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Single-molecule localization microscopy (SMLM) techniques allow near molecular scale

resolution (∼ 20 nm) as well as precise and robust analysis of protein organization

at different scales. SMLM hardware, analytics and probes have been the focus

of a variety of studies and are now commonly used in laboratories across the

world. Protocol reliability and artifact identification are increasingly seen as important

aspects of super-resolution microscopy. The reliability of these approaches thus requires

in-depth evaluation so that biological findings are based on solid foundations. Here

we explore how different fixation approaches that disrupt or preserve the actin

cytoskeleton affect membrane protein organization. Using CD4 as a model, we show

that fixation-mediated disruption of the actin cytoskeleton correlates with changes in

CD4 membrane organization. We highlight how these artifacts are easy to overlook

and how careful sample preparation is essential for extracting meaningful results from

super-resolution microscopy.

Keywords: super-resolution imaging, CD4, actin cortex, fixation, artefact analysis

INTRODUCTION

Super-resolution microscopy is a fundamental tool for exploring and understanding nanoscale
biological assemblies. Single-molecule localization microscopy (SMLM) techniques in particular,
such as photoactivated localization microscopy (PALM) (1) and stochastic optical reconstruction
microscopy (STORM) (2), are the optical imaging gold standards to study membrane protein
organization (3). SMLM techniques provide high spatial resolution (∼ 20 nm) and allow
for statistical, nonbiased analysis of membrane protein nanoscale organizations (1, 2, 4, 5).
Thereby, super-resolution microscopy has provided new views on the organization of membrane
receptors, from immune sensing to pathogen engagement (6). The organization of receptors
into micro- and nanoclusters at the plasma membrane is a common feature and an important
regulatory mechanism for cell signaling and activation (7–12). Thus, analyzing the nanoscale level
organization of these molecules is critical to understand basic regulation of cellular signaling
but also to understand the function of these proteins in disease. For example, CD4 plays
an important role in immune cell activation through its ability to enhance T-cell receptor
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(TCR)-mediated signaling by binding to the antigen-presenting
major histocompatibility complex II (MHCII) (13). Besides its
importance in immune signaling, CD4 is also the primary
cellular receptor for human immunodeficiency viruses (HIV)
(13, 14). The importance of super-resolution in the study
of membrane receptor organization and function cannot be
overstated. A recent example is the characterization of the
spatiotemporal dynamics and stoichiometry of the interactions
between CD4 (and co-receptors) and HIV-1 in the context of
viral entry, impossible to achieve without molecular imaging
approaches (14).

A key component of membrane organization is the actin
cytoskeleton (15, 16). The actin cortex underlies the plasma
membrane and interacts with both lipids and membrane
proteins, functioning as a dynamic scaffold providing support
and force for the continuous remodeling of membrane
receptor organization (17–19). It is not surprising that the
actin cytoskeleton has been the subject of a considerable
number of studies in a variety of biological settings, from
viral engagement to axon organization using (super-resolution)
microscopy (17, 20, 21).

The increased resolution and detailed analytic information
provided by SMLM requires rigorous scrutiny of collected data
(22–24). The succession of steps from the native organization
of a receptor in the plasma membrane to the final super-
resolution image can be significantly influenced by artifacts,
particularly if imaging requires chemical fixation (22–24).
Ideally, chemical fixation preserves the macroscopic structure
of the sample as well as the native nanoscale organization of
target proteins. However, true preservation at the subcellular
level is not trivial, as known from electron microscopy
studies (25, 26). Furthermore, chemical fixation does not
immediately immobilize membrane-associated proteins (27).
Thus, given the increase in resolution afforded by super-
resolution microscopy, the effect of fixation has been the
focus of several recent studies (22–24). Importantly, there are
multiple chemical fixation methods, differing by the fixative used
(e.g., paraformaldehyde, glutaraldehyde, glyoxal or methanol),
the buffer composition (e.g., phosphate buffered saline,
cytoskeleton stabilizing buffer or PIPES-EGTA-magnesium
buffer), and physical conditions (temperature and duration)
(22–24, 28–30). There is, at this stage, no standardized sample
preparation protocol to study membrane protein organization.
Moreover, to the best of our knowledge, there is no correlative
study to understand how, in the same cells, fixation-induced
changes in the actin cytoskeleton may affect membrane
protein organization.

