenarios.

Numerous mathematical models of IgG kinetics have been
presented in the literature, mostly with the aim of describing the
pharmacokinetics of therapeutic monoclonal antibodies (mAbs)
that are also regulated by FcRn. Many of these models are
therefore pharmacokinetic in nature: their parameter values
are obtained from animal experiments and they may be
physiologically-based, with up to around 10 organs explicitly
represented in the model (6–14). Pharmacokinetic models
developed for specific mAbs may not be generalizable to
endogenous IgG if, for example, they include details such
as binding of the mAb to its target. In addition, mAb
disposition may be adequately described by linear models in
many cases where the plasma concentration of therapeutic
mAb is substantially smaller than the plasma concentration of
endogenous IgG and the latter is constant (13, 14). However,
the assumption of a constant plasma concentration of IgG is
not always appropriate; for example, in multiple myeloma the
plasma IgG concentration typically shows large changes during
the course of therapy. Relative to a less complex model, the more
complex model will usually provide a better fit to observed data.
However, this alone does not imply that all the parameters in
the complex model can be estimated consistently, nor does it
imply that the underlying assumptions of the complex model are
valid (15).

In this paper we study a mechanism-based model with
a single plasma compartment, rather than separate plasma
compartments for different organs, which is accessible to

measurement in humans. The model, which has been previously
shown by Kim et al. (16) and Hattersley (17), has in total
four compartments, representing IgG in plasma, IgG in a
peripheral compartment (representing less rapidly perfused
tissues), unbound IgG in intracellular endosomes and IgG bound
to FcRn receptors in intracellular endosomes. The IgG-FcRn
interaction is represented by nonlinear receptor-ligand binding
kinetics (6, 7, 9). With reliable parameter values for humans, it
may be possible to use this model to predict the responses of
plasma IgG under various clinical conditions.

The aim of this study is to determine whether the model
parameter values can be obtained using the limited in vivo human
data that are available in the literature. The data are from studies
of the kinetics of administered small doses of radiolabeled IgG
when the subject’s endogenous IgG is in steady state.We consider
two measured outputs: the timecourse of the proportion of an
administered dose of radiolabeled IgG remaining in plasma and
in the body; and the relationship between the fractional catabolic
rate and the quantity of endogenous IgG in plasma. Structural
identifiability analysis is performed with respect to these outputs
and structurally identifiable parameters are estimated from
the data.

2. MATHEMATICAL MODELS AND DATA
DESCRIPTION

2.1. The Four Compartment Model
The model of IgG metabolism under study (16, 17) has four
state variables, nine parameters, and an input function, I(t),
representing the synthesis of IgG. The model equations are
given by

ẋ1(t) = −(k21 + k31)x1(t)+ k12x2(t)+ k14x4(t)+ I(t)

ẋ2(t) = k21x1(t)− k12x2(t)

ẋ3(t) = k31x1(t)− k03x3(t)−
kon

v3
x3(t)(Rtot − x4(t))+ koffx4(t)

ẋ4(t) =
kon

v3
x3(t)(Rtot − x4(t))− (k14 + koff)x4(t),

(1)
where x1(t), x2(t), x3(t), and x4(t) represent the quantities in
µmol of IgG in plasma, IgG in a peripheral compartment,
unbound IgG in endosomes and IgG bound to FcRn in
endosomes, respectively. I(t) represents the rate of synthesis of
IgG in µmol day−1. The rate constants, kij, represent the rate
of material flow from compartment j to compartment i, with
the convention that 0 represents the environment outside the
system. kon and koff are the receptor-ligand binding constants of
IgG and FcRn. We denote the volumes of plasma, the peripheral
compartment and the endosomes by v1, v2, and v3, respectively.
We assume a constant total (bound and unbound) quantity of
FcRn, Rtot (6). This means that the quantity of unbound FcRn is
represented by [Rtot−x4(t)]. The state variables of the model and
physiological interpretations of the parameters are summarized
in Table 1. Note that all states and parameters can only take
non-negative values. We refer to Figure 1 for a schematic of
the model.
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TABLE 1 | States and parameters of four-compartment model of IgG metabolism, with parameter values sourced in the literature.

Name Units Literature value Physiological interpretation

x1 µmol – Quantity of IgG in the central (plasma) compartment

x2 µmol – Quantity of IgG in the peripheral compartment

x3 µmol – Quantity of unbound IgG in intracellular endosomes

x4 µmol – Quantity of IgG-FcRn complexes in intracellular endosomes

v1 l 2.9∗ Plasma volume

v2 l – Volume of peripheral compartment

v3 l 0.34† Total volume of endosomes

k21 day−1 0.51‡ Rate constant of flow of IgG from plasma to peripheral compartment

k31 day−1 0.18§ Rate constant of flow of IgG from plasma into endosomes by pinocytosis

k12 day−1 0.41‡ Rate constant of flow of IgG from peripheral compartment to plasma

k14 day−1 5.0¶ Rate constant of flow of recycled IgG from endosomes back into plasma

k03 day−1 3.0‖ Rate constant of degradation of unbound IgG in endosomes

kon lµmol day−1 1,000∗∗ Association rate constant of IgG-FcRn binding

Rtot µmol 14¶ Total quantity of FcRn receptors, bound and unbound

koff day−1 100∗∗ Dissociation rate constant of IgG-FcRn binding

*Solomon et al. (18),
†
Shah and Betts (19), ‡Hattersley et al. (20), §Waldmann and Strober (21), ¶Ferl et al. (6), ‖ Hansen and Balthasar (22), **Chen and Balthasar (10).

FIGURE 1 | Schematic of four-compartment model of IgG metabolism.

Arrows represent material flow between compartments and hooked arrows

represent nonlinear receptor-ligand binding. The fifth compartment shown

(Rtot − x4) represents unbound FcRn receptors and has been eliminated from

the model equations. The arrow, labeled k14, from the IgG-FcRn complex

compartment (x4) to the unbound FcRn receptor compartment (Rtot − x4),

represents internalization of FcRn receptors from the plasma membrane to the

endosome, after releasing IgG.

When the production rate of IgG is constant, I(t) = I0, the
system has a stable equilibrium point given by

x̂1 =
I0
(

k03k14v3 + k03koffv3 + konI0 + k14konRtot
)

k31
(

k03v3(k14 + koff)+ konI0
)

x̂2 =
k21

k12
x̂1

x̂3 =
I0

k03

x̂4 =
konI0Rtot

k03v3(k14 + koff)+ konI0
.

(2)

A stability analysis for this equilibrium point is provided in the
Supplementary Material.

2.2. In vivo Human Data From the Literature
The data available in the literature were obtained from tracer
experiments. These studies entailed intravenous administration
of a bolus dose of radiolabeled IgG (the tracer) and monitoring
the proportion of the dose remaining in the blood and in the body
over time. In this way the administered dose is distinguishable
(by the experimenter) from the subject’s own endogenous IgG.
The quantity of administered tracer is small, so as not to
perturb the steady state of the endogenous IgG. The purpose
of tracer experiments is to enable observation of processes such
as distribution and elimination undergone by the endogenous
protein, whilst it is in steady state. The methods are described
fully by Waldmann and Strober (21).

The data for an individual subject consist of the timecourse of
the proportion of the injected dose of IgG remaining in plasma
and the timecourse of the proportion of dose remaining in the
body. In this paper we use the data from six such plots available
in the literature. We refer to the individuals as subjects A–F. The
timecourse data for subjects A–D are from Solomon et al. (18),
for subject E from Waldmann and Terry (23), and for subject F
fromWaldmann and Strober (21). Several of the individuals have
health conditions which may result in an increased or decreased
plasma IgG concentration. Subjects A and C have IgG multiple
myeloma and subject D has macroglobulinemia. Subjects B, E,
and F are referred to as “normal” subjects. A spaghetti plot of
the data is shown in Figure 2A. Subjects A and D show slower
dynamics and subject C shows faster dynamics. The dynamics
of IgG in these subjects is assumed to be described by the same
model, as given by Equations (1), however they may have had
altered production rates of IgG due to the diseases.

