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The innate immune system comprises a cellular and a humoral arm. Humoral

pattern recognition molecules include complement components, collectins, ficolins, and

pentraxins. These molecules are involved in innate immune responses by recognizing

microbial moieties and damaged tissues, activating complement, exerting opsonic

activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin

PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing

defense against infectious agents, plays several functions in tissue repair and regulation

of cancer-related inflammation. Characterization of the PTX3 molecular structure and

biochemical properties, and insights into its interactome and multiple roles in tissue

damage and remodeling support the view that microbial and matrix recognition are

evolutionarily conserved functions of humoral innate immunity molecules.
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INTRODUCTION

Innate immune responses are the first strategies of host defense from invading pathogens and
tissue damage. Their activation occurs when conserved structures on the surface of pathogens
or associated with tissue damage, called pathogen associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs), respectively, are recognized by cell-associated
or soluble molecules known as pattern recognition molecules (PRMs). Among soluble PRMs,
pentraxins are a superfamily of evolutionarily conserved molecules with multi-functional roles in
innate immunity and inflammation, such as regulation of complement activation and opsonization
of pathogens (1). C-reactive protein (CRP) and serum amyloid P component (SAP) are the short
or “classical” pentraxins. CRP is mainly produced by hepatocytes as an acute phase protein in
man as well as other mammalian species, but not in mouse, in response to interleukin (IL)-6,
whereas SAP is the short pentraxin acting as an acute phase protein in mouse (2). Pentraxin 3
(PTX3) is the prototype of the long pentraxin subfamily, originally identified as an IL-1 or TNF-
inducible gene. PTX3 is produced by different cell types in response to primary pro-inflammatory
stimuli and microbial moieties, is an essential mediator of innate resistance to selected pathogens
of fungal, bacterial and viral origin [as discussed elsewhere (1, 3)], and is involved in regulation of
inflammation, tissue remodeling, and cancer.
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Here we will review the main biological features of PTX3
focusing on its structure and involvement in sterile conditions of
tissue damage and cancer, and providing evidence that microbial
and matrix recognition are evolutionarily conserved properties
shared by humoral innate immunity molecules.

GENE REGULATION AND
PROTEIN STRUCTURE

The human and the murine PTX3 gene map on chromosome
3 and are organized in three exons, the first two coding for the
leader peptide and the N-terminal domain, and the third coding
for the C-terminal-pentraxin domain (Figure 1).

PTX3 is mainly induced by pro-inflammatory cytokines, such
as IL-1β and TNFα, and by TLR agonists, microbial components
(e.g., LPS, lipoarabinomannan, and outer membrane proteins
of selected Gram-negative bacteria), and intact microorganisms
(Figure 1). PTX3 expression is inducible in a wide variety of
cell types, including fibroblasts and endothelial cells, myeloid
cells such monocytes, macrophages, and dendritic cells (DCs),
synovial cells, chondrocytes, adipocytes, glial and mesangial
cells, epithelial cells and retinal cells (1, 4, 5) (Figure 1).
High density and oxidized low density lipoproteins (HDL
and ox-LDL) induce PTX3 production in endothelial cells
and primary vascular smooth muscle cells (SMC) (6, 7).

FIGURE 1 | Expression of the long pentraxin PTX3. Several inflammatory stimuli, including positive (green) and negative (red) regulators (A) can induce PTX3

expression in different cell types, including cells of the myeloid lineage, fibroblasts, epithelial cells derived from different tissues, vascular and lymphatic endothelial cells

(ECs), smooth muscle cells (SMCs) and adipocytes (B). (CD40L, CD40 ligand; DAMPs, damaged-associated molecular patterns; GCs, glucocorticoids; LPS,

Lipopolysaccharide; ox-LDL/HDL, oxidized-low-density lipoprotein/high-density lipoprotein; PAMPs, pathogen-associated molecular patterns; PGE2, prostaglandin

E2; TLR, Toll like receptor; VitD3, vitamin D3).

Microbial ligands stimulate the release of PTX3 from neutrophils,
where the protein, mostly produced by myeloid precursors,
is constitutively stored in specific granules (8, 9). Among
peripheral blood mononuclear cells, only monocytes exposed
to inflammatory cytokines or LPS produce PTX3 mRNA
(1). PTX3 expression is negatively regulated by IFN-γ, IL-4,
dexamethasone, 1α,25-dihydroxivitamin D3, and prostaglandin
E2 (5, 10, 11). PTX3 is also induced by ovulatory stimuli
in granulosa cells, and when released it contributes to
the structural architecture of cumulus oophorus extracellular
matrix (12).

PTX3 expression and production is regulated by different
signaling pathways, mainly depending on the cell type and/
or stimuli. The NF-κB pathway controls PTX3 expression in
conditions of IL-1 receptor- or TLR-dependent inflammation
(13–15), while induction of the protein by TNFα in lung
epithelial cells involves the c-Jun N-terminal kinase (JNK)
pathway (16). HDL-induced PTX3 production in endothelial
cells requires the activation of the PI3K/Akt pathway through
G-coupled lysosphingolipid receptors (7).