Here, we analyze how the morphology of the actin
cytoskeleton changes with different chemical fixation
protocols and how these changes correlate with the membrane
organization of the membrane receptor CD4 (Figure 1).
We show that conditions that have detrimental effects on
cytoskeleton organization correlate with changes in the
membrane organization of CD4. We suggest that careful sample
preparation and handling during all steps leading to the final
image is essential for all scientists.

Suboptimal Fixation Protocols Affect the
Actin Cytoskeleton and CD4 Membrane
Organization Differently
To understand the effect of suboptimal actin fixation protocols
on CD4 membrane organization we correlated live-cell and
fixed-cell actin and CD4 organization using NanoJ-Fluidics
(31) (Figure 2A) and Structured Illumination Microscopy (SIM)
(32).We imaged actin in live COS7 cells with an utrophin
domain (UtrCH-GFP) (33) probe and CD4 tagged with TagRFP-
T.We performed chemical fixation using three different chemical
fixation protocols, 4% paraformaldehyde (PFA) in PBS at 23◦C,
4% PFA in PEM (23) at 4◦C or at 37◦C (Figures 2B–D).
Subsequently, using NanoJ-SQUIRREL (22), to compare the
live-cell vs. fixed-cell organization of actin and CD4, we were
able to identify the effects of the suboptimal (4% PFA in PBS
at 23◦C and 4% PFA in PEM at 4◦C) fixation protocols on
these targets and compare with the optimal protocol (37◦C
4% PFA in PEM) (23). As expected (23, 24), using PBS
we observed a loss of protrusive actin-based structures and
actin stress fibers appear to be disassembled or disrupted
(Figure 2B). The fixation resulted in an almost indiscernible
actin cytoskeleton, which translates to a NanoJ-SQUIRREL error
map exhibiting strong artifacts (Figure 2B). Using PEM buffer,
more suited for actin preservation (23), but at a suboptimal
temperature (4◦C), we see less of the aforementioned defects
on the actin organization (Figure 2C). Pre-warming the PFA-
containing PEM buffer to 37◦C yielded a similar difference
between live and fixed sample as measured by NanoJ-SQUIRREL
(Figure 2D). Regardless of the fixation approach we did not see
an effect on CD4membrane organization, quantified on the error
maps where most of the differences are due to vesicle motion
during fixation (Figures 2B–D).

The Fixation Protocol Influences CD4
Cluster Size and Cluster Density at the Cell
Surface
To ascertain if CD4 membrane organization was correlated
with fixation-mediated actin cytoskeleton disruption we repeated
the live-to-fixed cell correlation using SMLM and PEM with
different fixation temperatures. PEM is an ideal buffer for
actin preservation (23), and the range of temperatures provide
different fixation efficiencies, with decreasing efficiency from
37◦C (ideal) to 23◦C (intermediate) to 4◦C (lowest efficiency).
We took advantage of the versatile NanoJ-Fluidics (31)
framework to correlate live and fixed cell imaging of COS7 cells
(Figure 3A). As expected, regardless of the fixation strategy we
obtain a fairly homogeneous distribution of CD4 on the surface
of COS7 cells (Figure 3B) at an in-cell high-resolution [43–50
nm by FRC (22)]. To further explore the nature of the CD4
organization we used SR-Tesseler (4) to determine if the cluster
sizes and cluster density of CD4 would change depending on
the fixation approach (Figure 3C). Interestingly, despite the little
changes observed by SIM (Figure 2), both CD4 cluster size and
cluster density changed with the fixation approach. Whereas, the
mean CD4 cluster size in ideal conditions (PEM buffer at 37◦C)
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FIGURE 1 | Schematics of the experimental workflow to correlate actin morphology with CD4 membrane organization. We analyse on the same cells how the actin

cytoskeleton morphology changes with different chemical fixation protocols and how this correlates with the membrane organization and mobility of CD4. Cortical

actin (white and gray circles); arrows represent protein mobility; GPI anchored GFP (GFP-GPI); artificial transmembrane protein with cytosolic and extracellular

domains (mHoneydew and YFP, respectively - TM); CD4 fused to TagRFP-T (CD4-RFP).