Also available in the literature is a plot of the fractional
catabolic rate (FCR) vs. the subject’s plasma concentration of
endogenous IgG, obtained from a group of individuals with a
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FIGURE 2 | (A) Spaghetti plot of the proportion of administered IgG remaining

in plasma (blue) and the body (red) in six subjects; data from Waldmann and

Strober (21), Solomon et al. (18), and Waldmann and Terry (23). (B) Plasma

concentration dependence of the fractional catabolic rate (FCR); redrawn from

Waldmann and Strober (21), with permission from S. Karger AG, Basel.

range of plasma IgG concentrations (21). The FCR is defined as
the elimination rate of IgG as a fraction of the quantity of IgG in
plasma. In practice the FCR is calculated from the rate at which
the tracer dose leaves the body at time t divided by the proportion
of tracer dose remaining in plasma at time t. The relationship
between the FCR and the timecourse data is described further
in section 2.6. A plot of the FCR vs. the plasma concentration
of endogenous IgG for 41 individuals provided by Waldmann
and Strober (21) is shown in Figure 2B. Each data point was
derived from the timecourse data of an individual subject. All of
the data described in this section were extracted from plots in the
literature using the Digitizer tool in OriginPro 2016 (24).

2.3. Nonlinear Model of Coupled Tracer
and Endogenous IgG Dynamics
The administered tracer and the endogenous IgG are assumed
to be indistinguishable by the human body, that is they
exhibit identical kinetic (input/output) behavior—a standard
assumption in tracer studies (25). We therefore assume that the
kinetics of both tracer and endogenous IgG are described by the
model given by Equations (1). From Equations (1), letting xi(t) =
xi,T(t) + xi,E(t), where xi,T(t) and xi,E(t) denote the quantities
in µmol in compartment i of radiolabeled and endogenous IgG,
respectively, gives

ẋ1,T(t) = −(k21 + k31)x1,T(t)+ k12x2,T(t)+ k14x4,T(t)

ẋ2,T(t) = k21x1,T(t)− k12x2,T(t)

ẋ3,T(t) = k31x1,T(t)− k03x3,T(t)−
kon

v3
x3,T(t)(Rtot − x4,E(t)

− x4,T(t))+ koffx4,T(t)

ẋ4,T(t) =
kon

v3
x3,T(t)(Rtot − x4,E(t)− x4,T(t))− (k14 + koff)x4,T(t)

ẋ1,E(t) = −(k21 + k31)x1,E(t)+ k12x2,E(t)+ k14x4,E(t)+ IE

ẋ2,E(t) = k21x1,E(t)− k12x2,E(t)

ẋ3,E(t) = k31x1,E(t)− k03x3,E(t)−
kon

v3
x3,E(t)(Rtot − x4,E(t)

− x4,T(t))+ koffx4,E(t)

ẋ4,E(t) =
kon

v3
x3,E(t)(Rtot − x4,E(t)− x4,T(t))

− (k14 + koff)x4,E(t). (3)

IE (µmol day−1) represents the production rate of endogenous
IgG, which is assumed constant. All other parameters are defined
in Table 1.

The dose of tracer administered at time t = 0 days is treated
as a non-zero initial condition for x1,T(t). Tracer is administered
to the plasma compartment only; therefore the initial conditions
of the remaining tracer compartments are zero. The endogenous
IgG is assumed to be in steady state throughout the experiment,
such that the initial conditions of the endogenous IgG are given
by the steady states in Equations (2), with I0 = IE. In summary,
the initial conditions are given by

x1,T(0) = D

x2,T(0) = x3,T(0) = x4,T(0) = 0

x1,E(0) = x̂1

x2,E(0) = x̂2

x3,E(0) = x̂3

x4,E(0) = x̂4,

(4)

where x̂i is the steady state quantity of endogenous IgG in
compartment i, given by Equations (2), and D (µmol) is the
administered dose of tracer.

The experimenter observes the proportion of the dose
remaining in plasma [denoted by y1(t)] and in the body [denoted
by y2(t)] during the experiment. The observation functions are
thus given by

y1(t) =
x1,T(t)

D

y2(t) =
x1,T(t)+ x2,T(t)+ x3,T(t)+ x4,T(t)

D
.

(5)

2.4. Linearized Model of Tracer Dynamics
Provided that the administered dose of tracer is sufficiently small,
the tracer kinetics can be approximated using the Taylor series
expansion of the model state about the equilibrium point. In this
way a linear model of the experiment, valid in a neighborhood
of the equilibrium point, is derived. Our derivation is provided
in the Supplementary Material. The derivation of a linearized
model for tracer dynamics from a general compartmental model
is provided by Anderson (26).

The linear equations describing the tracer kinetics are given by

ẋ1,T(t) = −(k21 + k31)x1,T(t)+ k12x2,T(t)+ k14x4,T(t)

ẋ2,T(t) = k21x1,T(t)− k12x2,T(t)

ẋ3,T(t) = k31x1,T(t)− k03x3,T(t)− k43x3,T(t)+ k34x4,T(t)

ẋ4,T(t) = k43x3,T(t)− (k14 + k34)x4,T(t)

(6)

where x1,T(t), x2,T(t), x3,T(t), and x4,T(t) represent the quantities
of radiolabeled IgG in the central compartment, in the peripheral
compartment, unbound in intracellular endosomes, and bound
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to FcRn in intracellular endosomes, respectively. The new
parameters k34 and k43 are given by

k34 = koff

k43 =
kon(Rtot − x̂4)

v3
=

konRtotk03(k14 + koff)

IEkon + k03v3(k14 + koff)
.

(7)

All other parameters are defined inTable 1. The initial conditions
are given by the first two equations of Equations (4) and the
observation functions are given by Equations (5).

2.5. Comparison of Nonlinear Model and
Linearized Model for Large Tracer Doses
The linearization of the model of timecourse observations relies
on the assumption of a sufficiently small dose of tracer, such
that the endogenous IgG can be assumed to remain in steady
state. A typical tracer dose is between 3 · 10−3 and 7 · 10−3

µmol
(18). Simulations of the quantity of tracer in each compartment
are shown in Figure 3. In Figure 3A, a dose of D = 1 µmol is
assumed and in Figure 3B, a dose of D = 100 µmol is assumed.
The value of 1 µmol was chosen to show that the linear model is a
valid approximation of the nonlinear model, even when the dose
is more than 100 times typical tracer doses. The extremely large
value of 100 µmol was chosen specifically to show the dynamics
of the linearized model when it is not a valid approximation of
the nonlinear model. The parameter values in Table 1 are used.
A normal IgG synthesis rate of IE = 15 µmol day−1 was used;
however the linearized model was still valid for D = 1 µmol
when comparatively very small values of IE were used. We find
that, for a dose of 1 µmol and the particular parameter values
used, the linearized model is a valid approximation of the full
nonlinear model over a 25-day simulated time course. When the
dose is increased to 100 µmol, the assumption that the steady state
is not perturbed by the administered dose no longer holds and
the two models give different simulation results for the quantities
of tracer.

2.6. Fractional Catabolic Rate
We recall that the FCR (µmol day−1) is defined as the elimination
rate of IgG as a fraction of the quantity of IgG in plasma and
can be defined with respect to the tracer or with respect to the
endogenous IgG. The FCR with respect to the tracer is therefore
given by

FCRT(t) =
k03x3,T(t)

x1,T(t)
, (8)

where x3,T(t) and x1,T(t) are given by the solution of
Equations (6).

Whilst a single value of the FCR is measured for an individual
subject (see Figure 2B), in actuality FCRT(t) is not constant, as
shown by the dependence on time in Equation (8). A simulation
of FCRT(t) during the experiment is shown in Figure 4. After
around day 5, for the particular parameter values used, FCRT(t)
approaches a steady state value, which is denoted here by

FIGURE 4 | Simulation of FCRT(t) given by Equations (12) and (8), for the

parameter values in Table 1 and dose D = 0.01 µmol.

