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Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to

the maintenance of homeostasis in various normal tissues including the lung. Adenosine

is either released from stressed or injured cells or generated from extracellular adenine

nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′

ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent

increase of adenosine in normal tissues mostly exerts tissue protective functions

whereas chronically increased adenosine-levels in tissues exposed to DNA damaging

chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis

for example in the skin and the lung. Importantly, cancer cells also express CD73

and high CD73 expression in the tumor tissue has been linked to poor overall

survival and recurrence free survival in patients suffering from breast and ovarian

cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis,

and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or

therapy-induced immune escape by various mechanisms that dampen the immune

system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor

microenvironment emerges as an attractive novel therapeutic strategy to limit tumor

progression, improve antitumor immune responses, avoid therapy-induced immune

deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine

signaling in the tumor and normal tissue responses to radiotherapy and its use

as therapeutic target to improve the outcome of radiotherapy approaches is less

understood. The present review will highlight the dual role of CD73 and adenosine

in tumor and tissue responses to radiotherapy with a special focus to the lung. It

will also discuss the potential benefits and risks of pharmacologic modulation of the

CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined

radioimmunotherapy in cancer treatment.

Keywords: CD73, adenosine, radiotherapy, therapeutic window, normal tissue toxicity, Treg, macrophages,

tumor microenvironment

INTRODUCTION

Radiotherapy is a mainstay in the treatment of cancer patients. About 60% of all cancer patients
receive radiotherapy during the course of their disease alone or in multimodal combinations of
surgery, radiotherapy, and chemotherapy, with beneficial effects of these highly effective treatments
on long-term survival and tumor cure (1–5). Moreover, much progress has been made with
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technical improvements in treatment planning that increase
accuracy of dose delivery, as well as by the development of
particle therapy approaches (6). Nevertheless, cure rates still need
to be improved for prevalent cancer types with high loco-regional
failure-rates or a high risk for invasive growth or metastatic
spread. For example, patients suffering from locally advanced
non-small cell lung cancer (NSCLC) are typically treated with
fractionated radiotherapy to the thoracic region, or concurrent
platinum-based radiochemotherapy (RCT) yielding local control
rates of 40–66% with doses of 60–66 Gray (Gy) (7–9). But loco-
regional failures upon definitive RCT or disease progression by
distant metastases are common and it is thought that improving
local control rates will directly improve survival rates (9, 10).

Herein biological factors such as the high intrinsic tumor
cell radio resistance, a pronounced tumor heterogeneity,
diversity in radiation responses, and a resistance-promoting
microenvironment reduce the efficacy of radiotherapy and thus
contribute to failures. Otherwise, the high radio sensitivity of the
normal lung tissue limits the application of curative radiation
doses to the thoracic region and therapy intensification efforts
of RCT (9, 11). Technical advances in image guidance and
modern radiation techniques have significantly increased the
safety profile of thoracic radiotherapy (12–14); but radiation-
induced lung disease (RILD) still represents a serious normal
tissue complication associated with radio(chemo)therapy of
thoracic neoplasms or total body irradiation in conditioning
regimens for hematopoietic stem cell transplantation (15–17).
Moreover, toxicity rates can increase or new toxicities can be
observed when using molecularly targeted drugs in combination
with radiotherapy (18–21). Thus, there is a high need for further
innovations in radiotherapy practice that improve the tumor
response without increasing toxicity.

The progress in cancer immunotherapy and the discovery
that radiotherapy activates T-cell-mediated antitumor immune
responses under certain conditions, particularly when combined
with established immune checkpoint blockade, expedited
interest, and research in exploiting a potential benefit of
combining radiotherapy with immunotherapy in pre-clinical and
clinical cancer research (22–30). However, there are still major
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challenges in defining optimal dosing and treatment schedules
and understanding the dual face of radiation-induced immune
changes with potential impact on immune-related adverse effects.
Moreover, only a fraction of patients responds to the treatment
with immune checkpoint blockade alone or in combination with
radiotherapy as tumors may not be immunogenic, dispose of
efficient strategies to escape from tumor immune surveillance, or
responses may not be durable (31–34).

In this context, accumulation of extracellular adenosine
through activation of 5′ectonucleotidase (CD73) and subsequent
signaling through adenosine receptors is a common mechanism
how tumors escape from tumor immune surveillance. This
makes CD73/adenosine signaling an attractive target in immuno-
oncology and the related studies and underlying principles are
well covered in various reviews (35–39).

But the role of CD73/adenosine signaling in the response
of tumors and normal tissues to radiotherapy and its potential
impact on the outcome of radiotherapy and combined
radioimmunotherapy are less well described. Herein it is
important to consider that the effects of CD73/adenosine
activation on the immune system and reconstitution of tissue
homeostasis might well differ among tissues of different origins
as well as between acute and chronic activation stages. Therefore,
we will first introduce the contribution of radiotherapy-induced
changes in the innate and adaptive immune cell compartments
to acute and chronic tumor and normal tissue responses
and point to beneficial and adverse roles to the outcome of
radiotherapy. We will then summarize current knowledge
about the role of CD73 and adenosine in tumor and normal
tissue responses to radiotherapy, and highlight the potential of
targeting CD73/adenosine for improving the therapeutic gain of
radio (immuno)therapy in thorax-associated tumors with high
risk of adverse late effects in the highly radiosensitive normal
lung tissue.

PARADIGM CHANGE: RADIATION
ACTIVATES LOCAL AND SYSTEMIC
IMMUNE EFFECTS

The broad use of radiotherapy as standard treatment option
in the therapy of solid human tumors is based on its ability
to damage cellular macromolecules, particularly the DNA,
thereby effectively inducing growth arrest and cell death
locally in irradiated tumor cells. But bystander effects such
as the transmission of lethal signals between cells via gap
junctions or the production of diffusible cytotoxic mediators can
also contribute to local antineoplastic action of radiotherapy.
However, despite reported transient immunosuppressive effects
by local induction of immune cell death (40) and or immune
impairment (41, 42), multiple reports highlight the ability of
radiotherapy to induce systemic effects that involve activation of
the innate and adaptive immune systems (22, 23, 43, 44).

In the context of tumor therapy, exposure to ionizing
radiation can modulate immunosuppressive barriers in the
tumor microenvironment, trigger the recruitment of immune
effector cells to the local tumor, render tumors accessible to
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infiltration of immune effector cells by modulating restrictive
tumor vessels, and even elicit tumor-specific immune responses
leading to the regression of tumor lesions locally and at
tumor sites outside the radiation field (abscopal effects) (22,
45–50). Elegant pre-clinical investigations helped to reveal
the importance of T-cell responses to the local and abscopal
antitumor effects in response to radio(immuno)therapy and to
uncover the underlying mechanisms (47, 51–57).

Since abscopal effects seem to be rare in the clinical
situation (49, 58–61), current clinical trials focus on combining
radiotherapy with different immunotherapies (30, 47, 48, 62–
64). Notably, there is hope from first clinical studies that
blockade of the programmed cell death 1/programmed death-
ligand 1 (PD-1/PD-L1) immune checkpoint might improve
progression-free survival in lung patients with an acceptable
safety profile, when given after radiotherapy or platinum-
based RCT (65, 66). But further studies are needed to explore
the efficacy and the safety profile of combined therapy of
cancer patients suffering from thorax-associated neoplasms with
radiotherapy and immunotherapies, to define biomarkers for
patient selection and potential compensatory immune-tolerance
mechanisms in malignant tumors (27, 67), and to define optimal
treatment schedules.