is 59 nm, reducing the temperature to 23 or 4◦C is enough to
change CD4 organization, increasing the mean cluster size to 65
nm (p < 0.001), albeit these differences are likely not biologically
relevant (see section Discussion). The fixation conditions also
influence the CD4 cluster density in COS7 cells, with densities
of 1.3 clusters/µm2 at 37◦C, 1.8 clusters/µm2 at 23◦C, and 3.8
clusters/µm2 at 4◦C.

Fixation-Induced CD4 Reorganization
Correlates With Actin Cytoskeleton
Preservation
We posited that fixation-induced changes in CD4 organization
could be related to disruption of the actin cytoskeleton
(Figure 2). To determine if the actin cytoskeleton was affected
we compared the actin organization in the cells pre- and post-
fixation (Figure 3D). We observed a disruption of the actin
cytoskeleton at 23 and 4◦C when compared with fixation at
37◦C (Figure 3D). Independent of the fixation condition the
post-fixation actin organization is different from the live-cell
actin organization (Figure 3D yellow arrowheads). With the
decrease in fixation temperature there is a step-wise decrease
in the fidelity of the fixed-cell actin structure in relation to the
one observed in live-cells. At lower fixation temperatures, actin
filaments disappear and there are gaps in the actin structure,
possibly related to cell detachment from the substrate or actin
cytoskeleton disruption (Figure 3D red arrowheads). These
artifacts are less prevalent in cells fixed under conditions that
preserve the actin cytoskeleton structure.

CD4 Membrane Reorganization Is not
Related to Fixation-Induced Cell
Membrane Disruption
The difference in membrane receptor organization could
be the result of the dependence of fixation efficiency on

temperature. Employing our live-to-fix approach, we sought to
determine how quickly the addition of PFA-containing PEM
buffer immobilizes membrane associated proteins (Figure 4).
An artificial transmembrane protein with a ∼30 kDa cytosolic
and extracellular domain (mHoneydew and YFP, respectively)
was expressed in COS7 cells and individual proteins tracked
with uPAINT (34), i.e., by adding low concentration (∼20
pMol) of Atto647N labeled anti-GFP nanobodies (Chromotek)
to the medium (Figure 4B, first panel). Diffusion coefficients
based on particle velocity were 0.27 ±0.06 µm2/s (mean).
Exchanging the cell culture medium with 37◦C pre-warmed
4% PFA in PEM immediately reduced the diffusion speed of
transmembrane proteins (Figure 4B, middle panel, arrow) and,
after 10 min fixation, 97% of proteins were immobilized (D
< 0.05 µm2/s) (Figure 4C). Addition of cold (4◦C) 4% PFA
in PEM had similar effects on measured diffusion coefficients
and mobility (Figure 4C). Next, we tested if the same was true
for a GPI-anchored protein that lacks any cytosolic domain
that might interact directly with the cytoskeleton. GPI-anchored
GFP was tracked via anti-GFP nanobodies. Addition of warm
(37◦C) or cold (4◦C) 4% PFA in PEM buffer to live cells
reduced the mobility of tracked individual particles without
immobilizing them completely (Figure 4D, middle panel, arrow).
In contrast to the transmembrane probe, only some particles
were immobilized after fixation for 10 min. The reduction
of diffusion coefficients as measured by velocity or mean
square displacement (Figure 4E, left and middle panel) was
not significantly different based on temperature. The mobile
fraction was reduced to 36 and 32% (mean) after warm and
cold fixation, respectively. Thus, changes in diffusive behavior
were more dependent on the type of membrane protein tracked,
rather than the fixation conditions (Figures 4C,E), which is in
agreement with previous publications (27). However, even with
only 4% PFA andwithout any cross-linking fixatives, we observed
a rapid immobilization of transmembrane proteins that would
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FIGURE 2 | Effect of suboptimal fixation conditions on actin and CD4

organization. (A) NanoJ-Fluidics protocol to perform the live-to-fixed cell

correlation under different suboptimal fixation conditions. (B) Epifluorescence

and SIM imaging of COS7 cell expressing Utr(CH)-GFP and CD4-TagRFP-T

live (Live) and fixed (Fixed) with 4% PFA in PBS at 23◦C and corresponding

NanoJ-SQUIRREL error maps (Error map). (C) same as in (B) but fixation was

performed with 4% PFA in PEM at 4◦C. (D) same as in (B) but fixation was

performed with 4% PFA in PEM at 37◦C. Scale bars are 10 µm.