FIGURE 3 | Simulations of the quantities of tracer in each compartment after administration at t = 0 days, for a tracer dose of (A) 1 µmol and (B) 100 µmol. The

nonlinear model (Equations 3–4) is represented by solid lines and the linearized model (Equations 6) by dashed lines. The linearized model is valid for the smaller dose

but not for the larger dose. Note the different scales for x1,T(t) and x2,T(t), and x3,T(t) and x4,T(t), respectively.
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FCRT,∞:

FCRT,∞ = lim
t→∞

k03x3,T(t)

x1,T(t)
. (9)

Solving Equations (6) gives

xi,T(t) = Ai1 exp(λ1t)+ Ai2 exp(λ2t)+ Ai3 exp(λ3t)

+Ai4 exp(λ4t), i = 1, . . . , 4, (10)

where Aij and λj (j = 1, . . . , 4) are expressions in terms of the
model parameters and |λ1| > |λ2| > |λ3| > |λ4|. After sufficient
time, xi,T(t) can be approximated by Ai4 exp(λ4t); thus, FCRT,∞

is given by

FCRT,∞ = k03
A34 exp(λ4t)

A14 exp(λ4t)
= k03

A34

A14
. (11)

The expressions for A34 and A14 in terms of the model
parameters are extremely long. The Mathematica (27) code for
generating the expressions for Aij and λj is provided in the
Supplementary Material.

Noting that there is only elimination from the system and
no input for t > 0, FCRT(t) is equal to the rate of change of
radiolabeled IgG in all compartments, divided by the quantity of
radiolabeled IgG in plasma:

FCRT(t) =
−
(

ẋ1,T(t)+ ẋ2,T(t)+ ẋ3,T(t)+ ẋ4,T(t)
)

x1,T(t)
=

−ẏ2(t)

y1(t)
.

(12)
From Equation (12), it can be seen that FCRT(t) is equal to the
slope of the observation y2(t) divided by y1(t), showing how
FCRT(t) can be obtained from the observations y1(t) and y2(t). In
practice, the experimenter obtains a value for FCRT(tN), where tN
is a time toward the end of the experiment, such that FCRT(tN)
can be assumed a close approximation of FCRT,∞. Henceforth,
the quantity obtained from experiments, FCRT(tN), is referred to
simply as FCRT.

It is also possible to derive an expression for the FCR with
respect to the endogenous IgG, FCRE. If the endogenous IgG is
assumed to remain in steady state, then from the definition of
the FCR,

FCRE =
k03x̂3

x̂1
, (13)

where x̂1 and x̂3 are the quantities of IgG in compartments
1 and 3 in steady state, given by Equations (2). Substituting
the expression for x̂3 from Equations (2) into Equation (13),
eliminating I0 in favor of x̂1 using the first equation of Equations
(2), and setting x̂1 = x1,E, gives the following expression for the
FCRE in terms of the quantity of IgG in plasma, x1,E:

FCRE =
1

2konx1,E

(

k31konx1,E − k14konRtot − k03k14v3

− k03koffv3 +
{

4k03k31(k14 + koff)konx1,Ev3

+ (−k31konx1,E + k14konRtot + k03k14v3

+ k03koffv3)
2
}1/2)

. (14)

3. RESULTS

3.1. Parameter Identification Using Tracer
Timecourse Data
In this section we investigate whether it is possible to
estimate unknown model parameter values by fitting the linear
approximation described in section 2.4 to the timecourse data
described in section 2.2. Firstly, a structural identifiability
analysis is performed. Parameter values are then estimated from
the data by fitting the linearized model described by Equations
(6) to the data.

3.1.1. Structural Identifiability Analysis
Structural identifiability addresses the question of whether
model parameters can be uniquely identified from the available
observations, under the assumption of the availability of ideal
(i.e. noise-free) and continuous observational data. Here we
determine which of the model parameters are structurally
uniquely identifiable from the observations y1(t) and y2(t), given
by Equations (4–6). The unknown parameter vector is given by
θ = (k21, k31, k12, k14, k03, k43, k34)T.

The transfer function method is used (28). To apply this
approach the system described by Equations (4–6) is re-written
in vector-matrix notation as

ẋT(t, θ) = A(θ)xT(t)+ B(θ)u(t)

xT(0, θ) = 0

y(t, θ) = C(θ)xT(t),

(15)

where xT(t, θ) =
(

x1,T(t), x2,T(t), x3,T(t), x4,T(t)
)T

and y(t, θ) =
(

y1(t), y2(t)
)T

are column vectors representing the state vector
and the observation vector, respectively, and u(t) represents the
single input to the system, an impulse at time t = 0, given by
u(t) = δ(t). A(θ) is a 4 × 4 matrix, B(θ) is a column vector and
C(θ) is a 2× 4 matrix. A(θ), B(θ), and C(θ) are given by

A(θ) =









−
(

k21 + k31
)

k12 0 k14
k21 −k12 0 0
k31 0 −

(

k03 + k43
)

k34
0 0 k43 −

(

k14 + k34
)









,

B(θ) =









D
0
0
0









,

C(θ) =

( 1
D 0 0 0
1
D

1
D

1
D

1
D

)

.

(16)
Note that the administration of a bolus dose of size D is now
represented as an impulse at time t = 0, rather than a non-zero
initial condition, such that xT(0, θ) = (0, 0, 0, 0)T.

Taking Laplace transforms of Equations (15), the input-output
relation is given by Y(s) = G(s)U(s), where G(s) is the transfer
function matrix, given byG(s) = C(θ)(sI−A(θ))−1B(θ), where I
is the 4×4 identity matrix.G(s) has two elements, corresponding
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to the two observed outputs, which are given by

G1(s) =
φ1 + φ2s+ φ3s

2 + s3

φ4 + φ5s+ φ6s2 + φ7s3 + s4

G2(s) =
φ8 + φ9s+ φ10s

2 + s3

φ11 + φ12s+ φ13s2 + φ14s3 + s4
,

(17)

where the coefficients of s, 8(θ) = (φ1(θ),φ2(θ), ...,φ14(θ))T,
are nonlinear expressions in the parameters. The coefficients of
s,8(θ), are given by

φ1(θ) = k12
(

k03
(

k14 + k34
)

+ k14k43
)

φ2(θ) = k03
(

k12 + k14 + k34
)

+ k14k43 + k12
(

k14 + k34 + k43
)

φ3(θ) = k03 + k12 + k14 + k34 + k43

φ4(θ) = φ11(θ) = k03k12k31(k14 + k34)

φ5(θ) = φ12(θ) = k03((k21 + k31)(k14 + k34)+ k12(k14 + k31

+ k34))+ k14k21k43 + k12(k14(k31 + k43)+ k31(k34 + k43))

φ6(θ) = φ13(θ) = k14k21 + k14k31 + k21k34 + k31k34 + k03(k12
+ k14 + k21 + k31 + k34)+ k14k43 + k21k43 + k31k43 + k12

(k14 + k31 + k34 + k43)

φ7(θ) = φ10(θ) = φ14(θ) = k03 + k12 + k14 + k21 + k31

+ k34 + k43

φ8(θ) = k03(k12 + k21)(k14 + k34)+ k14k21k43

+ k12(k14(k31 + k43)+ k31(k34 + k43))

φ9(θ) = k14k21 + k14k31 + k21k34 + k31k34 + k03(k12 + k14

+ k21 + k34)+ k14k43 + k21k43 + k31k43

+ k12(k14 + k31 + k34 + k43).
(18)

The coefficients 8(θ) are unique with respect to the
input-output relationship represented by the transfer
function. Introducing an alternative parameter vector,
θ = (k21, k31, k12, k14, k03, k43, k34)T, and equating 8(θ) = 8(θ),
the resulting set of simultaneous equations is solved for θ using
the Solve function in Mathematica (27). The only solution is
θ = θ ; therefore all of the parameters in θ are structurally
uniquely identifiable.