It appears that the local induction of damage to highly
radiosensitive resident cells in the lung with subsequent
activation of non-targeted immune effector mechanisms might
also contribute to the adverse effects of ionizing radiation in
normal tissues such as the development of pneumonitis and
pulmonary fibrosis (68–74). Similar to other models of sterile
inflammation radiation-induced damage to resident normal lung
tissue cells triggers a multifaceted damage-signaling cascade
including amultifactorial secretory program in order to stimulate
repair and recovery (74). However, radiation induces chronic
changes in irradiated tissues that presumably result from
a persistent damage signaling. These chronic environmental
changes impact not only the phenotype of resident cells but also
the recruitment and polarization of immune cells infiltrating the
previously irradiated lung tissue, thereby disturbing the balance
between inflammatory and repair processes and promoting
chronic fibrosis progression (73).

DUAL FACE OF RADIATION-INDUCED
IMMUNE CHANGES: BALANCE BETWEEN
IMMUNOACTIVATING AND
IMMUNOSUPPRESSIVE EFFECTS

As outlined above, exposure to ionizing radiation has the capacity
to induce immune responses in normal and tumor tissues.
These changes involve a complex interplay between cells of the
irradiated malignant or healthy normal tissues and cells of the
innate and adaptive immune systems. But, depending on the
type (tumor vs. normal) and origin of the irradiated tissue, the
temporal appearance (acute vs. chronic), and the basal immune
status of the tissue before exposure to ionizing radiation (pro-
vs. anti-inflammatory), the response of the immune system can
either adopt immunostimulatory or immunosuppressive effects

and have either a positive impact (anti-tumor; normal tissue
protection) or a negative impact (pro-tumor; normal tissue
toxicity) on treatment outcome.

In the following paragraphs we will highlight the dual roles of
the immune system in the response of tumor and normal tissues
after irradiation that are mostly derived from pre-clinical studies.

Tumor Tissue
Radiation-induced immune changes in the tumor involve
the direct activation of innate and adaptive immune
responses influencing tumor growth; but radiation-induced
immune responses also include indirect responses such as
radiation-induced changes in the tumor vasculature or tumor
microenvironment that impact the recruitment and activation
state of cells from the innate and adaptive immune system [for a
review see (64, 75–79)].

Tumor irradiation induces damage and death of cancer cells
resulting in the surface exposure of immunogenic molecules
as well as the release of damage associated molecular patterns
(DAMPs) such as ATP or High-Mobility-Group-Protein B1
(HMGB1), and potentially tumor antigens, to activate innate
and adaptive immune responses (80). Nuclear release and
cytoplasmic sensing of altered nuclear acids via Toll-like receptor
(TLR)9 or cyclic GMP-AMP Synthase/Stimulator of Interferon
Genes (cGAS/STING) is intimately connected to the secretion of
cytokines that support innate and adaptive antitumor immunity.
Priming of tumor-specific T cell responses requires uptake of
tumor antigens by antigen presenting cells e.g., dendritic cells.
Furthermore, priming of tumor-specific T cells depends on
sensing of cancer-cell derived cytoplasmic DNA. e.g., by the
cGAS/STING pathway that is connected to the activation of
the interferon (IFN) I response to support antitumor immunity.
The initiated migration and antigen presentation of dendritic
cells then triggers the activation of B and T cells in secondary
lymphoid organs. Activated T and B cells subsequently exert anti-
tumor effects by several mechanisms like CD8+ T cell mediated
cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and
antibody-induced complement-mediated lysis. These processes
have been excellently described in more detail elsewhere (27, 43,
47, 57, 75, 80–82).

Thus, the direct induction of anti-tumor immunity in
response to ionizing radiation requires a complex interplay
between the innate and adaptive immune system and the tumor
microenvironment. Moreover, the recruitment and activation of
dendritic cells in irradiated tumors that are required for the
priming of tumor-specific T cell responses largely depends on
the dose and fractionation of radiation in a tumor-dependent
manner. Finally, tumor cells dispose of multiple mechanisms to
evade this response so that the direct induction of anti-tumor
immunity by radiotherapy is a rare event (41, 57, 83).

Besides these beneficial radiation-induced anti-tumor
immune responses, local irradiation can also induce subacute or
chronic immune changes that mostly exert tumor-promoting
effects. Pro-inflammatory cytokines released in tissues as a
damage response after radiotherapy as well as the humoral
immune response from activated B cells can activate cells of
the innate immunity, such as granulocytes, macrophages, and
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mast cells (84, 85). These cells release molecules that modulate
gene expression programs in favor of pro-survival signaling
and cell cycle progression in neoplastic cells thereby supporting
malignant tissue expansion (86, 87). Moreover, cells from the
innate immunity have the capacity to induce repair, regeneration,
and tissue remodeling. By releasing various mediators these cells
influence and initiate fibroblast activation, angiogenesis and
matrix metabolism thereby indirectly fostering tumor growth
(84, 88–90).

Finally, the tumor itself responds to radiation-induced stress
or damage through a panel of phenotypic changes. By releasing
several cytokines, chemokines, or growth factors as well as up-
regulating specific surface receptors e.g., immunosuppressive
PD-L1, cytotoxic T-lymphocyte-associated Protein 4 (CTLA-
4), carcinoembryonic antigen-related cell adhesion molecule
1 (CEACAM1), and others, tumor cells become proficient
in dampening immune responses and to escape the immune
system (91–96). Detailed reviews from Sharma et al. as well as
Wennerberg et al. recently summarized the role of these tumor
cell-extrinsic factors for primary and adaptive resistance so that
these mechanisms will not be further addressed here (34, 41).

Normal Tissue
Despite technological improvements ionizing radiation still
directly hits to some extent tumor-surrounding healthy tissue
during treatment, leading to local damage, stress, or cell death in
normal resident cells. Moreover, the damage response initiated
in malignant tissues and healthy tissues residing in the radiation
field not only contributes to the local effects of radiotherapy but
can also exert strong systemic effects promoting normal tissue
complications (22, 97–99).

Radiation-induced immune changes in normal tissues also
include acute and chronic immune effects that will be discussed
below. While the effects of radiation-induced normal tissue
inflammation are well described (100–106), the contribution
of the complex immune mechanisms that support chronic,
pathological changes e.g., fibrosis, are less investigated and still
not yet completely understood.

Similar to the situation in tumors, radiation-induced acute
damage and cell death in normal tissues also results in the
release of DAMPs as well as pro-inflammatory cytokines and
chemokines which have the capacity to modulate immune
responses (105, 107). These “danger signals” trigger the activation
and influx of innate and adaptive immune cells at the site of
damage resulting in normal tissue inflammation. An excessive
inflammation during the acute phase after radiation as a result of
an overwhelming secretion of pro-inflammatory cytokines and
the release of reactive oxygen species (ROS) supports normal
tissue toxicity and severe side effects in treated patients (108).

In addition DAMPs can activate tissue regeneration in
normal tissues as well as in tumor tissues. It is known that
the extracellular DAMPs HMGB1 and ATP can activate and
recruit cells, thus stimulating tissue repair (109). Of these, innate
immune cells invade into the damaged tissue to clear dead
cells and cellular debris (110). Moreover, stem cells and tissue-
associated cells, e.g., fibroblasts, keratinocytes, endothelial cells,
and vascular smoothmuscle cells, are stimulated by these DAMPs

to support angiogenesis and tissue regeneration (111–117). In
addition, several DAMPs (e.g., HMGB1, S100A4, uric acid) can
also enhance the expression of immunosuppressive mediators
like interleukin (IL)-10 and indoleamine 2,3-dioxygenase (IDO)
in stem cells, thereby inhibiting lymphocyte responses and
contributing to tumor promotion (118). Excellent detailed
reviews about the role of DAMPs in mediating regenerative
pathways can be found elsewhere (109, 119).