prevent artificial clustering by subsequent antibody labeling
approaches. Comparison of trajectories during the 10 s before
and after addition of the chemical fixative showed an immediate
shift of the histogram of diffusion coefficients determined via
MSD toward lower values (Figure 4F). While there was no
striking difference between pre-warmed and ice-cold fixative,
we observed a trend toward a faster decrease in mobility at the
higher temperature.

Chemical Fixation Immediately Stops
Cellular Motion
We determined how long cellular processes such as the motion
of intracellular vesicles or lamellipodia persist during chemical
fixation with PFA and whether this process was temperature
dependent. Live COS7 cells were imaged in phase-contrast
(Figure 5A). Upon exchange of the medium with 4% PFA pre-
warmed to 37◦C all cellular motion stopped immediately as
determined by correlating images with the previous frame for the
entire field of view (Figure 5B) or selected regions (Figures 5C,D
and Supplementary Movies 1, 2). The plateaus in correlations
pre- and post PFA addition correspond to cellular motion
and noise during imaging. Chemical fixation with ice-cold 4%
PFA inhibited cellular motion equally fast (Figures 5E–G). The
increased fluctuations in correlations (Figures 5F,G) were caused
by a shift in the focal plane, also observed in the image sequence
(Figure 5 and Supplementary Movies 3, 4).

Discussion
The super-resolution revolution in optical microscopy offers
even inexperienced users up to 10-fold increased resolution
on commercial systems that have become commonly available
through imaging facilities. However, established sample
preparation protocols that were previously acceptable may be
inadequate for super-resolution microscopy, as the inaccuracies
are no longer masked by the diffraction limit. While the
importance of careful sample preparation is readily accepted,
its assessment remains challenging. Neglecting to recognize
this cost associated with increased resolution could render
imaging results useless or worse might incorrectly inform
researchers about a biological system. To demonstrate sample
preparation inadequacies in imaging regimes, we took advantage
of NanoJ-Fluidics (31) and NanoJ-SQUIRREL (22) to compare
the pre- and post-fixation actin structures and CD4 cellular
organization, in the same cells. We asked what would be the
influence of chemical fixation using different imaging regimes
with increasing resolution (TIRF, SIM and SMLM) by correlating
pre- and post-fixation images. The actin cytoskeleton acts as
a supporting scaffold that orchestrates the organization of the
plasma membrane (35, 36). However, while actin filaments
are strongly affected by chemical fixation conditions, the
plasma membrane itself is affected to a lesser extent. Chemical
fixation is usually fast and even a simple protocol can achieve
structural preservation of the organization of transmembrane
proteins in the plasma membrane. Despite the availability of
chemical fixation protocols that preserve the actin cytoskeleton,
the predominant approach for studying protein organization is
fixation with 4% PFA in PBS. Our data suggests this is insufficient
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FIGURE 3 | Correlation between CD4 membrane organization and actin structure fidelity upon fixation (A) NanoJ-Fluidics protocol to perform live-to-fixed cell

correlation under different fixation conditions. (B) CD4 STORM imaging after fixation in different conditions (Top) and FRC map of the same region (Bottom). Scale bars

are 5µm. (C) CD4 cluster size and cluster density under different fixation conditions. (D) Diffraction limited (TIRF) live-to-fixed cell correlation using different fixation

conditions. Red arrowheads highlight areas where actin disappeared upon fixation. Yellow arrowheads highlight areas where there is a difference in actin organization

due to fixation. Scale bars are 1µm. ****p < 0.001.