3.1.2. Parameter Estimation
The parameter vector θ = (k21, k31, k12, k14, k03, k43, k34)T was
estimated for each subject using unweighted least squares, by
fitting the timecourse data described in section 2.2. The “true”
parameter vector for an individual is denoted by θ0. For an
individual subject it is assumed that yi(t, θ0), i = 1, 2, is observed

with error at measurement times t
(i)
1 , . . . , t(i)Ni

, i = 1, 2, where

t
(1)
1 = t

(2)
1 = 0. The observed (with error) values of yi(t, θ0), i =

1, 2, are now denoted by ỹi(t
(i)
j , θ0) for i = 1, 2 and j = 1, . . . ,Ni.

Both outputs y1 and y2 were fitted simultaneously, therefore the
cost functional for θ is given by

J(θ0, θ) =
2
∑

i=1

Ji(θ0, θ), (19)

TABLE 2 | Settings for differential evolution.

Subject

A B C D E F

Scaling factor (SF) 0.5 0.5 0.7 0.5 0.5 0.7

Crossover probability (CR) 0.9 0.9 0.95 0.9 0.9 0.95

where

Ji(θ0, θ) =
Ni
∑

j=1

(

ỹi(t
(i)
j , θ0)− yi(t

(i)
j , θ)

)2
. (20)

Differential evolution was implemented using the
NonlinearModelFit function in Mathematica (27). The
differential evolution algorithm was chosen because there
is little information available about the parameters, in particular
the parameters k14, k03, k43, and k34. Differential evolution is a
stochastic, global minimization algorithm that does not require
the user to specify initial guesses for the parameter values (29).
All parameters were constrained to be positive. The maximum
number of iterations was set to 5,000, which was sufficient for
the algorithm to converge in all cases. In differential evolution an
initial population of parameter vectors is generated randomly.
The algorithm was run for each subject’s data with integer seeds
for the pseudorandom number generator between 1 and 10; thus
10 estimates for θ were obtained for each subject.

Differential evolution maintains a population of parameter
vectors which evolves iteratively. For each new generation of
the algorithm, a mutant and trial vector are produced from
the current generation and the trial vector is compared with a
target vector from the current generation. Either the target or
trial vector is selected to move forward to the new generation
based on which has the smallest value of the cost function to
be minimized. The scaling factor (SF) is used to produce the
mutant vector and generally a larger value of SFmeans a broader
search of the parameter space. The crossover probability (CR) is
the probability that each element of the mutant vector is used to
produce the trial vector, rather than the corresponding element of
the target vector. SF andCRwere tuned by trial and error for each
subject. The settings F = 0.5 and CR = 0.9 were tried initially,
as recommended by Storn and Price (29) for faster convergence.
For subjects C and F the settings were adjusted to F = 0.7, for a
broader search of the parameter space, and CR = 0.95, to speed
convergence. The settings for the differential evolution algorithm
are given in Table 2.

Each run of the algorithm, with a unique seed for
the pseudorandom number generator, can produce unique
parameter estimates; it is therefore recommended to perform
multiple runs with unique, randomly chosen starting populations
of parameter vectors (29). The parameter estimates and root
mean square error (RMSE) for each run and each subject are
tabulated in Table 3. The parameter estimates frommultiple runs
should be close to one another so that they can be averaged
(29, 30); however, in some cases, the different runs give very
different parameter estimates, implying that the algorithm has
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TABLE 3 | Parameter values estimated from timecourse data.

Run Parameter (all have units day−1) RMSE

k21 k31 k12 k14 k03 k43 k34

S
u
b
je
c
t
A

1 0.391 0.158 1.29 0.0628 0.261 1.88 0.206 0.0124

2 0.391 0.159 1.29 0.0623 0.294 2.23 0.216 0.0124

3 0.390 0.159 1.29 0.0616 0.341 2.70 0.225 0.0124

4 0.390 0.159 1.29 0.0612 0.363 2.91 0.227 0.0124

5 0.388 0.139 1.11 0.0699 0.0881 0.209 0.0279 0.0123

6 0.391 0.160 1.30 0.0611 0.395 3.25 0.233 0.0124

7 0.392 0.160 1.30 0.0616 0.365 2.95 0.229 0.0124

8 0.386 0.159 1.27 0.0615 0.327 2.54 0.221 0.0124

9 0.391 0.159 1.29 0.0617 0.336 2.64 0.224 0.0124

10 0.390 0.159 1.29 0.0619 0.307 2.35 0.218 0.0124

S
u
b
je
c
t
B

1 1.72 0.174 2.96 0.151 1.04 1.23 1.09 · 10−16 0.00858

2 0.101 0.732 0.147 3.18 0.208 1.72 0.00 0.00859

3 0.0986 1.09 0.146 2.49 0.408 20.2 7.16 0.00865

4 1.73 0.174 2.98 0.151 1.04 1.23 0.00 0.00858

5 1.72 0.174 2.96 0.151 1.04 1.23 0.00 0.00858

6 1.72 0.174 2.96 0.151 1.04 1.23 0.00 0.00858

7 1.72 0.174 2.96 0.151 1.04 1.23 0.00 0.00858

8 1.72 0.174 2.96 0.151 1.04 1.23 3.69 · 10−15 0.00858

9 0.101 0.732 0.147 3.18 0.208 1.72 0.00 0.00859

10 1.72 0.174 2.96 0.151 1.04 1.23 0.00 0.00858

S
u
b
je
c
t
C

1 0.0217 0.438 6.47 · 10−16 0.527 0.580 2.10 0.332 0.00682

2 0.346 0.160 0.537 0.00 1.3126 0.447 0.0880 0.00553

3 0.0217 0.438 9.75 · 10−15 0.527 0.580 2.10 0.332 0.00682

4 1100 0.349 8590 0.2537 0.765 1.72 0.141 0.00780

5 0.346 0.160 0.537 2.81 · 10−16 1.31 0.447 0.0880 0.00553

6 203 0.349 1580 0.254 0.764 1.72 0.141 0.00780

7 0.0217 0.438 1.51 · 10−16 0.527 0.580 2.10 0.332 0.00682

8 0.0217 0.438 4.65 · 10−15 0.527 0.580 2.10 0.332 0.00682

9 284 0.349 2210 0.254 0.765 1.73 0.141 0.00780

10 0.0217 0.438 2.75 · 10−15 0.527 0.580 2.10 0.332 0.00682

S
u
b
je
c
t
D

1 0.346 0.154 0.432 2.73 · 107 20.3 80.2 0.0550 0.0136

2 0.346 1.50 0.432 1.45 · 109 15.3 725 68.7 0.0136

3 0.346 0.159 0.432 4.85 · 1016 9.08 37.3 94600 0.0137

4 0.346 0.173 0.432 1.99 · 107 11.5 52.4 1180 0.0137

5 0.346 0.102 0.432 2.12 · 1017 22.2 50.7 0.00 0.0136

6 0.344 1.95 0.433 1.16 · 107 3.90 240 208 0.0136

7 0.346 0.0999 0.432 1.22 · 106 15.4 34.1 3.07 0.0137

8 0.346 0.951 0.432 2.16 · 1011 12.8 379 1710 0.0136

9 0.134 0.242 0.429 0.435 5.49 37.1 0.00 0.0137

10 0.347 0.142 0.432 4.14 · 108 163 581 0.00 0.0136

S
u
b
je
c
t
E

1 0.412 0.117 0.361 0.273 0.995 1.02 0.326 0.00550

2 1.40 · 10−6 0.445 142 0.452 0.148 0.693 0.00603 0.00379

3 2.20 · 10−13 0.445 8.71 0.452 0.148 0.692 0.00601 0.00379

4 0.454 0.0795 0.362 7.12 · 10−8 4.51 5.30 1.12 0.00550

5 0.454 0.0795 0.362 2.97 · 10−12 5.40 6.76 1.14 0.00550

6 0.454 0.0795 0.362 0.0000227 3.41 3.52 1.04 0.00550

(Continued)
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TABLE 3 | Continued

