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Gestational age-dependent immune intolerance at the maternal-fetal interface might

be a contributing factor to placental pathology and adverse pregnancy outcomes.

Although the intrauterine setting is highly choreographed and considered to be a

protective environment for the fetus, unscheduled inflammation might overwhelm the

intrauterine milieu to cause a cascade of events leading to adverse pregnancy outcomes.

The old paradigm of a sterile intrauterine microenvironment has been challenged, and

altered microflora has been detected in gestational tissues and amniotic fluid in the

absence of induction of significant inflammation. Is there a role for endotoxin tolerance

at the maternal-fetal interface? Endotoxin tolerance is a phenomenon in which tissues

or cells exposed to the bacterial product, particularly lipopolysaccharide, become

less responsive to subsequent exposures accompanied by decreased expression of

pro-inflammatory mediators. This could also be related to trained or experienced

immunity that leads to the successful outcome of subsequent pregnancies. Adaptation

to endotoxin tolerance or trained immunity might be critical in preventing rejection of the

fetus by the maternal immune system and protecting the fetus from excessive maternal

inflammatory responses to infectious agents; however, to date, the exact mechanisms

contributing to the establishment and maintenance of tolerance at the maternal-fetal

interface remain incompletely understood. There is now extensive evidence suggesting

that microRNAs (miRNAs) play important roles in themaintenance of a healthy pregnancy.

miRNAs not only circulate freely in extracellular fluids but are also packaged within

extracellular vesicles (EVs) produced by various cells and tissues. The placenta is a

known, abundant, and transient source of EVs; therefore, our proposed model suggests

that repeated exposure to infectious agents induces a tolerant phenotype at the

maternal-fetal interface mediated by specific miRNAs mostly contained within placental

EVs. We hypothesize that impaired endotoxin tolerance or failed trained immunity at the

maternal-fetal interface will result in a pathological inflammatory response contributing to

early or late pregnancy maladies.
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INTRODUCTION

Our current understanding of immunity at the maternal-fetal
interface has been shaped by acceptance of periodic concepts
and approaches formed based on tissue-allograft studies in non-
pregnant individuals, male or female, and by the paradigm
suggesting the uterus as a sterile organ (1, 2). However,
our contemporary understanding of the role of the placenta,
hormones, and novel cellular controls warrants re-evaluation of
old paradigms associated with fetal immune-protection in both
hostile and normal intrauterine microenvironments (3, 4). The
decidua, thematernal tissue in pregnancy, is replete with immune
cells that should intrinsically harm the fetus; however, normal
pregnancy ensues, suggesting that the placenta transforms these
cells into a specialized, pregnancy compatible milieu (5). What
remains incompletely understood is why the placenta fails
to counter challenges from intrauterine infections or sterile
inflammation. This is further complicated by the observations
that some women can experience a successful pregnancy despite
repeated exposure to infectious agents, particularly endotoxins,
and other environmental factors. This review discusses recent
observations that might explain successful pregnancy outcomes
despite repeated intrauterine infections and potentially provide
important insights into the role of the placenta via secretion of
extracellular vesicles (EVs).

Despite constant exposure to hygienic challenges and
infection during pregnancy, most of the 4 million annual
deliveries in the United States have a successful outcome without
presenting any clinical evidence of intrauterine infection (6). In
this regard, the onus can be placed on the placenta to counter
inflammation and ensure trained immunity for a successful
pregnancy (7–10); however, it remains unclear how the placenta
programs these pregnancy compatible events. The placenta is
a transient organ that supports fetal growth and development
by ensuring respiratory gas exchange, regulates maternal-fetal
nutrient transport, provides protection for the fetus against
maternal immunity, and acts as a transient endocrine organ by
producing hormones, such as estrogen, progesterone, human
chorionic gonadotropin, and human placental lactogen, while
protecting the fetus from external infectious and immune threats
(11, 12). Increasing evidence suggests that molecular exchanges
occur between maternal and fetal systems to enable adaptation
of maternal physiology for growing fetal requirements during
gestation, with the focus placed on placenta-derived EVs as a
medium of placental communication with maternal physiology
(13–15). An important question arises from these observations
and concerns whether placental EVs play a role in protecting the
fetus from infectious agents.