to produce reliable imaging data on receptor distributions for
imaging modalities that break the diffraction limit. The chemical
fixation protocol used was shown to play a crucial role on the
introduction of artifacts. We applied SQUIRREL, a recently
developed quality metric tool (22), to quantify how much
cytoskeletal structures are distorted by chemical fixation at
exemplary conditions. Our approach is widely applicable to
determine the impact of any fixation protocol beyond those
tested. Of course, a correlation between pre- and postfixation
structures is required which, albeit greatly facilitated by NanoJ-
Fluidics (31), is still a time-consuming quality control approach.
However, in our opinion, the benefit of increased confidence in
light microscopy data is worth the added effort. The increase

in cluster size and density we observed could be due to: (1)
disruption of the actin cytoskeleton organization that could affect
to CD4 membrane organization via protein-protein interaction;
(2) fixation-induced changes in membrane properties, which
would cause artificial reorganization of membrane proteins; (3) a
combination of both factors. Using super-resolution microscopy
we could show that the changes in CD4 organization coincided
with a disrupted actin cytoskeleton profile. The cluster size in
optimal conditions suggests CD4 may be organized in dimers (as
seen by the mean cluster size of ∼60 nm), which is consistent
with its suggested capacity to homo-dimerize, a process that may
increase the avidity of its binding to MHCII (37). The differences
observed between temperatures regarding CD4 cluster size are
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FIGURE 4 | Single-particle tracking of membrane probes during live fixation.

(A) Experimental workflow for live and fixed cell single-particle tracking.

(B) Trajectories of a transmembrane probe with cytosolic and extracellular

domains, tracked via fluorescently-labeled nanobodies on live cells (left).

Middle panel show a typical trajectory with Brownian motion at the start

(arrowhead) and immobilization upon addition of 4% PFA in PEM buffer

(arrow). All transmembrane proteins appear immobilized in fixed cells.

(C) Quantification of diffusion coefficient D based on velocity (left),

mean-square displacement (middle) and percentage of mobile (D>0.05µm2/s)

particles (right). No significant difference between chemical fixation at 4 or

37◦C was observed. (D) Trajectories of GPI-anchored probe tracked via

fluorescently labelled nanobodies on live cells (left). Middle panel show a

typical trajectory with Brownian motion at the start (arrowhead) and reduced

mobility upon addition of 4% PFA in PEM buffer (arrow). Some GPI-anchored

proteins are immobilized in fixed cells while a fraction remains mobile. (E)

Quantification of diffusion coefficient D based on velocity (left), mean-square

displacement (middle) and percentage of mobile (D>0.05µm2/s) particles

(right). (F) No significant difference between chemical fixation at 4 or 37◦C was

observed despite a trend toward faster fixation at warmer temperatures. Scale

bars are 5 µm (left, right) and 500 nm (middle panels).

negligible (∼6 nm) and likely related to the high number of data
points skewing the statistical analysis. This is something the
reader should always have in mind when analyzing statistical
significance, as in this case the ∼6 nm is significantly below the
resolution our setup can provide and within the linker error
introduced by using antibodies (∼10 nm). The cluster density
suggests a homogeneous distribution consistent with COS7
non-native CD4 expression. It is important to highlight that
the considerable differences in cluster density are in a system
where CD4 does not normally exist, hence lacking the regulatory
machinery or native interactions that may normally regulate
CD4 distribution. Presumably, the observed differences would be
more striking in CD4-positive immune cells where CD4 is linked
to p56/LCK (38). Interestingly, the degree of actin cytoskeleton
disruption is consistent with the extent of the changes we observe
in CD4 membrane organization. After chemical fixation at 4◦C
we observed almost complete disruption whereas at 23◦C the cell
displays a mixture of regions with disrupted and non-disrupted
actin structures. This suggests that despite CD4 not existing
in COS7 cells in native conditions, CD4 organization may be
affected by the structure of the dense actin cortex (possibly
through its cytoplasmic domain). Consequently, inadequate
actin chemical fixation regimes can affect CD4 membrane
organization and influence the biological information extracted
from SMLM CD4 analysis. Challenging fields, such as the spatial
distribution of immunomodulatory receptors require rigorous
controls. For example, actin cytoskeleton dynamics affect
clustering in immunological synapses (39, 40). Our approach
could be employed to quantify the effects of actin perturbing
drugs used on these cells.