Run Parameter (all have units day−1) RMSE

k21 k31 k12 k14 k03 k43 k34

7 0.00 0.454 6.91 · 107 0.419 0.175 0.948 0.0586 0.00402

8 0.454 0.0795 0.362 0.00 4.11 4.66 1.09 0.00550

9 0.454 0.0795 0.362 0.0000416 3.21 3.20 1.02 0.00550

10 0.454 0.0795 0.362 5.41 · 10−7 51.2 84.0 1.30 0.00550

S
u
b
je
c
t
F

1 0.456 4.22 0.372 19.3 0.956 1.45 · 107 5.37 · 106 0.00686

2 1.23 · 1010 0.532 4.29 · 1010 0.360 1690 15300 0.214 0.00286

3 0.456 4.21 0.372 14.6 6.23 1.21 · 108 5.22 · 106 0.00686

4 0.456 4.21 0.372 17.1 1.47 1.70 · 107 3.64 · 106 0.00686

5 0.456 4.21 0.372 15.4 2.87 1.40 · 108 1.39 · 107 0.00686

6 0.456 4.21 0.372 17.6 1.28 1.54 · 107 3.88 · 106 0.00686

7 0.456 4.16 0.372 48.0 0.364 185 407 0.00687

8 0.456 4.22 0.372 16.1 2.02 1.42 · 107 1.42 · 107 0.00686

9 4.97 · 108 0.531 1.73 · 109 0.360 33600 304000 0.214 0.00286

10 0.456 4.21 0.372 15.7 2.51 1.44 · 108 1.65 · 107 0.00686

difficulty finding the global minimum and that there may be
many local minima. It is therefore not certain that the global
minimum has been found for each subject. It is also possible
that certain parameters are highly correlated, such that different
parameter vectors produce very similar model outputs. This is
reflected in the diversity of parameter vectors obtained within
subjects using differential evolution.

In some cases the model parameters are estimated to be zero,
or very close to zero, for example k34 for subject B, k12 and k14 for
subject C, k34 for subject D, and k21 and k14 for subject E. For each
of these subjects the data can be well represented by a reduced
model in which either IgG-FcRn binding is irreversible (k34 = 0),
there is no transfer from the peripheral compartment to plasma
(k12 = 0) or vice versa (k21 = 0), or bound IgG molecules are
not recycled into plasma (k14 = 0). This result suggests that the
model complexity is not supported by the available data.

The data and the model outputs using the parameter estimates
in Table 3 are plotted in Figure 5. In each panel of Figure 5,
the model outputs y1(t) and y2(t) are plotted for each of the
estimated parameter vectors from 10 runs. The model outputs
are very similar for all of the estimated parameter vectors for
an individual. For some subjects there are small but noticeable
differences between the fits, for example: in the first and last 5
days of y2(t) for subject A; in the first 2 days of y1(t) for subject
B; for all of y1(t) and the latter part of y2(t) for subject C; between
days 2 and 6 for y1(t) and the initial 2 days of y2(t) for subject
E; and the first 10 days and final 5 days of y2(t) for subject F.
The similarity between the outputs for the parameter estimates
obtained across different runs is shown by the similar values of
RMSE within each subject. The model appears to fit the data
reasonably well and in some subjects extremely well.

The results of the multiple runs of differential evolution
show that in many cases, highly different parameter vectors
produce very similar model outputs. The spread of the parameter
estimates from multiple runs is conveyed using the coefficient of
variation (CV), that is, the standard deviation of the estimates

of a parameter from 10 runs, divided by the mean of those
estimates. The CV is tabulated in Table 4. For some parameters
and subjects, the estimates for the parameters have a small
CV, for example the first four parameters for subject A and
parameter k12 for subject D. In other instances however the CV
is much larger, reflecting the highly different estimates obtained
for these parameters. The similarly high quality fits produced by
diverse parameter vectors implies that, whilst the parameters are
structurally identifiable, they are not all practically identifiable for
the quality of data that are available.

3.2. Parameter Identification Using
Fractional Catabolic Rate Data
Authors who have studied a two-compartment model of IgG
metabolism have previously estimated parameters from FCR
vs. plasma IgG concentration data (16, 21). In this section we
investigate whether it is possible to estimate parameters of the
four-compartment model from these data, which are described
in section 2.2. In section 2.6 two expressions for the FCR were
introduced: the FCR of the tracer (Equation 11) and the FCR of
the endogenous IgG in steady state (Equation 14). In practice
FCRT is measured; however it is difficult to obtain a closed
form expression for FCRT. In contrast, we can easily obtain an
expression for FCRE in terms of the model parameters and the
quantity of endogenous IgG in plasma, x1,E, as given by Equation
(14). In this section model parameters are estimated by fitting the
expression for FCRE vs. x1,E Equation (14) to the FCRT vs. x1,E
data. It is assumed that FCRE is a good approximation to FCRT

and the parameter estimates are validated in section 3.2.3 using
synthetic data.

3.2.1. Structural Identifiability Analysis
The relationship between FCRE and x1,E is given by Equation
(14). Given that the parameters kon and v3 only appear in the
model (Equations 3) as the ratio kon/v3, we re-write Equation
(14), defining φ1 = kon/v3, giving
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FIGURE 5 | Timecourse data [y1(t) blue circles; y2(t) red circles] and model fits [y1(t) blue line; y2(t) red line] for (A–F) subjects A–F.

FCRE =
1

2φ1x1,E

(

k31φ1x1,E − k14φ1Rtot − k03k14 − k03koff

+

√

4k03k31
(

k14 + koff
)

φ1x1,E +
(

−k31φ1x1,E + k14φ1Rtot + k03
(

k14 + koff
))2

)

.

(21)

We wish to know whether the parameter vector

φ =
(

φ1, k31, k14,Rtot, k03, koff
)T

is structurally identifiable
with respect to the relationship in Equation (21).
The structural identifiability problem amounts to
determining whether there exists an alternative parameter

vector φ =
(

φ1, k31, k14,Rtot, k03, koff
)T

such that

FCRE(x1,E,φ) = FCRE(x1,E,φ).
From Equations (13) and (2),

FCRE =
I0

x̂1
. (22)

I0 is given in terms of x̂1 by the solution of the following quadratic
equation, obtained by rearranging the first equation of Equations
(2) and setting φ1 = kon/v3:

−φ1I
2
0 +

(

−k03
(

k14 + koff
)

+ φ1
(

k31x̂1 − k14Rtot
))

I0

+k03k31
(

k14 + koff
)

x̂1 = 0. (23)

Substituting FCREx̂1 in place of I0 and setting x̂1 = x1,E gives the
following quadratic equation in FCRE:

−φ1x
2
1,EFCR

2
E +

(

−k03
(

k14 + koff
)

+ φ1
(

k31x1,E − k14Rtot
))

x1,EFCRE + k03k31
(

k14 + koff
)

x1,E = 0. (24)

Dividing Equation (24) throughout by the coefficient of
FCR2

E gives

FCR2
E +

(

k03
(

k14 + koff
)

− k31φ1x1,E + k14φ1Rtot

φ1x1,E

)

FCRE

−
k03k31

(

k14 + koff
)

φ1x1,E
= 0. (25)

The expression for FCRE given by Equation (21) is one of
the two solutions of Equation (25). We therefore wish to
know whether there exists an alternative parameter vector φ
such that,

FCR2
E+

(

k03
(

k14 + koff
)

− k31φ1x1,E + k14φ1Rtot

φ1x1,E

)

FCRE

−
k03k31

(

k14 + koff
)

φ1x1,E

= FCR2
E +





k03

(

k14 + koff

)

− k31φ1x1,E + k14φ1Rtot

φ1x1,E





FCRE −
k03k31

(

k14 + koff

)

φ1x1,E
.