Radiation-induced damage to normal tissues furthermore
triggers chronic environmental changes e.g., hypoxia and
senescence, that are reminiscent of the changes observed
in the tumor microenvironment. These changes support
chronic inflammation and repair processes, promote alternative
polarization of recruited immune cells, pathologic immune
cell interactions and excessive tissue remodeling, and thereby
trigger not only the development of tissue scaring and fibrosis
but also the development of secondary tumors (120, 121).
For more detailed reviews about the acute and chronic events
during radiation-induced normal tissue toxicity please refer to
Wirsdorfer and Jendrossek (73),McKelvey et al. (79), Schaue et al.
(105), Stone et al. (122), Barnett et al. (123), Kim et al. (124), and
Ruhle and Huber (125).

The dual face of radiotherapy-induced immune changes in
normal tissues can be nicely demonstrated in murine models of
RILD. The acute phase of pneumonitis and the chronic event of
fibrosis dramatically reveal how complex the radiation-induced
alterations of the tissue micromilieu and the immune system
impact disease pathogenesis (73).

Own studies in the murine C57BL/6 model of RILD revealed
that whole thorax irradiation (WTI) with 15Gy triggered an
acute early immune suppression characterized by a pronounced
reduction in the number of lymphocytes and myeloid cells that
was followed by an influx of CD3+ T cell lymphocytes into the
lung tissue during the pneumonitic phase Interestingly, WTI also
enhanced numbers of regulatory T cells (Treg) in the lung tissue
of irradiated animals both, during the early inflammatory state
as well as at the time of fibrosis development. Of note, radiation-
induced pulmonary fibrosis was more severe in recombination-
activating gene 2 (RAG2)-deficient mice that lack mature T- and
B-lymphocytes suggesting that lymphocytes may have beneficial
effects (126). Instead, depletion of CD4+ T cells during the
pneumonitic phase decreased radiation-induced lung fibrosis
in rats pointing to a contribution of CD4+ T cells to disease
pathogenesis (68). These data suggest a causal link between
the recruitment or local expansion of specific T-lymphocyte
populations and the course of RILD that are also observed in
other fibrosis models (127). But further work is required to define
the beneficial and adverse effects of recruited and induced T cell
subsets during the course of RILD (128).

Thoracic irradiation induces not only changes in the T cell
compartment but also in the myeloid compartment and the lung
environment. For example, others and we detected a significant
reduction in the levels of total pulmonary macrophages and an
almost complete eradication of alveolar macrophages early after
irradiation as well as time-dependent changes in the macrophage
phenotype with increased expression of markers for alternative
macrophage activation [e.g., macrophage mannose receptor and
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Arginase-1] particularly during the fibrotic phase (102, 126, 129–
132). Further, macrophages accumulated in organized clusters
and expressed pro-fibrotic mediators such as alpha smooth
muscle actin (α-SMA) and transforming growth factor beta
(TGF-β) at ≥25 weeks post-irradiation (131). Importantly, a
recent report confirmed the formation of organized clusters of
CD163+ macrophages also in lung tissue of irradiated patients.
Intriguingly, pharmacologic inhibition of colony stimulating
factor-1 (CSF-1) inhibited macrophage influx and attenuated RT-
induced lung fibrosis in mice supporting a pathologic relevance
of macrophages in RT-induced lung fibrosis (132). Similarly,
pharmacological treatment with as connective tissue growth
factor (CTGF) antibody before or after 20Gy thoracic irradiation
reduced acute and chronic radiation toxicity in mice and
abrogated M2-like macrophage infiltration (133). The combined
inhibition of TGF-β and Platelet-Derived Growth Factor (PDGF)
blockade in a pre-clinical murine model attenuated radiation-
induced pneumonitis and lung fibrosis and was accompanied by
reduced osteopontin expression and leukocyte infiltration (134).
Instead strategies using anti- Vascular Endothelial Growth Factor
(VEGF) to target the tumor vasculature in combination with
radiotherapy turned out to be highly toxic to normal lung tissue
in pre-clinical murine models (21).

THE IMMUNOMODULATORY
CD73/ADENOSINE SYSTEM AS
THERAPEUTIC TARGET FOR IMPROVING
RADIOTHERAPY OUTCOME

Various observations from pre-clinical and clinical studies
summarized in the former paragraphs suggest that targeting
tumor-induced or radiation-induced immune deviation may
offer novel and attractive opportunities for improving the
outcome of radiotherapy by modulating the tumor radiation
response, radiation-induced adverse late effects, or both. But
the complexity of the tumor-induced and radiation-induced
changes in the microenvironment as well as the time- and
tissue-dependent “dual face” of radiotherapy-induced immune
changes highlight the importance to identify strategies suited
to balance adverse pro-inflammatory and immunosuppressive
effects of radiotherapy and outweigh the beneficial effects
of radioimmunotherapy with optimal tumor control and
normal tissue protection. In this context, the purinergic
CD73/adenosine system recently moved into the focus of
research as it is an important endogenous regulator of the
innate and adaptive immune systems with a documented role
in tumor immune escape but also in adverse late effects of
radiotherapy (36, 38, 131, 135–138).

We therefore hypothesized that the purinergic system might
offer novel opportunities to interfere with normal tissue and
tumor responses to radiotherapy and radiation-induced immune
deviation. Extracellular ATP is a danger signal released by dying
and damaged cells, and belongs to the earlier mentioned DAMPs,
that function as immunostimulatory pro-inflammatory signals
(139). In contrast, extracellular adenosine mostly exerts anti-
inflammatory, immunosuppressive or regulatory functions and

is a critical mediator for the maintenance of tissue homeostasis
in various tissues including the lung and to avoid overwhelming
inflammation for example in response to infection (140–143).
But balancing pro-inflammatory ATP and anti-inflammatory
adenosine might also to be crucial for maintaining or re-
establishing immune homeostasis and to orchestrate tissue
inflammation and repair under conditions of damage-induced
sterile inflammation (73, 144).

CD73 and Adenosine Have Physiological
Roles in Maintaining and Restoring
Tissue Homeostasis
The purinergic signaling pathway is an evolutionary conserved
mechanism that regulates immune homeostasis by the
conversion of extracellular ATP to extracellular adenosine by
using the sequential degradation via the ectoenzymes ectoapyrase
(CD39, ectonucleoside triphosphate diphosphohydrolase
1) and CD73. Adenosine is either released from stressed
or injured cells, or generated from extracellular adenine
nucleotides by the concerted action of CD39 and CD73.
While CD39 catalyzes the breakdown of ATP and ADP to
AMP, CD73 converts AMP to adenosine. But the action of
CD39 in degrading ATP can alternatively be executed by
ectonucleotide pyrophosphatase (ENPP1, phosphodiesterase
1) (145).