We cannot exclude that membrane disruption and
reorganization (such as membrane permeabilization or steep
temperature mismatches between live-cell and fixation buffers,
respectively) also plays a role in exacerbating the differences
we observe. The importance of membrane composition and
organization for surface protein distribution is well-known
(41–43). Nonetheless, an indirect actin-related effect cannot be
disregarded. The link between membrane composition and actin
regulation is also recognized (44). For example, it is known that
the pool of actin monomers is modulated by phosphoinositides
(45, 46), or that alterations in the levels of cholesterol can
change the membrane-cytoskeleton adhesion properties (47).
However, our objective is to inform the reader on the possible
outcomes that common sample preparation approaches (as
multi-target IF or the use of intracellular epitopes, or different
fixation temperatures) may have. If possible, cell membrane
permeabilization and steep temperature changes should be
avoided for their effect on the sample. Additionally, thermal
drift affecting the optical system may reduce image quality or
introduce artifacts.

These results are further supported by single-particle tracking
experiments. Single-particle tracking of transmembrane proteins
and a GPI-anchored protein showed that the size and orientation
in the plasma membrane was more important than fixation
conditions. GPI-anchored proteins that reside in the outer leaflet
of the plasma membrane with only indirect interaction with
the submembrane cytoskeleton (48) remain largely mobile in
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FIGURE 5 | Cellular motion is immediately stopped by chemical fixation with PFA (A) Live COS7 cell imaged with phase contrast microscopy. (B) Image correlation

between subsequent frames indicates an immediate stop of cellular processes at t = 0 min when the medium was replaced with warm 4% PFA. (C) Correlations for

regions of interest with vesicles (purple) or lamellipodia (green). (D) Time-lapse of images before and after addition of the chemical fixative. Cellular features become

static within 30 s. (E) Live COS7 cell imaged with phase contrast microscopy. (F) Image correlation between subsequent frames indicates an immediate stop of

cellular processes at t = 0 min when the medium was replaced with cold 4% PFA. (G) Correlations for regions of interest with vesicles (purple) or lamellipodia (green).

(H) Time-lapse of images before and after addtion of the chemical fixative. Cellular features become static within 30 s. Scale bars are 10µm (A,E) and 3µm (D,H).
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FIGURE 6 | Model of changes induced by chemical fixation on membrane architecture. Optimized fixation with PFA preserves the cortical actin cytoskeleton structure

in a state resembling live imaging and rapidly stops diffusion of transmembrane proteins. Suboptimal fixation conditions induce deformations of membrane and

cytoskeleton and could thereby introduce artifacts. While the mobility of membrane probes is reduced similarly to optimized chemical fixation the overall organization

could be altered due to interruptions of the cytoskeleton. GPI anchored GFP (GFP-GPI); artificial transmembrane protein with cytosolic and extracellular domains

(mHoneydew and YFP, respectively - TM); CD4 fused to TagRFP-T (CD4-RFP).

ideal actin-preserving conditions. Any distribution or clustering
analysis must rule out post-fixation aggregation, e.g., by the use
of single-binders such as nanobodies. This is in agreement with
STED and FRAP data showing that appropriate fixation is critical
for imaging of microclusters (49). In contrast, transmembrane
proteins with a cytosolic domain such as CD4 or our artificial
transmembrane probe are quickly immobilized, indicating an
interaction with the submembrane cytoskeleton. During single-
particle tracking of membrane probes at 45 Hz, we observed
a trend toward faster immobilization in the first few seconds
after addition of the pre-warmed chemical fixative. During phase
contrast imaging at 0.066 Hz cellular motion was halted within
30 s for both conditions tested. The increased fluctuations in
correlation analysis after addition of ice-cold fixative was likely
due to thermal effects on sample structure and microscope
optics and not diffusion or reaction rate of the fixative. Our
observation that CD4 membrane organization is affected by
poor actin chemical fixation should serve as a cautionary
tale for sample preparation approaches to study membrane
proteins. Optimal fixation approaches preserve the cortical actin
cytoskeleton structure and the organization of transmembrane
proteins in a near-native state (Figure 6). Conversely, suboptimal
fixation conditions induce deformations of membrane and
cytoskeleton that can result in artifacts that can influence the
organization of membrane proteins, such as CD4 (Figure 6).
Although, we and others (40, 50–54) suggest that the actin
cytoskeleton, protein-protein interactions and the physiological
context (e.g., temperature) are important for membrane proteins
organization, many studies using SMLM focus on imaging
unknown structures and distributions of proteins that do not
have a known organization. It is important to highlight that this
work does not intend to suggest a direct correlation between
the actin cytoskeleton and CD4 surface organization (or other
surface proteins). Rather that when performing essential protocol
optimization, preservation of the overall cellular structure and
physiological context should be a priority. This work also aims