(26)
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TABLE 4 | Coefficients of variation of parameter estimates obtained from 10 runs

of differential evolution, for each of subjects A–F.

Parameter
Coefficient of variation

A B C D E F

k21 0.00404 0.634 2.18 0.206 0.691 3.03

k31 0.0405 0.905 0.312 1.24 0.907 0.446

k12 0.0458 0.642 2.18 0.00277 3.16 3.03

k14 0.0417 1.38 0.643 2.58 1.33 0.792

k03 0.280 0.461 0.373 1.71 2.12 3.00

k43 0.360 1.85 0.399 1.15 2.32 1.14

k34 0.305 3.16 0.502 3.05 0.758 1.01

From the uniqueness of interpolating polynomials (31, p. 98),
the coefficients of the quadratic in Equation (25) are unique,
therefore the problem amounts to solving the simultaneous
equations:

k03
(

k14 + koff
)

− k31φ1x1,E + k14φ1Rtot

φ1x1,E

=
k03

(

k14 + koff

)

− k31φ1x1,E + k14φ1Rtot

φ1x1,E

−
k03k31

(

k14 + koff
)

φ1x1,E
= −

k03k31

(

k14 + koff

)

φ1x1,E
.

(27)

The solution was found using the SolveAlways function in
Mathematica. The only solution to Equations (27), for all values
of x1,E, is given by

k31 = k31

k14Rtot = k14Rtot

k03

(

k14 + koff

)

φ1
=

k03
(

k14 + koff
)

φ1
.

(28)

Therefore, only k31 and the expressions k14Rtot and
k03

(

k14 + koff
)

/φ1, containing original parameter combinations,
are structurally identifiable with respect to the relationship
between FCRE and x1,E.

3.2.2. Parameter Estimation
Having analyzed the structural identifiability of the expression for
FCRE vs. x1,E, it becomes clear that we can rewrite the expression
in Equation (14) by combining parameters into new structurally
identifiable parameters, as follows:

FCRE(x1,E,ψ) =
1

2x1,E

(

k31x1,E − ψ1 − ψ2 (29)

+

√

k231x
2
1,E + 2k31x1,E (ψ1 − ψ2)+ (ψ1 + ψ2)

2
)

,

TABLE 5 | Parameter estimates from fitting FCRE expression to FCRT vs. x1,E
data.

Parameter Units Estimate Standard error 95% confidence interval

ψ1 µmol day−1 7.47 2.74 (1.93, 13.0)

ψ2 µmol day−1 25.7 6.656 (12.3, 39.2)

k31 day−1 0.154 0.00969 (0.135, 0.174)

FIGURE 6 | (A) Expression for FCRE vs. x1,E, given by Equation (29), fitted to

FCRT vs. x1,E data from Waldmann and Strober (21). (B) Residuals vs. fitted

values.

where

ψ1 =
k03v3

(

k14 + koff
)

kon

ψ2 = k14Rtot

(30)

are uniquely identifiable parameters. ψ1 and ψ2 have units of
µmol day−1. The parameter vector to be estimated is now ψ =
(

k31,ψ1,ψ2
)

.
It is assumed that Equation (29) is a close approximation to the

relationship between the measured FCRT and x1,E. Waldmann
and Strober (21) provide FCRT vs. plasma IgG concentration
data. The plasma concentrations of endogenous IgG were
multiplied by the average plasma volume v1, from Table 1, in
order to obtain the quantity of endogenous IgG in plasma, x1,E.
The data for FCRT vs. x1,E were then fitted using the interior
point algorithm implemented within the NonlinearModelFit
function inMathematica. The starting value for theminimization
was set to 1 for each parameter. The parameter estimates were
constrained to be positive.

Since the data were obtained from 41 individuals, the
estimated parameter values are assumed to represent the average
parameter values within the population. The parameter estimates
and their standard errors are provided in Table 5. The fitted
expression given by Equation (29) is plotted alongside the data
in Figure 6A. The residuals vs. the fitted values are plotted in
Figure 6B. On inspection, the model appears to fit the data well.
The residuals appear reasonably homoscedastic and there is no
obvious autocorrelation.

3.2.3. Validation of Parameter Estimates
There are several issues that may cause the estimates of k31, ψ1,
and ψ2 to be inaccurate. Firstly, the data were obtained from a

Frontiers in Immunology | www.frontiersin.org 11 April 2019 | Volume 10 | Article 674

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kendrick et al. Parameter Identification FcRn-Mediated Recycling

sample of 41 individuals, each with their own unique parameter
vector; this variability is not accounted for by the estimation
procedure. Secondly, the parameters were estimated by fitting the
expression for FCRE vs. x1,E; however the data are for the FCRT,
which is not equivalent to the FCRE. In addition, the FCRT is in
practice calculated frommeasurements of radioactivity in plasma
and urine; the form of the measurement errors is therefore
not clear.

Due to the aforementioned issues, the validity of the
parameter estimates obtained in section 3.2.2 was investigated by
estimating the parameters from synthetic data. It is assumed that
the parameter values in Table 5 are true population parameter
values. Data for FCRT vs. x1,E were simulated according to the
experimental methodology, described byWaldmann and Strober
(21). The data were simulated for 100 sets of 41 subjects. The
parameter values were then estimated from the synthetic data,
generating 100 estimates for ψ =

(

k31,ψ1,ψ2
)

.
In order to simulate the FCRT data, parameter values are

required for all model parameters (see Equations 1), not just
k31, ψ1, and ψ2. Population parameter values are therefore
required for all model parameters in order to randomly generate
unique parameter vectors for individual subjects. The population
parameter values for k21, k12, k14, k03, and koff were fixed to the
values from the literature in Table 1. The population value of k31
was fixed to the estimated value inTable 5. The population values
of Rtot and kon/v3 were calculated by substituting the previously
fixed parameter values into Equations (30) and solving. In this
way, a population parameter vector was found, for which k31,ψ1,
and ψ2 are equal to their estimated values. Unique parameter
values for 41 individuals were randomly generated from a
lognormal distribution, with the median given by the population
parameter values. The variance was tuned by trial and error in
order to replicate the size of the errors seen in the real data.
This process was repeated to produce 100 sets of 41 individual
parameter vectors and thus 100 sets of FCRT vs. x1,E data. Full
details of how the synthetic data were generated are provided in
the Mathematica code in the Supplementary Material.

The parameter estimates as a proportion of the true parameter
values are plotted in Figure 7, showing the spread of the
parameter estimates. It is clear from this plot that the parameter
k31 is estimated with higher precision than ψ1 and ψ2. The
sample mean (µ), sample standard deviation (s.d.), bias (b), and
variability (v) of the parameter estimates are given inTable 6. The
bias is given by

b = µ− p, (31)

where p is the true value of the parameter. The variability is given
by

v =

√

s.d.2 + b2

p
. (32)

Variability as defined by Equation (32) has been used by Chen
et al. (32) to evaluate the performance of estimation methods
when the assumptions relied upon by the methods, in particular
relating to noise, are violated. A larger value of v represents a
worse performance of an estimation method. The results suggest

FIGURE 7 | Parameter estimates for k31, ψ1, and ψ2 divided by the true

parameter value.

TABLE 6 | Mean, standard deviation, bias, and variability of the estimates of k31,

ψ1, and ψ2.

Parameter

k31 ψ1 ψ2

Mean 0.162 8.55 29.0

Standard deviation 0.00758 1.75 5.24

Bias 0.00841 1.08 3.31

Variability 0.0735 0.275 0.241

that k31 has been estimated with a good level of accuracy (v =

0.0735), but that the parametersψ1 andψ2 were estimated with a
higher level of variability. Based on this result, a future study may
look at improving experimental design, for example by increasing
the number of subjects, in order to improve upon the variability
of the estimates of ψ1 and ψ2.