CD39 and CD73 are expressed on the surface of specific
lymphocyte subpopulations such as Treg and regulatory B
cells (Breg) and endothelial cells and are important to
their regulatory functions (143, 146–149). But CD73 is
also expressed on stromal cells, mesenchymal stem cells
(MSCs), and tumor-associated stem cells (150–153). Pre-clinical
studies demonstrated that CD73 on stromal cells and tumor
cells participates in the suppression of immune-mediated
responses (152) as well as in homing and stemness of cancer
stem cells (151, 154, 155). Furthermore, CD73 on MSCs
promoted their immunosuppressive function and MSC were
even able to upregulate CD73 expression on T cells (150).
Inhibition of CD73 in a pre-clinical model of pancreatic
neuroendocrine tumors led to reduced tumor growth and
metastatic potential of cancer stem cells (151). Thus, stem cell-
mediated immunosuppressive or regenerative processes might
help cancer cells to escape natural anti-tumor immune responses,
anti-cancer immunotherapies, or both. Table 1 shows detailed
information on the expression of CD73 on multiple cell
types in various tissues and their reported prognostic findings.
Adenosine suppresses inflammatory functions of cells from
innate and adaptive immune system and triggers expansion
or differentiation of myeloid-derived suppressor cells (MDSC),
M2-like macrophages as well as Treg and Breg and thereby
participates in the creation of regulatory environments (144, 146,
149, 180–184). In addition, CD39/CD73-dependent generation
of adenosinemay also affect other processes in T-cell biology such
as naive T-cell homeostasis, memory cell survival, and potentially
T cell differentiation (168).

Extracellular adenosine can either be removed by enzymatic
inactivation or cellular uptake or exert its actions through
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TABLE 1 | CD73 expression on various cell types and tissues and its prognostic finding.

Cell type Tissue or cell type Origin Reported prognostic finding References

Monocyte Peripheral blood post-infarcted

myocardium

Human Swine Mesenchymal Stem Cells Induce Expression of CD73 in

Human Monocytes in vitro and in a Swine Model of

myocardial Infarction in vivo.

Positive ADO loop leads to attenuation of inflammation

and promotes the regeneration of the damaged

myocardial tissue

(156)

Monocytes in the inflamed joint Murine CD73 expression is associated with the suppression of

inflammation in rheumatoid arthritis

(157)

Neutrophil Neutrophils in the inflamed joint Murine CD73 expression is associated with the suppression of

inflammation in rheumatoid arthritis

(157)

Dendritic cell Skin Murine Production of Extracellular Adenosine by CD73+

Dendritic Cells Is Crucial for Induction of T cell Anergy

and Tolerance in Contact Hypersensitivity Reactions

(158)

MDSC MDSCs generated from mouse

hematopoietic progenitor cells (in

vitro)

Murine Generation of ADO by CD73 may promote MDSC

expansion and facilitate their immunosuppressive activity

(159)

Peripheral Blood from advanced

melanoma patients

Human High baseline levels of CD73 on MDSCs negatively

correlate with Overall Survival and Progression Free

Survival

(160)

Macrophage Alveolar macrophages Murine CD73 expression in the lung tissue contributes to

radiation-induced lung fibrosis

(138)

Peritoneal macrophages Murine CD73 regulates anti-inflammatory signaling between

apoptotic cells and endotoxin-conditioned tissue

macrophages and is required to limit neutrophil influx in a

peritonitis model

(161)

NK cells Peripheral blood 2–5% CD73+

NK cells

Human ADO induces T cell suppression (162–164)

Upregulation of CD73 upon

exposure to MSC (in vitro)

Human CD73+ NK cells have the potential to regulate NK cell

activation in an autocrine or paracrine manner

(165)

B cells Subpopulations of murine

memory B cells, germinal center

B cells

Murine ADO signaling is prominent in the mature germinal center

and required for establishment of the long-lived plasma

cell compartment

(166)

Peripheral blood and tonsil Human
Dependence of Immunoglobulin Class Switch

Recombination in B Cells on Vesicular Release of ATP

and CD73 Ectonucleotidase Activity

Common variable immunodeficiency (CVID) patients with

impaired class-switched antibody responses are

selectively deficient in CD73

(167)

Colon B cells Murine B cell CD73/CD39/adenosine mediates

immunosuppression in DSS-induced colitis

(149)

T cells Th1, Th2, Th17, Treg in normal,

and tumor tissues

Murine human CD73 may favor cell homeostasis, memory survival, and

differentiation

(168–170)

Human CD73+ T cells infiltrate into breast and ovarian tumor

tissue

(165)

Human murine ADO induces immunosuppression (146, 171–174)

Murine CD73 expression on extracellular vesicles derived from

Treg contributes to their regulatory function

(175)

Murine CD73 expression in the lung tissue contributes to

radiation-induced lung fibrosis

(138)

Fibroblasts Cancer-associated fibroblasts in

High-grade serous ovarian

cancer (HGSC)

Human High CD73 expression on CAFs is associated with worse

prognosis

(176)

Cancer-associated fibroblasts in

bladder cancer

Human High CD73 expression on CAFs is associated with worse

prognosis

(177)

Epithelial cells Retinal pigment epithelial cells Murine CD73 expression is associated with the suppression of

conventional CD4 cell proliferation

(178)

(Continued)
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TABLE 1 | Continued

Cell type Tissue or cell type Species Reported prognostic finding References

Renal epithelial cells Murine CD73 expression on proximal tubular epithelial cells Is

critical in renal ischemia-reperfusion injury protection

(179)

Endothelial cells Bladder cancer Human High CD73 expression is associated with better survival

in non-muscle-invasive BC (NMIBC) and muscle-invasive

BC (MIBC) tumors

(177)

Mesenchymal

stem cells (MSC)

Experimental autoimmune uveitis

(EAU)

Murine Inhibition of T-cell proliferation (150)

Stem cells

(Hematopoitic

stem cells; cancer

stem cells)

Murine human CD73/Ado induce stemness, homing (151, 154)

receptor binding. Adenosine deaminase (ADA) is responsible
for the conversion of adenosine to inosine, a process that
can happen either extracellularly or intracellularly (144).
Adenosine may also be transported into its target cells via four
different adenosine transporters, the so-called equilibrative
nucleoside transporters (ENT) 1-4. Instead, adenosine exerts its
actions by binding to one of four different G-protein-coupled
adenosine receptors (ADORA1, ADORA2A, ADORA2B,
and ADORA3) that are widely expressed on immune cells
and resident tissue cells (185). ADORA1 and ADORA2A
are high-affinity receptors responding to low concentrations
of extracellular adenosine, while ADORA2B and ADORA3
are low affinity receptors and are mainly activated if the
extracellular adenosine concentration rises above physiological
levels (186). The adenosine receptors have various biological
functions aimed at maintaining or restoring tissue homeostasis
by triggering context-dependent pro- or anti-inflammatory
effects (187–189).

Role of CD73 and Adenosine in
Radiation-Induced Adverse Late Effects in
the Lung
There is evidence from pre-clinical studies in models of injury-
induced sterile inflammation that an acute CD73-dependent
increase in adenosine mostly exerts tissue protective functions
(142, 181, 190, 191). Herein, the role of purinergic signaling to
self-terminate TLR-responses in macrophages might contribute
to the observed effects (187, 192).

In contrast, chronically increased adenosine-levels
induced for example by genetic deficiency of the adenosine-
degrading enzyme ADA or chronic treatment with the
chemotherapeutic drug Bleomycin (BLM) can promote
pathologic remodeling processes in various tissues leading to
fibrosis development (136, 193–200). The pathologic effects
of BLM-induced chronic adenosine-accumulation in the
lung have been attributed to alternatively activated myeloid
cells (201, 202).