to highlight that there are already established protocols that
serve as excellent starting points (23, 24, 29, 30), hardware that
permits the optimization of such protocols to be streamlined
(31, 55) and tools that allow for seamless analysis of possible
bottlenecks (22, 55). In conclusion, to extract the most from
SMLM experiments it is essential to use reliable and repeatable
imaging protocols that preserve, as much as possible, the overall
cellular structure.

METHODS

Cell Lines
COS7 cells were cultured in phenol-red free DMEM (Gibco)
supplemented with 2 mM GlutaMAX (Gibco), 50 U/ml
penicillin, 50 µg/ml streptomycin (Penstrep, Gibco) and 10%
fetal bovine serum (FBS; Gibco). Cells were grown at 37◦C
in a 5% CO2 humidified incubator. Cell lines have not
been authenticated.

Plasmids
The plasmid expressing the calponin homology domain of
utrophin fused to GFP (GFP-UtrCH) was a gift from William
Bement (33) (Addgene plasmid #26737). The plasmid expressing
the cluster of differentiation 4 (CD4) fused to TagRFP-T
was constructed for this study by fusing the CD4 (56) and
TagRFP-T (57, 58) genes by overlapping PCR, with a 10
amino-acid linker (GGGGSGGGGS) encoded in the overlap
primers, and cloning the resulting fragment into pcDNA3.1+
(Thermo Fisher Scientific) using HindIII and XhoI restriction
enzymes (Promega). This plasmid is available from Addgene
(Addgene plasmid #119238). The plasmid expressing GPI-GFP
was a kind gift from Ari Helenius. The plasmid expressing the
artificial transmembrane probe was constructed based on Patrick
Keller’s L-YFP-GT46 (59) by adding the beta-barrel fluorophore
mHoneydew on the cytosolic side to increase size (60).
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Live-to-Fixed Super-Resolution Imaging
The NanoJ-Fluidics syringe pump array was installed on a
Zeiss Elyra PS.1 microscope equipped with 405, 488, 561, and
642 nm lasers (50, 200, 200, and 160 mW at the optical
fiber output). All steps after cell transfection were performed
on the microscope, using NanoJ-Fluidics (31, 61). COS7 cells
(kind gift from Dr. A. Saiardi) were seeded on ultraclean (62)
25 mm diameter thickness 1.5H coverslips (Marienfeld) at a
density of 0.3–0.9 × 105 cells/cm2. One day after splitting, cells
were transfected with UtrCH-GFP and pCD4-TagRFP-T using
Lipofectamine 2000 (Thermo Fisher Scientific) according to the
manufacturer’s recommendations. Cells were imaged 1–2 days
post transfection in culture medium using an Attofluor cell
chamber (ThermoFisher), covered with the lid of a 35 mm dish
(ThermoFisher), that was kept in place using black non-reflective
aluminum tape (T205-1.0 AT205, THORLABs).

Cells were fixed at 4, 23, or 37◦C for 15 min with freshly
prepared 4% paraformaldehyde (PFA) in the cytoskeleton-
preserving buffer “PIPES-EGTA-Magnesium” (PEM: 80 mM
PIPES pH 6.8, 5 mM EGTA, 2 mM MgCl2) (23) or at 23◦C for
15min with 4% PFA in Phosphate Buffer Saline (PBS: 0.14 M
NaCl, 10 mM NaH2PO4, 10 mM Na2HPO4).