Abbreviations: CD, cluster of differentiation; DAMP, damage associated

molecular patterns; EV, extracellular vesicle; IL, interleukin; IRAK, interleukin-

1 receptor associated kinase; miRNA, microRNA; MV, microvesicles; MVB,

multivesicular body/late endosome; MyD88, myeloid differentiation primary

response 88 protein; NF-κB, transcription factor nuclear factor kappa-light-chain-

enhancer of activated B cells; PAMP, pathogen associated molecular patterns;

PLAP, placental alkaline phosphatase; PRR, pattern recognition receptors; TLR,

toll-like receptor; TNF, tumor necrosis factor; TRAF6, TNF-receptor associated

factor 6.

Among various models of immune tolerance, microRNAs
(miRNAs) are implicated as mediators, as well as markers of
immune tolerance in various tissues; however, the mechanisms
associated with miRNA-mediated immune tolerance in
gestational tissues are not well-understood. Because miRNAs
are also included as cargo in EVs, do placental EVs and their
embedded miRNA cargo play a role in immune tolerance at
the maternal-fetal interface? This review focuses on immune
tolerance at the maternal-fetal interface and reviews the
role of miRNA in mediating immune tolerance via EVs in
gestational tissues.

MATERNAL-FETAL INTERFACE IMMUNITY
AND ITS ROLE IN ADVERSE
PREGNANCY OUTCOMES

Pregnancy is a period of physiological stress accompanied by a
vital balance between proinflammatory and anti-inflammatory
stimuli. Disruption of this delicate balance at the maternal-
fetal interface has been linked to various adverse pregnancy
outcomes. Starting from exposure to seminal antigens at
coitus, to implantation, an active inflammatory period facilitates
implantation and initial pregnancy (16). The cytokines and
chemokines in seminal fluid play a role in attracting regulatory T
cells (Tregs) to themicroenvironment (17). Female dendritic cells
recognize fetal antigens and cross-present seminal-fluid antigens
that transform effector CD4+ T cells into Tregs, which are
then recruited to the endometrium. Tregs and decidual natural
killer (dNK) cells increase during early pregnancy and play a
vital role in implantation and maintenance of pregnancy (17–
19). Although in vitro fertilization (IVF) pregnancies involving
fertilized eggs with washed semen do occur, Treg recruitment
to the implantation site appears to be a physiologically helpful
and critical event for implantation and pregnancy maintenance
(20, 21). dNK cells and Tregs are integral cellular components
that contribute to normal placentation and vascular support at
the maternal-fetal interface, while playing an important role in
preventing fetal rejection (22).

This period of inflammatory activity during implantation
is subsequently followed by a period of relative inflammatory
quiescence during mid-pregnancy to enable fetal growth and
development (17, 23). Dysregulated immunity with excessive
maternal inflammation further into pregnancy contributes to
impaired angiogenesis, especially of the spiral arteries, resulting
in gestational vascular disorders, such as preeclampsia (24–27).
The concept of trained immunity and inflammation tolerance
might be applicable in the case of preeclampsia, as subsequent
pregnancy with the same partner within a few years of first
pregnancy is not always associated with recurrence of the
pregnancy complication (28, 29).

Pregnancy can be divided into three phases of inflammatory
milieu: implantation (inflammatory), active gestation (anti-
inflammatory), and parturition (inflammatory) (17, 23). At
parturition, labor is induced by an inflammation-associated
cascade of events that result in delivery. Premature activation
of this process results in preterm labor and delivery. Why
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are the placenta or its EVs and miRNAs unable to blunt
this premature activation of inflammation? It is possible that
inflammation tolerance (not necessarily immune tolerance)
escapes the placenta due to detrimental activation of dNK cells
and Tregs, or that EVs carry an inflammatory cargo that does not
counter inflammation.

TYPES OF INFLAMMATION AT THE
MATERNAL-FETAL INTERFACE:
INFECTION-MEDIATED OR STERILE?