So far the role of purinergic signaling for radiation-induced
adverse late effects in the lung has only been addressed in
own investigations (131, 138) while others investigated its role
the skin (136). Our work demonstrated a pathologic role of

chronically increased CD73/adenosine signaling in irradiated
lungs of C57BL/6 mice, presumably by promoting or amplifying
profibrotic signaling cascades. Pathologic signaling involved a
time-dependent increase in the expression and activity of the
CD73 in the lung tissue that could be confined to resident
CD45− cells as well as CD45+ immune cells (CD4+ T cells
including Treg, alveolar macrophages) and was associated with a
progressive increase in adenosine levels in the bronchioalveolar
lavage fluid C57BL/6 mice with a knockout of CD73 (CD73−/−)
failed to accumulate high levels of adenosine in response to
WTI resulting in decreased levels of fibrosis-associated proteins
and mediators, reduced recruitment/formation of Treg, and
attenuated pulmonary fibrosis with absence of clusters with
alternatively activated macrophages. A similar protective effect
was obtained by treatment of irradiated C57BL/6 mice either
with pegylated ADA (PEG-ADA) to catabolize adenosine, or with
the CD73 monoclonal antibody (mAb) TY/23 as of week 16
post-irradiation (131, 138).

Taken together, the progressive up-regulation of
CD73/adenosine signaling in the irradiated lung environment
promotes the accumulation of immunosuppressive cell types of
the innate and adaptive immune system, e.g., Treg and M2-like
macrophages and supports a pro-fibrotic cross-talk between
damaged resident cells and infiltrating immune cells. Thereby,
CD73/adenosine signaling helps to amplify radiation-induced
lung fibrosis as a late normal tissue complication (Figure 1).
In support of our findings, adenosine also promoted radiation-
induced skin fibrosis; but here the pro-fibrotic effects had mainly
been attributed to T-cell infiltrates and signaling via ADORA2A,
without a role for alternatively activated macrophages (136).

Although radiation-induced intestinal injury models exist,
the role of CD73/adenosine has only been studied so far
in acute inflammatory disease models where CD73/adenosine
executes tissue protective functions (203–208). Moreover,
while CD73/adenosine had protective effects in acute renal
disease models, chronic kidney injury in patients and murine
studies was again linked to up-regulation of CD73 and
ADORA2B (179, 198, 209, 210).

In summary, these studies point to disease-promoting
effects of chronic CD73/adenosine signaling with
tissue-specific and damage-specific mediators and
immune changes.
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FIGURE 1 | Purinergic signaling shapes the microenvironment in irradiated normal and tumor tissues. Exposure of normal tissues to ionizing radiation induces

damage to tissue resident cells, e.g., endothelial cells and epithelial lung cells, as well as in resident immune cells. Equally exposure of tumor tissue results in

radiation-induced damage to tumor cells and stromal cells. The resulting cell damage initiates stress responses and/or cell death with subsequent release of damage

associated molecular patterns (DAMP). Release of ATP from dying cells is one component of radiation-induced tissue damage. Extracellular ATP acts as a potent

inflammatory mediator that promotes inflammation and subsequent further damage to normal tissues. In tumor tissues extracellular ATP is an important mediator of

anti-tumor CD8+ T cell responses as it participates in activation of dendritic antigen presenting cells (APC). To avoid excessive inflammation in normal tissues

pro-inflammatory ATP is rapidly removed from the extracellular room by a two-step enzymatic conversion into adenosine, involving CD39 (or alternatively

ectonucleotide pyrophosphatase) and CD73. Extracellular adenosine is an important endogenous regulator of inflammatory and repair processes as well as vascular

functions. Adenosine exerts its pleiotropic actions in a tissue- and context-dependent manner through 4 different adenosine receptors that are expressed on various

resident cells and immune cells (not shown). The immunosuppressive actions of adenosine involve the polarization of recruited immune cells toward regulatory or

alternatively activated phenotypes, e.g., regulatory T cells (Treg), or M2-like macrophages. Moreover, adenosine mediates the inhibitory action of Treg and other

regulatory cell types on proliferation and activation of cytotoxic T cells. By regulating endothelial cell activity CD73 and adenosine impact not only endothelial cell

proliferation/angiogenesis but also vascular barrier function and the transmigration of leukocytes into damaged tissues. The expression of CD39 and CD73 thus

balances the levels of pro-inflammatory ATP and immunosuppressive adenosine in normal tissues and tumors. The chronic activation of adenosine-driven processes

observed in irradiated normal tissues promotes pathologic tissue remodeling and fibrosis development. Tumors coopt the CD73/adenosine system as a mechanism

for promoting tumor growth and progression, angiogenesis, and immune escape. ADO, adenosine; CD39, ectonucleoside triphosphate diphosphohydrolase 1; CD73,

5′ ectonucleotidase; TAM, tumor associated macrophages.

Role of CD73 and Adenosine in the Control
of Tumor Growth and Response to Therapy
Analyses of patient biopsies have shown that immune cell
infiltrates in human tumors exhibit pronounced differences in
cell types and numbers, not only intratumorally but also between
patients and different tumor entities (211, 212). Interestingly,
distribution and type of infiltrating immune cells turned out
to have prognostic relevance; for example, the presence of
infiltrating T cells was mostly linked to a favorable clinical
outcome (213–218). Further pre-clinical and clinical studies
showing that tumors can be strongly or poorly immunogenic
supported these findings (31, 219). Moreover, the degree
of immunogenicity positively correlated with reduced tumor
growth and increased survival of tumor-bearing mice in response

to immunotherapy indicating that the immune status can be seen

as a predictive factor for therapy outcome (220).

High numbers of tumor-infiltrating cytotoxic lymphocytes

were also predictive for the response of head and neck
cancer patients to treatments involving radiotherapy whereas

relapse after chemoradiotherapy and early recurrence correlated
to infiltration with myeloid cells (217, 221–224). Local or
systemic increases in Treg, high numbers of tumor associated
macrophages, or recruitment of CD11b+ myeloid cells have
also been associated with poor tumor response to radiotherapy
and tumor relapse in pre-clinical models (88, 225). As a proof
of concept for the synergistic interaction of radiotherapy and
immunotherapy it has been shown that the combination with
cancer vaccines, immune checkpoint blockade or inhibition
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of CD11b+ cell recruitment can improve the outcome of
radiotherapy (52, 62, 89, 226–228).

Of note, tumors coopt the activities of the purinergic
CD39/CD73/adenosine system to shape the immune landscape
in the tumor microenvironment at multiple levels (Figure 1):
For example, tumor cells and tumor-associated Treg use
CD73-dependent adenosine generation to dampen intratumoral
immune responses, particularly in hypoxic tumors (229,
230). The re-direction of the immune response involved
suppression of T cell effector functions through CD73-dependent
production of extracellular adenosine by CD39+/CD73+ Treg

and signaling via stimulation of the ADORA2A on effector
T cells (229). Adenosine and ADORA2A thus participate in
shaping an immunosuppressive tumor microenvironment by
negatively regulating CD8+ T cells (231–233). An adenosine-
dependent suppression of immunosurveillance via IFN-γ, NK
cells, and CD8+ T cells had also been demonstrated in
other pre-clinical models (35, 162). Finally, the creation of
an immunosuppressive tumor microenvironment involved the
expansion of immunosuppressive myeloid cells, e.g., myeloid-
derived suppressor cells, M2-like macrophages, and potentially
N2-like neutrophils (234–236). More details about the various
effects of CD73 and adenosine on cells from the innate and
adaptive immune systems in the tumor microenvironment and
the involved ADOR receptors can be found in the following
reviews: (137, 143).

In addition, the CD73/adenosine system also supports tumor
growth-promoting neovascularization, tumor metastasis, and
chemotherapy resistance though part of these actions could also
be attributed to the CD73/adenosine-induced modulation
of immune cell types in the tumor microenvironment
(36, 143, 229, 237–244).