The expression of the human PTX3 gene in physiological
and inflammatory conditions is also regulated by epigenetic
mechanisms. Hypermethylation of the promoter region and of
an enhancer encompassing the second PTX3 exon (enhancer
2) (Figure 2) have been associated with PTX3 gene silencing
in selected human tumors (e.g., colon rectal cancer and
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FIGURE 2 | Gene and protein structure of the long pentraxin PTX3. PTX3 gene is located in chromosome 3 and is organized in three exons: the first coding for the

signal peptide, the second coding for the N-terminal domain, and the third coding for the C-terminal, pentraxin domain. The promoter of PTX3 contains several

transcription factor binding sites, including Pu1, NF-κB, SP1, NF-IL6, and AP-1. Depicted are also the sites of PTX3 epigenetic regulation, mediated by two potentially

active enhancers. The first enhancer—containing the transcription factor binding sites for NF-κB, AP-1, Pu1, and SP1 - is located 230 kb upstream of the promoter,

while the second enhancer—containing the transcription factor binding site for NF-κB—encompasses the second PTX3 exon (A). Schematic representation of the

PTX3 protomer subunit with the leader peptide in gray, the N-terminal region in yellow, and the pentraxin C-terminal domain in red. Shown are the Cys residues

involved in intra- (C179-C357, and C210-C271) and inter- (C47-C47, C49-C49, C103-C103, C317/318-C317/318) chain disulfide bonds, the N-glycosylation site at

Asn220, and the pentraxin signature (a primary sequence motif highly conserved across pentraxins) (B). 8 protomer subunits assemble into an octameric protein

stabilized by inter-chain disulfides (as well as non-covalent interactions), which are pointed to by arrows in the picture (C).

leiomyosarcoma) (14). Consistent with this, hypomethylation
of these regulatory elements correlated with higher than
normal protein levels in the plasma of coronary artery disease
patients (17). Recent studies have characterized these epigenetic
mechanisms in the context of different PTX3 expressing
cells, including macrophages and fibroblasts, and have further
addressed the epigenetic modifications occurring in the PTX3
gene in colorectal cancer (CRC) (18). These investigations
identified a second enhancer located 230 kb upstream of the
PTX3 gene promoter (enhancer 1, Figure 2). In silico and ChIP
analysis revealed the binding of several transcription factors
on this enhancer (18). Many of them, including the NF-κB
subunit RelA, c-Jun, c-Fos, PU.1, and SP.1, are involved in the
activation of inflammatory and immune responses, and are also
known to control the activity of PTX3 promoter (Figure 2).
The enhancer 2 was found only to bind NF-κB after TNF-
α stimulation in macrophages, suggesting that this regulatory
element could be important in the activation of tissue-specific
transcription factors. However, the enhancer 2 could have a
direct role in activating the expression of PTX3, since ChIP
analysis showed its interaction with TAF1, a member of the
transcription preinitiation complex (PIC) (18). Furthermore,
STAT3-mediated hypermethylation of enhancer 1 has been
associated with PTX3 gene silencing in colorectal cancers (18)

(Figure 2). Interestingly, in vitro treatment of macrophages with
glucocorticoid hormones, such as dexamethasone, results in M2
polarization, which is associated with immune suppression, and
tumor progression (19). Noteworthy, one of the main markers
of this phenotype is activation of STAT3, thus suggesting that
STAT3-mediated PTX3 downregulation could be involved in
carcinogenesis (see below).

Amongst PTX3 single nucleotide polymorphisms (SNPs),
three (collectively forming an haplotypic block) have been found
associated with susceptibility to infections including those caused
by Aspergillus fumigatus (20–23), Mycobacterium tuberculosis
(24), and Pseudomonas aeruginosa (25). Two of these SNPs
are located in PTX3 intronic non-coding regions (rs2305619
in intron 1, and rs1840680 in intron 2), while the third is an
exonic polymorphism that causes an amino acid substitution at
position 48 (D48A, or rs3816527). Epidemiological studies have
found a correlation between these three SNPs and PTX3 plasma
levels, however the molecular mechanisms responsible for this
association are still poorly understood. In this regard, individuals
carrying the D48 allele have lower systemic concentrations
of PTX3 (26). This might be due to faster rate of mRNA
degradation, as proposed by Cunha et al. (20), or, alternatively,
reduced activity of the second enhancer in the PTX3 gene (that
encompasses the rs2305619, rs3816527, and rs1840680 SNPs)
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(18). It is not currently possible to exclude a direct local effect of
amino acid substitution on protein structure (therefore function).

PTX3 is a multimeric glycoprotein whose protomer subunits
comprise 381 amino acids. The protein primary sequence is
highly conserved in evolution (with 82% identity between human
and murine PTX3), likely due to early selection and enduring
maintenance in phylogenesis of fundamental structure/function
relationships. Analogous to other members of the long pentraxin
sub-family, which includes guinea pig apexin, rat, human, and
murine neuronal pentraxins 1 (NP1, or NPTX1) and 2 (NP2,
also known as Narp or NPTX2), the putative integral membrane
pentraxin NRP, and PTX4 (27), the PTX3 protomer is organized
into an N-terminal region and a 203 amino acids long C-
terminal domain with homology to the short pentraxins CRP and
SAP (28) (Figure 2).