For stained cells (Figure 2), after fixation cells were
permeabilised (PEM with 0.25% Triton-X-100) for 20 min
(at 23◦C), blocked with blocking buffer [5% Bovine Serum
Albumin (BSA) in PEM] for 30 min (at 23◦C), and stained with
anti-CD4 mAb (OKT4, 6µg/ml) for 60min (at 23◦C), followed
by anti-mouse Alexa Fluor 568 secondary Ab (Molecular Probes)
for 60 min (at 23◦C).

Structured Illumination Microscopy (SIM) imaging was
performed using Plan-Apochromat 63x/1.4 oil DIC M27
objective, in a Zeiss Elyra PS.1 microscope (Zeiss). Images were
acquired using 5 phase shifts and 3 grid rotations with the 561
and 488 nm lasers (at 5–10% of maximum output), and filter
set 4 (1,851–248, Zeiss). Images were acquired using a sCMOS
(pco.edge sCMOS) camera.

Total Internal Reflection Fluorescence (TIRF) imaging of
live COS7 cells was performed at 37◦C and 5% CO2 on a
Zeiss Elyra PS.1 microscope with 488 nm and 561 nm laser
illumination at 0.5% of maximum output. A 100x TIRF objective
(Plan-APOCHROMAT 100x/1.46 Oil, Zeiss) with additional 1.6x
magnification was used to collect fluorescence onto an EMCCD
camera (iXon Ultra 897, Andor), yielding a pixel size of 100 nm.
TIRF STORM imaging of anti-CD4 Alexa Fluor 568 in fixed
cells was performed on the same system. 50,000 frames were
acquired with 33 ms exposure and 561 nm laser illumination at
maximum output power with 405 nm pumping when required
(0.5–1% of maximum output when the blinking density was
bellow 1 particle/µ m2). STORM imaging was performed in
GLOX buffer (150 mM Tris, pH 8, 1% glycerol, 1% glucose, 10
mM NaCl, 1% β-mercaptoethanol, 0.5 mg/ml glucose oxidase,
40 µg/ml catalase). Single-particle tracking was performed in
medium at 37◦C and 5% CO2 on a Zeiss Elyra PS.1 microscope
in TIRF mode by acquiring 250/500 frames at 45 FPS with 642
nm laser illumination at 5% of maximum output. Live fixation
during phase contrast imaging was performed in medium at
37◦C and 5% CO2 on a Zeiss Elyra PS.1 microscope at 0.066

FPS with white LED illumination. For live-fixation, medium
was replaced by either ice-cold or 37◦C pre-warmed 4% PFA in
PEM buffer.

Image Reconstruction and Analysis
For Figure 2 images were processed using the ZEN software
(2012, version 8.1.6.484, Zeiss). For channel alignment, a multi-
colored bead slide was imaged using the same image acquisition
settings. For STORM datasets localizations were detected and
rendered using ThunderSTORM (63) with default settings.
Fourier Ring Correlation (FRC) values were obtained using
NanoJ-SQUIRREL after reconstruction of original data separated
into two different stacks composed of odd or even images
(22). NanoJ-SQUIRREL and ThunderSTORM are available in
Fiji (64). Statistical analysis (ordinary one-way ANOVA) was
performed using Prism7 (GraphPad). Single-particle tracking
data was analyzed using Trackmate (65) in Fiji and MSDanalyzer
(66) in MATLAB (Mathworks). Images sequences for movies
were bleach corrected (Fiji) and drift corrected (NanoJ).

Cross-correlation analysis was performed to analyse the
stability of samples pre- and post-fixation. Analysis was
performed using a custom-written plugin for Fiji (64) using
tools from the NanoJ-Core software package (55). Phase contrast
images were first drift-corrected using the drift correction
functionality of NanoJ-Core. A normalized 2D cross-correlation
matrix (CCM) was calculated between each frame of the
image series and the frame immediately preceding it. The
peak intensity in the CCM indicates the similarity between the
two images, where a value of 1.0 indicates perfect similarity
between the images. The plugin for this analysis is including
in the latest release of the NanoJ-Core software package as
“Similarity Evolution”.
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