For example, CD73−/− mice were strongly resistant to growth
of subcutaneous MC38-ova colon and EG7 lymphoma tumors
as well as carcinogen-induced or de novo growth of endogenous
prostate tumors in transgenic TRAMP mice (162, 245, 246).
These interesting observations pointed to a role of CD73+

host cells in tumor growth. However, CD73−/− mice were less
resistant to growth of AT-3 mammary and B16F10 melanoma
tumors revealing that the effect of host CD73 on the growth
of experimental tumors also depends on the tumor type (245,
246). Of note, treatment with an anti-CD73 mAb reduced the
growth of experimental 4T1.2 and E0771 breast tumors in wild-
type mice, but not in severe combined immunodeficient (SCID)
mice, suggesting a role of the adaptive immune system (245,
246). Anti-CD73 treatment also inhibited growth of carcinogen-
induced fibrosarcoma tumors and of transgenic prostate tumors
in transgenic TRAMP mice (162). The authors could further
attribute the efficient tumor rejection to the action of CD8+

T cells whereas CD4+ T cells and NK cells were not involved
(162, 246). These data highlight immunosuppressive CD73+ Treg

as an important component of the tumor growth-promoting
effects of CD73 and adenosine (162, 246).

Interestingly, CD73−/− mice also developed less lung
metastases after intravenous injection of B16F10 or TRAMP-
C1 cells (162, 246) suggesting that host CD73 also supports
metastasis. In line with these observations treatment with an

anti-CD73 mAb (TY/23) strongly reduced the lung metastases
after injection of 4T1.2 or TRAMP-C1 tumor cells (162, 245).
However, the suppression of metastasis formation was observed
in both, immunocompetent and in SCID mice, and turned out to
be independent of CD8+ T cells and NK cells (162, 245). Thereby
the authors revealed a role of CD73+ non-hematopoietic host
cells in metastasis formation, potentially endothelial cells, they
could further link the pro-metastatic effect to signaling of tumor-
derived extracellular adenosine via ADORA2B activation, at least
in the 4T1.2 model (245, 246).

In further studies, tumor-derived adenosine attracted
myeloid cells and promoted their differentiation into adenosine-
generating tumor-associated macrophages (TAM) to amplify
adenosine-dependent tumor-immune escape (247). In support
of these findings, in vitro exposure to adenosine promoted
alternative activation of macrophages and enhanced the
immunosuppressive responses of macrophages to danger
signals, particularly if stimulated in the presence of TLR ligands
(141, 187). Interestingly, tumor-derived CD73-dependent
adenosine promoted growth, neovascularization, and metastasis
of subcutaneous B16F10 melanoma tumors and this was linked
to infiltration and polarization of macrophages: genetic or
pharmacologic inhibition of CD73 on the B16F10 melanoma
cells significantly reduced the number of tumor-infiltrating
macrophages recruited to subcutaneous B16F10 melanoma
tumors on CD73−/− mice when compared to untreated B16F10
wildtype tumors on CD73−/− mice. Cytokine measurements
in CD73+ B16F10 wildtype tumor lysates grown on CD73−/−

mice revealed a down-regulation of pro-inflammatory cytokines
[Granulocyte-macrophage colony-stimulating factor (GM-CSF)
and IFN-γ] and enhanced expression of anti-inflammatory/pro-
angiogenic cytokines (IL-4, IL-10, IL-13, M-CSF) (248).
Although the number of infiltrating macrophages did not
change in CD73+ B16F10 WT tumors on CD73−/− mice, less
MMR+ macrophages were found inside the tumor. Only a
pharmacological CD73 inhibition or knockdown of CD73 in
the tumor host reduced the amount of infiltrating macrophages
(248, 249). The results indicate a role for CD73 in activation and
polarization of macrophages that promote tumor progression.
Furthermore, it was shown, that the recruitment and activation
of tumor-infiltrating macrophages was dependent on ADORA1,
ADORA2A, and ADORA3 (250).

Taken together, CD73-dependent adenosine from host cells
and tumor cells participates in the support of tumor growth
amongst others by promoting tumor immune escape whereas
loss of CD73/adenosine signaling enhances tumor immunity.
As nicely summarized in a recent review from Allard et al.
CD73/adenosine has become an attractive therapeutic target
in (immuno)-oncology (38). Several early-phase clinical trials
currently evaluate the therapeutic potential of CD73/adenosine
inhibitors to inhibit tumor growth and increase tumor immunity.
Besides the direct inhibition of CD73 the identification of
the respective ADOR involved in promoting tumor immune
escape will offer additional opportunities for therapeutic
intervention (38, 251, 252).

Intriguingly, co-inhibition of adenosine signaling via
CD73 and ADORA2A achieved better anti-tumor immune
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responses compared to single treatments, at least in pre-clinical
models of breast and colon cancer (253). These effects were
associated with improved immune cell infiltration, DC-priming
and CD8+ T cell expansion. In line with these findings,
Young et al. also observed increased tumor growth delay in
CD73/ADORA2A double knockout mice (254). Furthermore,
investigations with the human monoclonal anti-CD73 antibody
MEDI9447 that is currently in Phase I clinical trials, showed
high efficacy in inhibiting CD73 in vitro and potent inhibition
of pre-clinical syngeneic tumor models in vivo as well as
additive activity in combination with immune checkpoint
inhibitors. Interestingly, MEDI9447 efficiently modulated
the tumor microenvironment with significant alterations in
the number of both, CD8+ effector T cells and activated
macrophages (255).

The immunosuppressive actions of CD73 and adenosine
in the microenvironment of established tumors also attract
major attention as an interesting target for combined
treatment approaches, particularly with immunotherapy.
In this context, inhibition of CD73 enhanced efficacy of
immunotherapy with α-PD-1 or α-CTLA4 in pre-clinical
models (251, 256). The synergistic effect of the combined
treatment involved improved T cell effector function as well as
reduced CD73 expression on tumor-infiltrating lymphocytes
and was dependent on interferon gamma (IFN-γ) and perforin
(253, 256). Therapeutic inhibition of ADORA2A was also able
to modulate expression of T cell co-inhibitory receptors and
to improve effector function for enhanced efficacy of immune
checkpoint blockade and adoptive cell therapy in murine cancer
models (251, 252).

Since the focus of this review is to highlight the therapeutic
potential of CD73 and adenosine inhibition to improve the
therapeutic gain in radiotherapy we will not discuss such
approaches in more detail here. For further information
please refer to reviews discussing the therapeutic potential
of the purinergic pathway in immunotherapy in more
detail (38, 251, 252).

Instead the therapeutic potential of combining radiotherapy
or radioimmunotherapy with CD73/adenosine-inhibition in
cancer has been highlighted as an attractive approach but sound
data are missing so far (41, 137). Pre-clinical studies are now
underway to test such approaches including investigations in our
own laboratory (257).

Several pre-clinical studies addressing the role of CD39
in cancer revealed that genetic deficiency of CD39 in mice
promotes resistance to metastasis of melanoma and colorectal
cancer models (258). Similarly, inhibition of angiogenesis
in a CD39-deficient background resulted in reduced growth
and pulmonary metastasis of LLC and B16F10 tumors (259).
Expression of CD39 was important for angiogenesis and
the suppression of NK cell-mediated antitumor activity
(260, 261). In line with these findings, overexpression of
CD39 enhanced the metastatic potential in pre-clinical
models whereas the pharmacological inhibition of CD39
reduced metastasis and enhanced antitumor immunity
(261). Of note, clinical data also support a correlation of
high CD39 expression with poor prognosis indicating that

CD39 might be another promising target for cancer therapy
(262–264). But CD39 is much less investigated as a cancer
target compared to CD73 underlining the need for further
pre-clinical studies.