The N-terminal domain has no obvious similarity to any
protein of known structure. However, secondary structure
predictions indicate that this domain mostly comprises α-helical
elements, three of which are likely organized into coiled-coils (6).
Furthermore, the N-terminal end of this domain (amino acids
18–54) is predicted to be intrinsically disordered, a property that
might provide the PTX3 protein with structural and functional
versatility (29), thus contributing to the remarkable complexity
of its interaction network (3).

The C-terminal domain shares with the short pentraxins a
considerable degree of homology (with up to 57% similarity),
which has allowed generation of 3D models based on the crystal
structures of CRP (PDBID:1b09) and SAP (PDBID:1sac) (30–
32) indicating that it adopts a β-jelly roll topology, stabilized
by two intra-chain disulfide bonds (33). Two additional cysteine
residues (i.e., Cys317 and Cys318) are involved both in intra- and
inter-chain disulfides that, in conjunction with inter-chain bonds
made by cysteine residues of the N-terminal domain, support the
quaternary structure of the mature PTX3 protein (34) (Figure 2).

The pentraxin domain of PTX3 bears a single N-glycosylation
site at Asn220 that, in a recombinant form of the protein from
CHO cells, is fully occupied by complex type oligosaccharides,
mainly fucosylated and sialylated biantennary sugars with a
minor fraction of tri-and tetraantennary glycans. N-linked
complex type glycosylation occurs in the natural protein
made by human cells too (32), and mediates some of the
PTX3 biological functions, including inhibition of influenza A
virus hemagglutination (35, 36) and recognition of P-selectin
(37). Furthermore, protein glycosylation (with major regard to
sialylation) modulates the interaction of PTX3 with C1q, and
the regulatory effect of PTX3 on complement activation via the
classical pathway (32). We speculate that the molecular crosstalk
between PTX3 and a range of diverse ligands involves a common
glycan code, whereby tissue- and microenvironment-specific
changes in the protein glycosylation profile might regulate its
biological properties [see (38) for a review].

The modular (i.e., N- and C-domains) and sub-modular
(i.e., coiled-coils and intrinsically disordered regions of the
N-domain) nature of the protomer likely endows PTX3 with
the structural versatility that is required to support its diverse
interactions, thereby its biological functions. In this regard, the
N-terminal region of the protein contains binding sites for

fibroblast growth factor 2 (FGF2), inter-α-inhibitor (IαI), TNF-
α-induced protein 6 (TNFAIP6 or TSG-6), plasminogen (Plg),
fibrin, and conidia of A. fumigatus (15, 39–42). C1q and P-
selectin mostly interact with the pentraxin-like domain (28, 37),
whereas both domains have been implicated in the recognition of
complement factor H (43, 44), and Ficolin-1 (45).

In addition to the multidomain organization, PTX3 has
a complex quaternary structure with high-order oligomers
stabilized by disulfide bonds. Mass spectrometry and site-
directed mutagenesis indicate that PTX3 is made of covalent
octamers (i.e., with a molecular mass of 340 kDa), through
inter-chain disulfides bridges (34) (Figure 2). A low-resolution
model based on data from electron microscopy and small
angle X-ray scattering shows that eight PTX3 protomers fold
into an elongated molecule with two differently sized domains
interconnected by a stalk region, and a pseudo 4 fold symmetry
along the longitudinal axis (33). Such quaternary structure is
unique among pentraxins, where CRP and SAP both share a
prototypical pentameric planar symmetry (46, 47). The only
other pentraxin that forms an octamer is SAP from Limulus
polyphemus, which, however, folds into a doubly stacked
octameric ring (48). In addition, the oligomeric organization
has important implications in its ligand binding properties.
For example, the PTX3 octamer contains two binding sites for
FGF2, and tetrameric recombinant forms of the N-terminal
domain recapitulate the inhibitory functions of the full length
protein toward this factor both in angiogenesis (33, 39) and
bone deposition (49). However, dimeric forms of the N-terminal
domain retain binding to IαI and TSG-6, thereby the octameric
PTX3 protein is likely endowed with multiple (at least four)
binding sites for each of these ligands, and can act as a nodal
molecule in cross-linking hyaluronic acid in the extracellular
matrix (41, 50).

High resolution models are urgently needed to disentangle the
structural complexity of this long pentraxin and shed light on its
structure/function relationships, some of which are remarkably
different to those classically described for the short pentraxins.