A fetus in the intrauterine environment is believed to be
in a relatively protected state. Occasionally, microbes gain
passage into the intrauterine milieu by ascending infection
or transplacental routes, with the transplacental transmission
of infection from mother to fetus capable of occurring
antenatally or perinatally (12). Pregnant women with altered
immunity secondary to various stressors, including infection,
can potentially experience preterm delivery. Romero et al.
showed that despite evidence of preterm birth being linked
to infection, preterm birth without infection is more common
(30). Furthermore, antibiotics alone are ineffective at preventing
preterm birth related to infection, suggesting that preterm
birth induced by infection is mediated by inflammation rather
than the organism per se (31). One possible explanation for
antibiotic failure is that inflammatory damage has already
been established, and detrimental pathways have been initiated
and cannot be controlled by poorly timed treatment with
antibiotics (32). Our understanding of inflammatory signals
also suffers from a poor definition of sterile inflammation
and its role in programming preterm birth. Therefore, it is
important to understand the mechanistic differences between
sterile inflammation and infection-mediated inflammation.

Pro-inflammatory stimuli can arise from both host (self)
and alien (non-self) sources, also described as “danger”
and “stranger” stimuli (23), that include damage-associated
molecular patterns (DAMPs; also known as alarmins) and
pathogen-associated molecular patterns (PAMPs), which interact
with a group of pattern-recognition receptors (PRRs) expressed
on the cell surface. Sterile pathways that trigger inflammation
include host factors (e.g., tissue injury, cell death, and
environmental factors, such as low oxygen tension and elevated
uric acid) that act via DAMPs (25). These differ from infectious
triggers (e.g., bacteria or viruses) that act via PAMPs (23).
However, pathological inflammatory processes can be triggered
by either sterile or infection-mediated pathways.

DAMPs are a group of endogenous intracellular molecules
released in the early stages of unplanned cell death to signal
cell injury (33). The most common DAMPs include uric acid,
high-mobility group box 1, interleukin (IL)-1α, and cell-free
DNA. High-mobility group box 1 levels increase in multiple
animal models along with sterile inflammation, as well as in
human models of acute organ injury, autoimmune diseases, and
cancer (34–37). High concentrations of uric acid, a byproduct
of cell death, can form monosodium urate crystals in the
presence of extracellular sodium and induce acute inflammation.

Upon exposure to foreign antigens and as the non-specific
first line of defense against foreign microorganisms, monocytes
differentiate into macrophages capable of phagocytosing the
offending agents. Monosodium urate crystals, upon phagocytosis
by antigen-presenting cells, can interact with the NALP3
inflammasome to convert pro-IL-1β to IL-1β, thereby resulting
in an inflammatory response (23) recognized as pyroptosis.
Inflammasome activation has been shown in both intra-amniotic
infections as well as sterile intra-amniotic inflammation with
preterm labor (38). Furthermore, treating sterile inflammation
by inhibiting inflammasome activation has also been shown to
reduce preterm delivery in a mice model (39).

PRRs include Toll-like receptors (TLRs) 1 through
TLR13, C-type lectins, scavenger receptors, and nucleotide-
binding oligomerization-domain-like receptors, all of which
operate transduction pathways resulting in cytokine-mediated
inflammatory responses. PRRs are expressed in multiple human
cells, including decidua, placenta, membranes, andmyometrium,
throughout pregnancy and in immune and non-immune cells
(23, 40–42). The release of DAMPs secondary to tissue injury
from hypoxia-ischemia, oxidative stress, vascular dysfunction,
or other stressors is implicated in sterile inflammation that acts
not only on the placenta but also on the uterus, cervix, fetal
membranes, and the fetus. This inflammatory process needs to
be tightly regulated since such inflammation left unchecked can
cause extensive tissue injury, septic shock, and death. In the
placenta, this resultant maternal-fetal inflammation is suggested
to contribute to various adverse pregnancy outcomes, including
placental dysfunction, preeclampsia, intrauterine growth
restriction, and preterm labor (23). Therefore, attenuation of this
inflammation at the maternal-fetal interface can play a key role
in fetal health and survival.