Taken together various pre-clinical studies highlight the
potential of CD39/CD73/adenosine-signaling as promising
therapeutic target in immuno-oncology. So far, the observed
effects have been associated in multiple studies with
activation of T-cell dependent tumor immunity. However,
it is important to consider further immunoregulatory actions
of CD73 and adenosine in the tumor microenvironment,
particularly their influence on the biology of myeloid cells and
macrophages, respectively.

Targeting CD73 in Lung Cancer
Only limited data are available so far of the role of CD73
and adenosine in lung cancer. Herein, CD73 was found
to be expressed in tumor tissue from NSCLC patients on
tumor cells, tumor-promoting mesenchymal stromal cells
and myeloid-derived suppressor cells, respectively (265–267).
Tumor-derived TGF-β stimulated CD39 and CD73 expression
in CD11b+CD33+ MDSC in tumor tissues and peripheral blood
of NSCLC patients, thereby inhibiting activity of T cells and
NK cells and protecting tumor cells from the cytotoxic effect of
chemotherapy (267).

Moreover, the prognostic value of high CD73 expression
for the survival in lung cancer patients remains controversial:
Although one study reported a correlation of high CD73
gene expression and improved overall survival of NSCLC
patients (268) another study identified high CD73 protein
expression as an independent prognostic marker for poor
overall survival and shorter recurrence free survival in NSCLC
(269). Interestingly, in the same study, high ADORA2A gene
expression was an independent predictor of favorable prognosis
for overall survival (269). Own in silico analyses of publicly
available datasets for gene expression of CD73 in lung cancer
confirmed the positive correlation between high CD73 gene
expression and better overall survival of NSCLC patients.
Of note, if radiotherapy-treated patients were excluded from
the analysis the correlation to an improved overall survival
was abrogated. In addition, the in silico analyses revealed
poorer overall survival in lung cancer patients with high
gene expression of ADORA1, ADORA2A, and ADORA2B
(Figure 2). Again, the results about the prognostic value of
ADORA2A using immunohistochemical data revealed opposite
results (269, 270). The discrepancy in the above findings
may be due to the use of gene expression analyses vs.
immunohistochemical data as CD73 expression in tumor
samples turned out to be highly heterogenous (269). We
speculate that the heterogeneity in CD73 protein expression in
distinct tumor areas might be linked to heterogeneous tumor
oxygenation and make the acquisition of representative gene
expression data challenging. So far, CD39 inhibitors are not yet
involved in clinical trials for cancer patients but such studies are
underway (259).

Taken together, adenosine released in an inflammatory
milieu or generated by the CD39/CD73 axis will impact the
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FIGURE 2 | Prognostic relevance of components of the CD73/adenosine signaling system in lung cancer. Kaplan–Meier survival curves relative to (A) NT5E, (B)

ADORA1, (C) ADORA2A, (D) ADORA2B, and (E) ADORA3 expression from publically available datasets for lung cancer. Data were analyzed using the KM-plotter tool

(270). Red and black lines indicate patients with higher and lower gene expression, respectively. The total number of patients in the two categories are shown below

the graph. Hazard ratios (HR) and p-values (log rank p) are shown inside the graph. Patient data is not restricted and includes all datasets.

immune landscape of lung tumors presumably by limiting T
cell immunity and promoting immunosuppressive and tumor-
promoting lymphoid and myeloid immune cell phenotypes
(Figure 1). We thus speculate that modulating CD73/adenosine
signaling in the lung tumor microenvironment is an attractive
strategy to limit tumor progression, improve antitumor immune
responses, and avoid escape from therapy in combination

with radiotherapy and potentially radioimmunotherapy. On
the other hand, the pathologic role of the radiation-induced
increase in CD73/adenosine signaling in promoting chronic
inflammation and fibrosis in the normal lung tissue strongly
suggest that pharmacologic inhibition of CD73/adenosine
offers the opportunity for widening the therapeutic window
by reducing radiation-induced lung toxicity, particularly in
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CD73-rich thoracic tumors with a high risk for CD73-dependent
normal tissue toxicity.

Targeting the CD73/adenosine pathway or the involved
receptors may thus provide a clear therapeutic gain in the
treatment of lung cancer and other CD73/adenosine-rich
thorax-associated neoplasms: we expect that inhibition of
CD73/adenosine signaling will limit lung toxicity during thoracic
irradiation without protecting the tumor or even reinstall anti-
tumor immunity when applied during therapeutic irradiation
of adenosine-rich tumors with high radioresistance such as
NSCLC (138). However, a tight regulation of pro- and anti-
inflammatory actions of resident and immune cells is necessary
to protect the lung from inflammation-induced loss in its vital
function (271–273). For example, immunosuppressive Treg are
also to be part of a protective response limiting inflammation-
induced collateral normal tissue damage after radiotherapy
(44, 274). Therefore, pharmacologic strategies targeting the
CD73/adenosine pathway in combination with radiotherapy or
combined radioimmunotherapy will require careful validation of
potential normal tissue complications. Such complications might
include excessive inflammation or autoimmunity by abrogating
protective signals mediated by various ADORAs, particularly
during acute disease stages. Moreover, the dual effects of
acute and chronic CD73 activation as well as spatiotemporal
heterogeneity of CD73 and ADOR expression in normal and
tumor tissues need to be considered when designing combination
treatments for therapeutic intervention.

CURRENT RESEARCH AND
FUTURE PERSPECTIVES

So far work from our group identified CD73/adenosine signaling
as a novel mechanism promoting RILD through local and
systemic actions. Consequences of pathologic CD73/adenosine
signaling involved amongst others the accumulation and/or
alternative activation of macrophages in organized clusters, their
expression of pro-fibrotic mediators, or both. We speculate that
the radiation-induced increase in CD73/adenosine is necessary to
amplify pro-fibrotic signaling in the irradiated lung environment
by fueling the multifaceted cross-talk between damaged resident
cells, local and infiltrating immune cells, immunosuppressive
Treg and other pro-fibrotic mediators such as hyaluronic acid
and TGF-β.

Though immunomodulatory effects of adenosine had been
linked to CD73/adenosine-induced adverse effects in other
injury models (136, 202) the tissue specific effector and target
cells of CD73/adenosine-signaling in response to genotoxic
treatment (BLM, radiotherapy) are still controversial and
need to be further investigated (73, 200). In this context
radiation-induced normal tissue toxicity had also been linked to
endothelial cell damage and dysfunction as well as endothelial
cell loss as long-term complication (275, 276). As a direct
consequence of impaired vascular function, WTI increased
numbers of total CD45+ leukocytes, particularly profibrotic
CD11b+ myeloid cells and Ly6C+ inflammatory monocytes,
in lungs of irradiated mice. However, on the long term,
persistence of an activated pro-coagulant endothelial cell type,

thickening of the basement membrane, endothelial loss, and
collapse of microvessels will contribute to the creation of a
hypoxic, pro-inflammatory disease-promoting environment. We
assume that the pathologic environment involves a hypoxia-
induced up-regulation of CD73 and pathology-associated ADOR
on resident cells and immune cells. It is tempting to speculate
that therapeutic inhibition of CD73 might also impact adverse
late effects in the lung by reducing radiation-induced vascular
impairment, but this remains to be determined. Interestingly,
further work demonstrates that locally irradiatedMSC play a role
in the pathogenesis of radiotherapy-induced pulmonary fibrosis
by acquiring a pro-fibrotic myofibroblast-like phenotype that
promotes extracellular matrix deposition, tissue remodeling, and
the development of pulmonary fibrosis upon WTI (276). Since
CD73 is expressed on endothelial cells and on MSC of healthy
lungs (153) future studies should explore whether the expression
of CD73 on the surface of endothelial cells or resident MSC
impacts the development of RILD. The same holds true for
the expression of CD39 and CD73 on cancer exosomes, which
have also been shown to suppress T cells through adenosine
production (239).