ROLE OF PTX3 IN TISSUE REPAIR

Beyond its role as the first line of resistance against pathogens,
innate immunity is involved in initiating the process of tissue
repair (51–53). The cellular arm of the innate immune system
senses specific DAMPs and regulates inflammatory responses
at sites of damage (52, 54). The humoral arm of the innate
immunity has different and complex roles ranging from the
clearance of apoptotic cells and regulation of immune cell
migration and activation, to regulation of remodeling cell activity
(55, 56). For instance, SAP regulates fibrosis by inhibiting the
alternative activation of macrophages via FcγRs (57) or by
modulating immune cell activities via DC-SIGN (58). Pentraxins
and components of the complement system also interact with
elements present in the extracellular matrix (ECM), thus
suggesting additional regulatory roles of the innate immune
system in the tissue response to injury (53, 59). On the
other hand, different ECM components, such as fibronectin,
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TABLE 1 | Biological functions of PTX3 in tissue remodeling and cancer.

Ligands Functions

Tissue remodeling Fertility Hyaluronic

acid/TSG-6/inter-α-

trypsin

inhibitor

Incorporation of PTX3 into the hyaluronic acid-rich ECM

surrounding the pre-ovulatory oocyte (i.e., dependent on the

presence of IαI and TSG-6) is essential for cumulus matrix stability

and female fertility (12)

Synaptogenesis ND Pentraxin 3 regulates synaptic function by inducing AMPA

receptor clustering via ECM remodeling and beta1-integrin (60)

Bone turn-over FGF2 PTX3 is expressed by osteoblast progenitors, and is essential for

matrix mineralization both in bone tissue homeostasis and fracture

repair (49)

Angiogenesis FGFs PTX3 recognizes selected FGFs via its N-terminal domain, and

inhibits their binding to FGF receptors, thus preventing

endothelial/smooth muscle cell proliferation in vitro and

angiogenesis/neointima formation in vivo (61)

Fibrinolysis Fibrinogen/

fibrin/

plasminogen

PTX3 derived from macrophages and mesenchymal cells forms a

tripartite PTX3/fibrin/plasminogen complex at acidic pH that

promotes pericellular fibrinolysis (15)

In a mouse model of arterial thrombosis, PTX3 inhibits platelet

adhesion and aggregation by targeting fibrinogen and collagen (62)

Cancer Anti-tumoral factor H In murine models of chemically induced mesenchymal and

epithelial carcinogenesis, PTX3 dampens cancer-related,

complement-dependent inflammation (14)

FGFs PTX3 inhibits the FGF-driven tumor cell proliferation in vitro, tumor

growth, angiogenesis and metastatic potential in vivo in models of

melanoma, prostate, breast and lung cancer (63)

Pro-tumoral Not defined PTX3 promotes tumor cell migration, invasion and metastasis, and

protein levels correlate with prognosis and/or tumor grade in

different types of cancer (64, 65)

mindin, osteopontin, and vitronectin, interact with microbes
and have opsonic activity (53, 66), thus suggesting a close
evolutionary link between recognition of microbial moieties and
ECM components.

In different mouse models of non-infectious tissue damage,
deficiency of the long pentraxin PTX3 was associated with altered
thrombotic response to the lesion, increased deposition and
persistence of fibrin, followed by increased collagen deposition
(15, 62, 67–69) (Figure 3).

Following tissue damage, PTX3 was induced in the blood and
locally in response to TLR activation and IL-1β amplification
(15). Interestingly, PTX3 is reported to be among the genes
induced by thrombin in monocytes (70). At sites of wound,
PTX3, released by neutrophils (9), localized in the clot and
in the pericellular matrix of macrophages and PDGFRα+FAP+

cells of mesenchymal origin that collectively invade the wound
site (15, 68).

In skin wounding, PTX3-deficiency was associated with
increased deposition of fibrin, followed by increased deposition
of collagen, fibroplasia, epithelial hyperplasia, and delayed
healing (15). A premature contraction of the woundwas observed
in PTX3-deficientmice, in agreement with an augmented content
of platelet-derived factors (e.g., thrombin, serotonin, PDGF,
TGFβ) known to be responsible of skin wound contraction
by SMC located in the panniculus carnosus (71–73). Indeed,
administration of pharmacological inhibitors of coagulation and
platelet activation reverted these defects, including premature

wound contraction and increased collagen deposition (15).
Therefore, an altered haemostatic and fibrinolytic response
triggered the alterations associated with PTX3-deficiency in skin
wound healing.

In CCl4-induced liver injury, PTX3 was localized in
necroinflammatory areas and fibrotic portal tracts, and was
associated with neutrophils, macrophages and mesenchymal
stromal cells (MSCs) (15). In this setting, PTX3-deficiency
was associated with increased centrilobular thrombosis and
fibrin deposition in necroinflammatory areas, followed by severe
impairment of repair and fibrosis, as assessed by increased α-
SMA+ fibroblastic cells and collagen deposition (15). Similar
abnormalities were reported in different models of lung injury
(15, 74). In addition, PTX3 played a protective role in a murine
model of ischemic injury of the brain, where it was involved
in the resolution of edema and glial scar formation (75). PTX3
administration reverted the IL-6/STAT3-dependent interstitial
fibrosis in a mouse model of acute kidney injury (76).