3.3. Simulation of IgG Responses in
Multiple Myeloma
It has been shown that parameter estimates obtained using
timecourse data are not robust; however, the parameters k31,
ψ1, and ψ2 may be obtained with reasonably low variability
using FCR data. The results from fitting the timecourse data
suggest that the model (Equations 1) may be overparameterized
with respect to the available data; we therefore ask whether the
plasma IgG response can be sufficiently determined using only
the parameters k21, k12, k31, ψ1, and ψ2.

Firstly we investigate the plasma IgG response given by the full
system model (Equations 1), when the parameters k31, ψ1, and
ψ2 are equal to the values estimated in section 3.2.2. Random
values were generated for certain model parameters and the
remaining parameter values calculated so that k31, ψ1, and
ψ2 are equal to their estimated values. Three parameters (not
including both Rtot and k14) out of k03, Rtot, koff, k14, and kon/v3
were fixed to randomly generated values and substituted into
Equations (30), yielding a linear system of two equations in two
unknowns. Equations (30) were then solved for the remaining
two parameters. There are seven sets of three parameters from

Frontiers in Immunology | www.frontiersin.org 12 April 2019 | Volume 10 | Article 674

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kendrick et al. Parameter Identification FcRn-Mediated Recycling

FIGURE 8 | Parameter values used to simulate IgG responses in multiple

myeloma, plotted on a logarithmic scale. The method used to generate the

parameter values is described in section 3.3. The model predictions generated

using these parameter values are shown in Figure 9A. Despite the large

amount of variation in the parameter values, the model predictions for plasma

IgG are extremely similar.

k03, Rtot, koff, k14, and kon/v3, which can be fixed to give the
remaining two parameters. Parameters were generated 10 times,
as described, for each of these seven sets, giving 70 parameter
vectors in total. The randomly generated parameter values were
obtained by assuming a lognormal distribution, in order to
ensure positivity, withmedian set to the parameter value from the
literature, given in Table 1, and variance 1. The values generated
in this way for the parameters k03, Rtot, koff, k14, and kon/v3
are depicted in Figure 8, showing the extremely wide range of
parameter values used. The parameter k31 was set to the estimated
value given in Table 5. The values for k21 and k12 were set to the
values given in Table 1.

In order to simulate the model under realistic clinical
conditions, a model for the IgG synthesis rate in multiple
myeloma was used, which has been found to predict responses
consistent with real patient data (33). The IgG synthesis rate is
described by

I(t) = (I0 − I∞) exp(−kkillt)+ I∞. (33)

The following parameter values were used to produce the
simulation: I0 = 76 µmol day−1, I∞ = 26.5 µmol day−1, and
kkill = 0.055 day−1 (33).

A simulation of the responses in all four model compartments
is shown in Figure 9A. Each variable is simulated for 70 unique
parameter vectors. The predicted trajectories for plasma IgG
and peripheral IgG, respectively, are extremely similar for all
70 parameter vectors; however there is some variation in the
responses of IgG in intracellular endosomes, particularly the IgG
that is not bound to FcRn receptors. The simulation suggests that,
under the investigated conditions, the response in the plasma
compartment is relatively insensitive to changes in the individual
parameters k03, Rtot, koff, k14, and kon/v3, provided that the
parameters k31, ψ1, and ψ2 are fixed. The maximal difference
between any two trajectories for x1(t) at any simulated time point
is 0.2%.

The lack of variation within the predicted responses for
plasma and peripheral IgG, when parameters k21, k12, k31, ψ1,

FIGURE 9 | (A) Simulation of responses of plasma IgG [(x1(t)], peripheral IgG

[x2(t)], IgG in endosomes [x3(t)], and IgG bound to FcRn in endosomes [x4(t)].

The scenario shown represents a decreasing tumor burden during therapy.

Each variable is simulated for 70 unique parameter vectors. (B) Simulation of

responses of plasma IgG [x1(t)], peripheral IgG [x2(t)], compared for the

four-compartment model and the proposed two compartment model. The

responses are indistinguishable by inspection for the two models.

andψ2 are fixed, suggests that it may be possible to simulate these
two variables using a reduced order model based upon the newly
derived expression for the FCR (Equation 29). The equations for
this model are given by

ẋ1(t) = −
(

k21 + f (x1 (t))
)

x1(t)+ k12x2(t)+ k14x4(t)+ I(t)

ẋ2(t) = k21x1(t)− k12x2(t),
(34)

where

f (x1 (t)) =
1

2x1(t)

(

k31x1(t)− ψ1 − ψ2 (35)

+

√

k231x1(t)
2 + 2k31x1(t) (ψ1 − ψ2)+ (ψ1 + ψ2)

2
)

.

The assumption behind this model is that the fractional rate of
IgG catabolism is equal to its fractional rate of catabolism at
steady state. A simulation of this model, alongside the original
four-compartment model, is shown in Figure 9B. The model is
simulated with values of k21 and k12 from Table 1 and all other
parameter values from Table 5. The responses for x1(t) and x2(t)
are very similar for the two models and appear overlayed in
Figure 9B. The maximal difference between x1(t) predicted by
the two-compartment model and x1(t) predicted by the four-
compartment model, for any of the 70 parameter vectors used
and at any simulated time point, is 0.2%. The responses are
indistinguishable by inspection for the two models.

The proposed two-compartment model is based upon the
assumption that the fractional rate of IgG catabolism is equal to
its fractional rate of catabolism in steady state.When the system is
in steady state, this assumption is of course true. However, faster
dynamics, caused by a rapid change in the IgG synthesis rate, will
cause this assumption to progressively weaken. Further study of
the proposed model is required to analyse its relationship with
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the original four-compartment model and to determine under
what conditions the proposed model predictions are within an
acceptable region of the four-compartment model predictions.

4. DISCUSSION

The motivation behind the research presented in this paper was
to investigate a model suitable for predicting IgG responses in
patients with IgGmultiple myeloma. When producing predictive
simulations of a biomedical system, it is important to know the
level of confidence in the model parameter values.

There are numerous published models of FcRn-mediated
recycling of IgG in the literature, some of which are cited in
the Introduction. Most of these models were developed for IgG-
based therapeutic monoclonal antibodies andmay not be suitable
for characterizing endogenous IgG. Those models characterizing
endogenous IgG, for example the models of Li et al. (34) and
Chen and Balthasar (10), rely upon a mixture of animal and
human data for sourcing parameter values.

For example, parameter values provided by Li et al. (34)
for endogenous IgG were taken from the literature, apart from
the catabolic clearance (corresponding to k03 of the present
study), the vascular reflection coefficient (not included in our
model), and the recycling rate constant (corresponding to k14
of the present study). These parameter values were obtained
by manually varying the parameters within the model until the
results showed a mean half-life of 21 days, a mean IgG synthesis
rate of 34 mg kg−1 day−1 and a realistic fold reduction in IgG
concentration when FcRn is not present. The values used for
the half-life and synthesis rate are those obtained from normal
human data by Waldmann and Strober (21) and Waldmann and
Terry (23).

One of the problems with the approach taken in previous
papers is that, whilst parameter values have been found that
provide a half-life of 21 days for an IgG synthesis rate of 34
mg kg−1 day−1, it is not clear what would happen to the half-
life when the IgG synthesis rate increases or decreases, under
the obtained parameter values. This approach is therefore akin
to fitting a model to a curve having only one data point. The
nonlinear relationship between synthesis or concentration of IgG
and its half-life, which is fundamental to the FcRn-IgG recycling
system, may therefore not be captured accurately using this
approach.

Another issue with this earlier approach is that it requires the
parameter values obtained from the literature to be fixed while
the remaining values are varied, therefore implicitly assuming
complete confidence in the fixed parameter values that were
sourced in the literature. One would question what would happen
if one or more of these parameter values were inaccurate by, say,
10% or more, what would be the effect on the corresponding
values obtained for k14 and k03?