Adenosine released in an inflammatory milieu or generated
by the CD39/CD73 axis impacts the tumor microenvironment
and limits tumor immunity at multiple levels. Thus, modulating
cancer-derived adenosine in the tumor microenvironment
emerges as an attractive strategy to limit tumor progression
and improve antitumor immune responses and our own studies
suggest that this might be possible without excessively increasing
late normal tissue complications (36, 187, 242, 243, 277).
Fortunately, multiple approaches for pharmacologic modulation
of adenosine levels exist or are being developed and multiple
clinical studies have been initiated to evaluate the use of novel
inhibitors of CD73 or ADORA2A signaling in cancer therapy
alone and in combination with immune checkpoint blockade
(38, 39, 143, 188). These studies will give insight into efficacy,
compatibility, and potential side effects.

Herein, major attention in oncology has so far been attributed
to adenosine signaling via ADORA2A as it is known to
effectively dampen immune responses in tumors and normal
tissues. However, it has to be taken into account that depending
on the tissue of origin and the molecular and immune
signature of the tumor, other ADOR may be more important.
Moreover, the role of purinergic signaling in the radiation
response of malignant tumors and the potential of CD73 or
ADOR inhibitors to enhance the efficacy of RT alone and
in combination with immunotherapy is still largely unknown.
Finally, no reliable biomarkers for the prediction or diagnosis
for the individual risk of RILD upon treatment are available
to date. Thus, further studies are needed that correlate the
gene and protein expression of CD73 and the ADORAs to
the outcome after radio(chemo)therapy or immunotherapy.
Moreover, as mentioned before, the receptors differ in their
affinity for adenosine and extracellular adenosine levels will vary
depending on the tissue, the treatment modality and intensity
in a spatiotemporal manner. It would therefore be highly
beneficial to perform an immunoscore of tissues from pre-clinical
studies and test association of high or low expression of CD73
and the ADORAs with the presence of immunosuppressive
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lymphoid and myeloid cell subsets, and potentially tissue
hypoxia. Such knowledge could later be translated into patient
samples. Here, it was an intriguing observation that a high
expression of CD73 in normal tissues was indicative for a
poor infiltration of prostate tumors with CD8+ T cells whereas
high CD73 expression in the tumor stroma was indicative for
a longer recurrence-free survival (278). This highlights that
CD73 expression in both, normal and tumor tissue should
be evaluated.

FINAL REMARKS

Nowadays it is increasingly recognized that strategies for
a biology-based optimization and individualization of
radiotherapy should include not only the available knowledge
about tumor promoting mutations, tumor heterogeneity,
tumor cell plasticity, and unfavorable gene expression profiles
indicative of the individual radiosensitivity of tumor and
normal tissues, but also consider knowledge about the
modulation of the radiation response by the immune
system and vice-versa. Such a comprehensive view shall
allow to harness the combined potential of high precision
local radiotherapy, cytotoxic chemotherapy, molecularly
targeted small molecule signal transduction inhibitors,
and immunotherapy approaches for biologically optimized
therapeutic strategies with acceptable safety profile and durable
responses in the future (22, 30, 41, 279–284).

The observation that radiotherapy can help to reactivate
anti-tumor immunity in immunogenic tumors or increase
the potential of immunotherapy has attracted major attention
to the use of radiotherapy in combination with various
immunotherapies, particularly immune checkpoint blockade
immunostimulatory antibodies, and cancer vaccines (24–26, 28–
30, 62, 67). However, tumors have evolved effective strategies
to escape from immune surveillance and therapy-induced
enhancement of tumor immunity is balanced by feed-back
inhibition of immune activation in residual tumors, the
mobilization of tissue regeneration mechanisms with tumor
promoting actions, or both (41, 88, 89, 285–287).

We believe that the identification of mediators driving both,
adverse immune changes in irradiated normal tissues and
tumor immune escape, will allow us to uncover attractive new
therapeutic targets for improving the outcome of radiotherapy.
The CD73/adenosine pathway is such a signaling system
that regulates adverse immune responses in tumors and
normal tissues to microenvironmental stress (e.g., tumor
hypoxia) and radiotherapy. So far, CD73/adenosine is
mostly considered as a metabolic immune checkpoint that
supports immunosuppressive signaling of Treg via ADORA2A.
However, there is evidence that CD39, CD73 and adenosine
are involved in further immunosuppressive and tumor-
promoting signals in the tumor microenvironment beyond
modulating Treg function. Intriguingly, radiochemotherapy
was also shown to trigger up-regulation of CD73 and CD39
in circulating immune cells of cancer patients (288). This
suggests that a radiotherapy-induced systemic upregulation
of CD73/adenosine signaling may additionally dampen

systemic anti-tumor immune responses during standard
fractionated radiotherapy.

Thus, pharmacologic inhibition of CD73/adenosine signaling
is an attractive approach to increase the therapeutic ratio in
the RT of thoracic tumors with high risk of adverse late
effects in the highly radiosensitive normal lung tissue by (i)
dampening growth and metastasis of lung tumors, (ii) enhancing
the radiation-induced activation of the antitumor immune
response, (iii) by restricting the immunosuppressive action of
CD39/CD73 on circulating immune cells, and (iv) attenuating
adverse late effects in the lung. Moreover, pharmacologic
modulation of CD73, adenosine or the four adenosine receptors
might offer opportunities to enhance the potential of combined
radioimmunotherapy to mount efficient and durable responses
with acceptable safety profile.

But the complexity of the tumor-induced and radiation-
induced changes in the microenvironment and the multifaceted
interactions between damaged resident cells and recruited
immune cells outlined above underline the necessity of further
work suited to identify strategies that achieve the required
balance between pro-immunogenic and immunosuppressive
effects of radiotherapy and outweigh the beneficial effects of
radioimmunotherapy with optimal tumor control and normal
tissue protection. Moreover, further work is required to gain
a better mechanistic understanding of the tissue-, injury-,
and disease stage-dependent beneficial or adverse effects of
CD73/adenosine as well as the identification of involved
ADORAs and effector cells for a successful restriction of lung
damage during therapeutic lung irradiation by targeting CD73,
adenosine or specific ADORAs (73).

Finally, it remains to be determined which approach for
targeting the CD73/adenosine axis might be best suited to
be used in combination with RT. Above all, the immune
effects of RT also depend on physical parameters such as
total dose, fractionation schemes (43, 57, 225, 289) and
potentially the quality of radiation (290). Thus, attention has
also to be given to the best sequence of application, as
well as appropriate radiation doses and fractionation-schemes
as they may largely impact the effects of radiotherapy on
microvessels, immunogenic cell death, immune cell infiltration,
the production of immune modulatory mediators, and the
activation of CD73/adenosine signaling in both, normal and
tumor tissues. Here, the major challenge will be to therapeutically
redirect the immune response toward anti-tumor action and
avoid tumor recurrence without enhancing collateral normal
tissue damage.
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