Fibrin is deposited after tissue injury and its subsequent timely
removal is essential for several aspects of tissue repair in major
organs, as well as in a wide range of pathological conditions
(77, 78). In these contexts, a defective fibrinolysis is described
as an etiopathological factor leading to reduced remodeling and
altered connective tissue formation (79–81). Macrophages and
MSCs enter the wound site invading the inflammatory matrix
through plasmin-mediated mechanisms, allowing fibrin removal
and consequent deposition of granulation tissue rich in type
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FIGURE 3 | Role of PTX3 at the crossroad between innate immunity, hemostasis and tissue repair, and cancer. By interacting with fibrinogen (FG)- and collagen

(COL)-like domains of other fluid-phase PRMs, such as C1q, ficolins, and collectins, PTX3 amplifies the recognition potential of these members of the humoral innate

immunity, favoring complement-mediated antimicrobial resistance, and effector functions (upper left panel). By interacting at acidic pH with fibrinogen/fibrin and

collagen, as well as plasminogen (Plg), PTX3 tunes injury-induced thrombotic responses and favors pericellular fibrinolysis, contributing to tissue remodeling and repair

(upper right panel). By interacting with factor H and FGFs, PTX3 controls complement-dependent tumor promoting inflammation, including CCL2-dependent

macrophage recruitment and M2-like skewing, as well as FGF-dependent neo-angiogenesis. This anti-tumor potential of PTX3 is hampered by genetic or epigenetic

silencing of PTX3 leading to enhanced tumor growth (lower panel).

I collagen, as well as other ECM proteins (71, 81, 82). The
alterations in tissue repair observed in PTX3-deficient mice
have been attributed to defective plasmin-mediated invasion
and fibrinolysis by tissue remodeling cells, namely macrophages
and MSCs (15, 68). Also in vitro, PTX3-deficient macrophages
and fibroblasts showed defective fibrinolytic activity (15), thus
suggesting that PTX3 contributes to the progression of a normal
and efficient pericellular fibrinolysis which promotes repair.

PTX3 was shown to interact specifically with Plg and
fibrin at acidic pH (optimal range from 6.5 to 5.5), but not

at neutral pH (15) (Figure 3). Interestingly, the interaction
of PTX3 with members of the ficolin and collectin family,
occurring through their fibrinogen-like domain and collagen
domains, is facilitated in an acidic microenvironment (45,
83, 84). Acidification of the wound site, which occurs as a
result of cellular metabolic adaptation to trauma-induced tissue
hypoperfusion, has functional relevance in the healing outcome
and involves several processes including cell adhesion, migration,
and proliferation (53, 85). The interaction of PTX3 with fibrin
and Plg occurs through different sites in its N-terminal domain
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and PTX3 does not interfere with the interaction between fibrin
and Plg. In mapping experiments, PTX3 did not interact with the
Plg Kringle 1 domain, indispensable for Plg initial recruitment
on lysine-rich portions of fibrin and/or on cell surface, but
specifically bound the Kringle 5 domain (15). This interaction
could be crucial for triggering Plg conformational changes that
allow a transition of the molecule from a closed-inactive to
an open and functional form (86–88). This conformational
transition is essential for Plg conversion into plasmin operated
by Plg activators (PAs) and central in fibrin removal in the
thrombus (78, 89). Indeed, in cell-free fibrinolysis assays, the
interaction of PTX3 with Plg determined the enhancement of
plasmin-mediated fibrin gel degradation triggered by urokinase
PA (uPA) and tissue-type plasminogen activator (tPA) at acidic,
but not neutral, pH. Plg activators are neutral proteases (90).
The dependence on acidic pH of the interaction of PTX3 with
fibrin and Plg ensures that it does not occur in the circulation but
rather at sites of tissue repair and in thrombi, where it supports
fibrinolysis in acidic environments. Thus, the acidic pH acts as
a “switch on” signal for this function of PTX3 (Figure 3). The
interaction with fibrin and Plg is restricted to PTX3, since no
similar function has been reported for short pentraxins. Only one
study reported the interaction of SAP with fibrin and consequent
modulation of in vitro formation of clots (91), however the
underlying molecular mechanism has never been characterized.

In a model of arterial thrombosis, PTX3 produced by the
vessel wall had a critical protective role in the modulation
of thrombus formation (62). Fibrinogen pre-incubation with
PTX3 significantly reduced platelet aggregation in the presence
of collagen. Likewise, pre-incubation of collagen with PTX3
attenuated platelet aggregation in the presence of fibrinogen.
These effects were dependent, respectively, on the N-terminal
or C-terminal domain of PTX3, and suggested that in arterial
thrombosis PTX3 disfavored the pro-thrombotic activity of
fibrinogen and collagen (62). PTX3 interacts with P-selectin
and tunes P-selectin-dependent neutrophil extravasation (37).
However, in arterial thrombosis PTX3 did not influence P-
selectin-dependent platelet-leukocyte and platelet-endothelium
aggregation (62, 92). Although initially PTX3 has been reported
to induce tissue factor (TF) expression in endothelial cells and
monocytes (93), subsequent in vitro and in vivo studies did not
confirm this result (15, 62). Indeed, in the thrombosis model
TF expression in the aorta of PTX3-deficient mice and controls
was similar (62). These results are in line with the evidence
that PTX3 plays protective functions in vascular pathologies.
Indeed, PTX3 overexpression limited the neointimal thickening
after rat carotid artery balloon injury (94) and PTX3-deficiency
was associated with augmented infarct area following myocardial
ischemia/reperfusion injury (13), increased atherosclerosis and
augmented macrophage accumulation and inflammation in
atherosclerotic plaques (95).