Having considered the models available in the literature
and their issues in respect of parameter identifiability, we
identified the need for a semi-mechanistic model with parameter
values obtained using only in vivo human data. This approach
necessitated a simpler model than those available in the literature

and previously discussed. The model studied in this paper is
therefore missing some of the mechanisms of the more complex
models. However, simplified compartmental models can often be
derived from complex physiologically-based models by lumping
compartments and processes. Lumped models may be adequate
for describing processes of interest, for example responses in a
central/plasma compartment. Fronton et al. (14) demonstrate
the correspondence between a physiologically-based model and
several compartmental model structures for IgG. A similar study
could be performed using the models presented in this paper in
future work.

In this paper, two observed model outputs were considered:
the timecourse of the proportion of a dose of IgG remaining
in plasma and in the body of an individual subject; and
the FCR vs. the quantity of endogenous IgG in plasma,
measured in a cohort of subjects with a range of plasma
IgG concentrations. We derived mathematical descriptions
of these experimental observations based on the underlying
model. Structural identifiability analysis was performed with
respect to these observations in order to determine which
parameters are structurally uniquely identifiable from the
available outputs.

In section 3.1 we estimated parameter values using data for
the timecourse of an administered dose of radiolabeled IgG in
plasma and in the body. We found that all parameters of the
linearized model are structurally globally identifiable. Whilst the
model is capable of fitting the data well, the results of 10 runs
of differential evolution suggest that the parameter estimates are
not robust. Highly different parameter vectors, as illustrated by
the relative standard deviations of parameter estimates from 10
runs, produce similarly excellent fits to the data. These results
suggest that the available data do not support the complexity
of the model. A future study may apply a systematic analysis of
model sensitivity and parameter correlations, for example using
the profile-likelihood method of Raue et al. (35) or generalized
sensitivity functions of Thomaseth and Cobelli (36) [extended
to multiple output models by Kappel and Munir (37)]. Another
potential study for future work could involve estimating model
parameters from synthetic timecourse data, to see whether
more frequent sampling or a longer observation period provides
more stable parameter estimates. However, as highly different
parameter values produce similarly excellent fits to the data, the
type of data needed for robust parameter estimation is likely to
be of a very high quality. As the data are obtained by taking blood
samples, there is a practical limitation on the sampling frequency
for an individual subject.

The data used were obtained from tracer experiments that
were performed between 1963 and 1990. More recent IgG
timecourse data are available; however, these data pertain to
therapeutic monoclonal antibodies, which can have different
kinetics (38). Timecourse data are also available for patients
with IgG multiple myeloma, whose serum IgG concentration is
monitored during therapy. However, the production rate of IgG
in these patients is determined by the status of the disease. Using
these data to estimate model parameters would therefore require
simultaneous estimation of IgG production parameters. This
would require a more complex structural identifiability analysis
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and may be considered in future work. For these reasons, more
recent data were not used in this study.

The structural identifiability of the relationship between FCRE

and the quantity of endogenous IgG in plasma, x1,E, was
analyzed. We found that the parameter k31 and newly defined
parameters ψ1 = (k03v3

(

k14 + koff
)

)/kon and ψ2 = k14Rtot
are structurally globally identifiable. These new parameters
were estimated using least squares estimation. Estimation with
synthetic data shows that these parameters can be estimated with
a reasonable level of variability. The parameters k31 and ψ2 are
physiologically meaningful: k31 is the rate at which plasma IgG is
internalized into intracellular endosomes and ψ2 is the maximal
rate of recycling of IgG from endosomes into plasma. The 95%
confidence interval for k31 (0.135–0.174 day−1) is similar to other
values reported in the literature [0.13 day−1 (17); 0.18 day−1

(21); 0.16 day−1 (33)]. The 95% confidence interval for ψ2 (12.3–
39.2 µmol day−1) is smaller than previously reported values [68.6
µmol day−1 (16); 103 µmol day−1 (17)]; however it overlaps with
the 95% confidence interval (19.1–60.9 µmol day−1) reported by
Kendrick et al. (33).

In applications in which the behavior of the variables
x3(t) and x4(t), representing unbound and bound IgG in
intracellular endosomes, respectively, are of great importance,
clearly parameter values are required which determine their
behavior, including receptor-ligand binding (kon/v3, koff, and
Rtot), recycling of bound IgG into plasma (k14) and degradation
of unbound IgG (k03). The results presented in this paper suggest
that it is not possible to estimate these parameters from the
available data that are only based upon measurements in plasma.
In section 3.3, it is shown that these parameters can be varied
by several orders of magnitude (see Figure 8) whilst having a
minimal effect on the plasma IgG response (see Figure 9A). It is
possible that the actions of the parameters determining recycling,
degradation, association and dissociation can approximately
balance each other out with respect to the dynamics in the
plasma compartment, even though the responses of IgG in the
endosome are affected by changes in these parameter values.
For investigations limited to the behavior of IgG in plasma,
model reduction using the parameters k31, ψ1, and ψ2 could
be investigated in future work. A two-compartment model
based upon the newly derived expression for the FCR has been
proposed in section 3.3. Further analysis of this model is required
to determine whether it is suitable for investigating IgG responses
under a range of clinical conditions.

In future work the models studied in this paper could be
used to simulate plasma IgG responses in clinical applications,
such as the bone marrow cancer multiple myeloma, in which
malignant plasma cells secrete large quantities of monoclonal Ig
(M-protein). It has been suggested that the FcRn-IgG interaction
may play a significant role in the detection of M-protein using a
recently-developed mass spectrometry-based method (4). It was
found that in patients with IgG-producing disease, the test result
was more likely to be positive for M-protein after three months
than in patients with IgA-producing disease, whereas after 12
months the patients were equally likely to have a positive test
result.Mills et al. (4) have suggested that this effect is due to FcRn-
mediated recycling extending the half-life of IgG, emphasizing
the importance of assessment times of response. FcRn-mediated

recycling also plays a role in the pharmacokinetics of the novel
monoclonal IgG agent for multiple myeloma, daratumumab. Yan
et al. (5) found that the isotype of the patient’s M-protein has an
effect on drug exposure, with IgG patients having significantly
lower daratumumab concentrations than patients with other
M-protein types. Yan et al. (5) proposed that competition
between the IgG M-protein and IgG-based daratumumab for
FcRn receptors is the reason for this phenomenon. These recent
studies show the importance of FcRn-mediated recycling of IgG
in multiple myeloma and the need for mathematical modeling
and simulation of this system. The model studied in this paper
could be used in future work to investigate such problems.

There is a trade-off in modeling between model accuracy,
which is more often represented in complex physiologically-
based pharmacokinetic models, and accuracy of parameter
values, which is more easily achieved with simplified
compartmental models. At present, there are very few
studies available on parameter estimation for models of
IgG-FcRn kinetics using human data due to issues of parameter
identifiability. This paper not only provides useful parameter
estimates and suggests a novel model structure, but also exposes
some of the difficulties in achieving this aim. Researchers
pursuing physiologically-based models of IgG in the future
may find it useful to compare the rate of IgG internalization
into endosomes and the maximal rate of IgG recycling in their
model with the values that we have estimated from human data
[considering the approach of Li et al. (34) discussed above].
Furthermore, our paper shows the level of analysis (including
structural identifiability analysis, estimation from synthetic data,
for example) required in order to have confidence in parameter
estimates obtained and an understanding of their meaning to
the model.

5. CONCLUSION

It is not possible to estimate all of the model parameters robustly;
however certain structurally identifiable parameter combinations
have been estimated with a good level of variability. Plasma
IgG responses, under typical clinical conditions, are insensitive
to large changes in many of the model parameters, provided
that certain parameters and parameter combinations are fixed. A
reduced-order model, based upon the newly derived expression
for the FCR, shows potential for simulating plasma IgG responses
under clinical conditions.
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