The administration of MSCs to acute or chronic wounds
improves wound healing by increasing granulation tissue
formation, accelerating re-epithelialization and stimulating
angiogenesis through paracrine signaling (96), thus prompting
new studies on the treatment of non-healing wounds resulting
from burns (97) and Crohn’s disease (98). In wounded

skin, MSCs acted as a potent promoter of tissue repair
and remodeling, whereas PTX3-deficient MSCs showed
compromised recruitment and invasiveness at the site of
damage, due to defective fibrinolysis, and therefore exerted a
compromised therapeutic effect causing delayed healing (68).

Similar results were obtained in a mouse model of acid
aspiration-dependent acute lung injury (69), mimicking acute
respiratory distress syndrome (ARDS) caused by aspiration of
gastric contents (99). In the mouse model, beneficial effects
of treatment with MSCs on the early acute inflammatory
reaction, pulmonary edema and long-term fibrotic evolution and
pulmonary function have been observed. The administration of
PTX3-deficientMSCs was less effective in limiting the pulmonary
edema at 24 h after acid aspiration, and was associated with
defective fibrinolytic activity, resulting at later time points in
increased pulmonary fibrosis and therefore in a not significant
increase of lung function. Levels of D-dimer significantly
increased in mice after treatment with MSCs indicating their
ability to modulate pulmonary fibrinolysis and thus affecting
fibrotic scarring. The administration of PTX3-deficient MSCs
resulted in decreased lung levels of D-dimer compared to PTX3-
competent MSCs, thus attributing to a defective fibrinolysis
the observed reduced therapeutic effects of PTX3-deficient
MSCs (69).

Recently, PTX3 has been identified as an important molecule
contributing to bone homeostasis and remodeling (49). Under
homoeostatic conditions, histological analysis of distal femurs
of PTX3-deficient mice did not show differences in the number
of active trabecular and endosteal TRAP+ osteoclasts. However,
micro-computed tomography showed a lower bone volume
attributable to suppression of the osteoblast function. In a
fracture and regeneration model of the tibia diaphysis, PTX3-
deficient mice showed a lower bone formation and repair
rate than controls, in agreement with lower percentage of
mineralized callous tissue and lower collagen I expression
compared to controls. Under conditions of homeostasis and
bone repair, the expression of PTX3 was associated with non-
hematopoietic/non-endothelial periosteal cells, in particular,
with CD51+ and α-SMA+ osteoprogenitor subsets. FGF2 is
expressed during the early stages of bone formation and
is abundantly accumulated in the bone matrix, where it
participates in osteoblastogenesis and skeletal remodeling (100).
In agreement with the property of PTX3 to bind FGF2
and prevent FGF2-dependent activities, PTX3 reversed the
negative effect of FGF2 on osteoblast differentiation from
bone marrow stromal cells in vitro, and the PTX3 N-
terminal domain alone recapitulated this activity. Therefore,
PTX3 produced by osteoblast lineage cells, acts as a bone
protective factor, important to unlock osteoblast maturation
by antagonizing the FGF2 effect during bone formation
(49). Bone formation during fracture repair initiates around
extravascular deposits of fibrin-rich matrix and subsequent
defects in fibrin clearance from the fracture site severely
impair healing (101). Fibrinogen depletion in Plg-deficient
animals restores a normal fracture repair (102), thus proving
that inefficient fibrin turnover is essential for bone repair.
Therefore, further studies are needed to address the relevance
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of PTX3-dependent modulation of the fibrinolytic system in
bone repair.

All together, these studies have provided several lines of
evidence that the involvement of PTX3 in tissue remodeling
and repair depends on the recognition of matrix molecules and
highlight the connection and interplay between haemostasis and
immunity (Figure 3).

ROLE OF PTX3 IN CANCER

Inflammation is a component of the tumor microenvironment
promoting tumor development and growth (103). Since
PTX3 is expressed in inflammatory conditions and acts as a
tuner of complement-activation and leukocyte recruitment, it
was hypothesized that PTX3 was involved in cancer-related
inflammation. Genetic studies in mice showed that PTX3-
deficiency caused increased susceptibility to mesenchymal and
epithelial carcinogenesis in the models of 3-methylcholanthrene
(3-MCA)-induced sarcomagenesis, and 7,12-dimethylbenz
[a] anthracene/terephthalic acid (DMBA/TPA)-induced skin
carcinogenesis (14). In these tumors, infiltrating macrophages
and endothelial cells were the major source of PTX3 in
response to locally produced IL-1. PTX3-deficient tumors
were characterized by increased macrophage infiltration, pro-
inflammatory cytokine production, complement activation,
and angiogenesis, as well as increased oxidative DNA damage
and genetic instability, compared to wild type tumors (14).
In this context, PTX3 regulated complement activation by
interacting with factor H, a complement regulator, and as a
consequence, macrophage recruitment and M2-like polarization
(14) (Figure 3).

These data are in line with recent studies showing that the
anaphylatoxins C3a and C5a may contribute to cancer-related
inflammation, recruit myeloid suppressor cells, and promote
IL-1β and IL-17 response in neutrophils thus promoting colon
carcinogenesis (104–107).

In addition to regulate complement, PTX3 was shown to
bind selected fibroblast growth factors (FGFs), including FGF2,
and FGF8b through the N-terminal domain, and inhibit FGF-
dependent angiogenic responses (6). This effect was shown to be
responsible of the anti-tumor activity of PTX3 in FGF-dependent
transplanted murine tumors, including prostate cancer and
melanoma and fibrosarcoma (108–110) (Figure 3). The role of
PTX3-mediated anti-angiogenic activity has not been addressed
so far in primary carcinogenesis.

In line with these preclinical studies, the human PTX3
promoter and regulatory regions were shown to be epigenetically
modified through hypermethylation in selected human
mesenchymal and epithelial cancers, such as esophageal
squamous cell carcinoma (111) and colorectal cancer
(14, 18, 112), leading to silencing of PTX3 protein expression.
Thus, genetic studies in mice and epigenetic studies in humans
demonstrate that PTX3 behaves as an extrinsic oncosuppressor
gene by acting at the level of complement-mediated,
macrophage-sustained, tumor promoting inflammation.

In contrast to the genetic evidence outlined above, several
studies performed with PTX3 overexpressing cells suggest that
the protein may play a pro-tumorigenic role by promoting tumor

cell migration and invasion (head and neck tumors, cervical
cancer) or proliferation (glioma), epithelial-mesenchymal
transition (hepatocellular carcinoma) and macrophage
chemotaxis (64, 65, 113, 114). In basal-like breast cancers, PTX3
was found to be a critical target of oncogenic phosphoinositide
3-kinase signaling and NF-κB-dependent pathways, and to
be associated with PI3K-induced stem cell-like traits (115).
However, none of these pro-tumoral effects of PTX3 has been
confirmed in gene targeted animals or in carcinogenesis models.

These contradictory results suggest that PTX3 may have a
dual role in cancer, likely depending on the type of cancer, or
on the cells producing it, in particular tumor cells or infiltrating
macrophages, fibroblasts and endothelial cells. Further genetic
studies in mice and humans will be necessary to clarify these
context-dependent findings.

PTX3 AS MARKER OF
CANCER PROGRESSION

Several lines of evidence indicate that PTX3 could be a local or
systemic marker of cancer-related inflammation. Upregulation
of PTX3 gene expression was observed associated to a stromal
signature in ovarian cancer (116), and has been described in
aggressive breast cancer and distant bone metastases (117–
119), anaplastic thyroid carcinoma (120), soft tissue liposarcoma
(121), prostate cancer (122), and glioblastoma (123). Increased
circulating levels of PTX3 were observed in myeloproliferative
neoplasms (124), soft tissue sarcomas (125), lung cancers
(126–128), pancreatic carcinomas (129), gliomas (130), and
hepatocellular carcinomas (131). In pancreatic carcinoma, high
PTX3 levels were associated with advanced clinical stage and
poor overall survival. In the same cohort of patients with invasive
ductal pancreatic carcinoma at stage III and IV, plasmatic CRP
levels were similarly associated with a worst prognosis (129).

Different studies analyzed the role of PTX3 as biomarker
in lung cancer. Through a proteomic effort, Planque et al.
reported in 2009 that PTX3 is produced by lung cancer cells.
This result was confirmed in patients with lung cancer, in which
PTX3 plasma levels resulted significantly increased compared
to healthy subjects (126). It was subsequently observed that
PTX3 circulating levels were related to disease aggressiveness
and progression, irrespective to the subtypes and histotypes of
lung cancer (127). In addition, ROC analysis indicated that
PTX3 could discriminate between cancer patients and heavy
smokers at high risk for lung cancer (127). Similarly, high PTX3
levels were correlated with worse progression-free survival in
patients with lung cancer and chronic obstructive pulmonary
disease (132), and with overall survival and disease-free survival
in small-cell lung carcinoma (SCLC) (133). A recent study on
1358 individuals at high risk for lung cancer demonstrated that
PTX3 levels were not predictive of pathology occurrence (128).
In the 110 patients of this cohort that developed resectable lung
cancer, preoperative PTX3 plasma levels were higher compared
with those of cancer-free heavy smokers, but were not predictor
of outcomes (128).

In prostate cancer patients, circulating levels of PTX3
were higher compared to patients with prostatic inflammation,

Frontiers in Immunology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 712

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Doni et al. PTX3 in Tissue Remodeling and Cancer

while serum levels of prostate-specific antigen (PSA) and CRP
were not different between the two groups (134). In CRC,
PTX3 circulating levels were significantly increased compared
to healthy individuals or to patients with colorectal polyps,
representing an independent prognostic factor for CRC patients
(135). PTX3 levels were reduced at discharge after surgery,
and a subsequent increase during the follow-up was associated
to recurrence. Preoperative PTX3 levels were significantly
associated to clinical stage and to a better postoperative prognosis
in a cohort of 263 primary CRC patients (136). In another
small group of CRC patients, PTX3 serum levels combined with
CXCL8 and VEGF levels were efficiently predicting relapsing
cases (137). Since epigenetic studies showed PTX3 silencing
in colorectal tumor cells (18), increased PTX3 plasma levels
in these patients reasonably reflect cancer-related inflammation
associated with tumor growth. Patients with hepatocellular
carcinoma (HCC) showed higher PTX3 levels than individuals
with fibrosis (131). Interestingly, in these patients the A/A
genotype for rs1840680 and rs2305619, resulting in higher PTX3
plasma levels, was also significantly associated with the presence
of HCC.

Beside an evaluation of PTX3 as soluble biomarker in cancer,
some reports also investigated PTX3 expression in cancer tissues.
In hepatocellular carcinoma, PTX3 expression was analyzed
after liver resection in tumoral and adjacent normal tissue and
a higher PTX3 expression was observed in the tumoral area.
PTX3 expression was correlated with advanced stage, larger
tumor size, presence of intra-hepatic metastases, portal vein
tumor thrombosis and liver cirrhosis (65). Overall, high PTX3
expression in tumor tissue from HCC was associated with lower
survival after surgery. Immunohistochemical analysis on tissue
specimens from lung cancer revealed an interstitial expression
of PTX3 in the neoplastic area associated with shorter survival,
while no staining was observed in normal lung parenchyma
(128). In tissue samples from prostate cancer patients, PTX3 is
expressed at higher levels compared to patients with prostatic
inflammation (134).

Overall the data reported above strongly suggest that
PTX3 is overexpressed locally or systemically in different
neoplastic conditions, and could likely represent a novel
promising prognostic factor for cancer patients. In particular,
as discussed above and by Giacomini et al. (63), PTX3
originated from endothelial cells, tumor-associated fibroblasts
and infiltrating myeloid cells likely reflects microenvironment
or systemic inflammation associated with tumor progression,
and not its involvement in the pathogenesis. Indeed, the
role of PTX3 in neoplastic transformation and growth has
been shown to depend on the context and to be influenced
by its property to interact with different molecules in the
tumor environment.

CONCLUDING REMARKS

Based on genetic studies in mice and human genetic
associations, PTX3 is a well-recognized mediator of innate
resistance to selected infections, acting by modulating

complement activation, opsonizing microbes and facilitating
their clearance through phagocytosis. Moreover, by
interacting with the fibrinogen-like and collagen-like
domains of ficolins and collectins, PTX3 amplifies the
recognition potential of the humoral innate immunity (1)
(Figure 3). These lines of evidence provide the rational for
therapeutic and diagnostic translation of this molecule in
infectious conditions.

Several studies presented in this review also indicate that
PTX3 is involved in tissue remodeling and repair in sterile
conditions through the recognition of matrix molecules, and
regulates the thrombotic response and fibrin remodeling,
thus playing a non-redundant role in the orchestration of
the tissue repair process (Figure 3). Other humoral PRMs
interact with ECM components (e.g., C1q, collectins, CRP,
SAP), or contain collagen- and fibrinogen-like domains
(e.g., ficolins, MBL, collectins), and several ECM molecules
recognize microbial moieties and have opsonic activity (e.g.,
fibronectin, mindin, osteopontin, vitronectin). These lines of
evidence support the view that inflammation, innate immunity,
haemostasis, and tissue repair are functionally linked and
that the recognition of microbial moieties and extracellular
matrix molecules by the humoral arm of innate immunity is
evolutionarily conserved.

Studies reported here finally show that PTX3 is involved in
tuning carcinogenesis through the modulation of cancer-related
inflammation or angiogenesis in specific cancer types (Figure 3).
However, other studies propose that in specific models PTX3 has
a pro-tumorigenic function, by promoting tumor cell migration
and invasion and macrophage infiltration, suggesting that PTX3
may have different functions on carcinogenesis depending on
the tissue and cancer type, and possibly cell- and stimulus-
dependent PTX3 glycosylation (and sialylation) profiles, which
needs further dissection.

Cancer is considered a “non-healing wound” (138), since
wound-healing responses favoring tumor growth are activated
in the tumor microenvironment. These include extravascular
deposition of fibrin that acts as a provisional stroma for
stromal and immune cells migration, angiogenesis and ECM
deposition and remodeling (139). Fibrin degradation, vascular
resorption and collagen synthesis result in formation of dense
fibrous connective tissue (“scar” in wounds and “desmoplasia”
in cancer). These responses are similar in tumors and
wounds, but in tumors they are not self-limited. PTX3 by
interacting with fibrin matrix (15), FGF2 (109), and complement
components (14) regulates the main common processes in
tissue repair (139–141) and in tumor-promoting angiogenesis
and inflammation (Table 1) (61, 142, 143), thus suggesting
that the roles of PTX3 in tissue repair and cancer are
functionally associated.
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