INDUCTION OF INNATE IMMUNITY VIA
microRNAs AND SHAPING OF IMMUNE
TOLERANCE: FROM MICE TO HUMANS

The systemic immune system is regulated and dominated by
T lymphocytes and adaptive immunity. On the other hand,
the decidual leukocyte population in the pregnant uterus is
replete with NK cells (65–70%) and antigen presenting cells
(macrophages and dendritic cells 10–20%), both contributors
to innate immunity (4, 5). Other cell types have also been
described to a lesser extent at the maternal-fetal interface, in
varying numbers at different stages of pregnancy, and in certain
pathological conditions (43, 44), including innate lymphoid
cells, other T cell subsets and B cells. Innate immunity at
the maternal-fetal interface is of a specialized variety, wherein
NK cells and macrophages are pregnancy compatible and
support local vascular activity. Prolonged exposure to microbial
products, such as lipopolysaccharide (LPS) induces a form of
innate immunity that resembles trained immunity (memory) and
blunts subsequent responses to unrelated pathogens [referred
to as endotoxin tolerance] (45). What is the molecular basis
of endotoxin tolerance, and does this occur in the female
reproductive tract? Recent pioneering work by Seeley et al.
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(45) suggests that repeated exposure to LPS induces tolerance-
associated miRNAs (miR-221 and miR-222) in macrophages,
with this tolerance phenotype achieved through silencing of
inflammatory genes and chromatin remodeling. Most studies of
endotoxin tolerance have been undertaken in mouse models, as
well as human cell and tissue models, resulting in links between
endotoxin tolerance and protection against tissue injury and
death (46, 47). Seeley et al. (45) suggest that in humans with
sepsis, increased expression of these miRNAs is associated with
immunoparalysis and organ damage; therefore, it is possible that
a threshold level of tolerance-associated miRNAs needs to be
maintained for a longer period of time in order to influence a
better outcome in humans.

The molecular mechanisms associated with endotoxin
tolerance are believed to be multifactorial, with multiple levels
of negative feedback to blunt the inflammatory response. Mice
deficient in IL-10 are more susceptible to endotoxic shock
following repeated exposure to LPS, suggesting a role for IL-10
in endotoxin tolerance (48). In gestational tissues, endotoxin
tolerance has been identified in mouse models, whereas human
studies are lacking. During pregnancy, this adaptation due to
tolerance might be critical to preventing fetal rejection by the
maternal immune system, as well as protecting the fetus from
excessive maternal inflammatory responses to various infectious
and inflammatory agents. An increase in proinflammatory
cytokine responses to bacterial insult can trigger undesirable
consequences, including preterm labor and delivery, as well
as fetal mal-development and inflammatory injury. Although
bacterial exposure during pregnancy is associated with preterm
delivery and intra-amniotic infections (49, 50), a wide array
of organisms have been described in the maternal-fetal
compartments in healthy pregnancies. Interestingly, the
presence of an organism in the uterine environment is not
always pathological, as previously reported in gene-amplification
studies using amniotic fluid from women who delivered healthy
newborns following an uncomplicated pregnancy (32, 51, 52).

IMMUNE TOLERANCE MEDIATED
BY microRNA

miRNAs are small (18–22 nucleotides), non-coding RNA
sequences that play an important role in regulating multiple
cellular processes critical for development, differentiation, and
organ function and are associated with marked biological
consequences in health and disease (53). miRNAs act as negative
regulators at the post-transcriptional level by binding to the 3′

untranslated region on target mRNA to inhibit the translation
of respective proteins. Thousands of genes are regulated by
miRNAs, with the list continuing to grow (53, 54). It is estimated
that ∼60% of all protein-coding genes can be regulated by
miRNA (54); therefore, it is now accepted that mutations
that cause dysfunctional miRNA can potentially affect multiple
disease conditions.

Multiple organs harbor specific miRNAs that play vital roles.
miR-122 is associated with cholesterol and lipid metabolism
in the liver (55), whereas the miR-1 and mir-133 families

regulate heart development and play roles in cardiovascular
disorders (56, 57). Additionally, numerous recently identified
miRNAs have been implicated in a wide array of human diseases,
including cardiovascular diseases, neoplasms, and liver and
kidney disorders (58–60). Moreover, early gestational tissues,
such as human blastocysts, express miRNA, which might be
essential for successful implantation and subsequent survival by
guiding processes that navigate the intrauterine environment.
Euploid and aneuploid embryos exhibit differential expression of
miRNAs, ultimately resulting in different eventual outcomes (61).
Furthermore, the presence of miRNAs in breast milk and serum
could represent markers or mediators of cell signaling. Maternal
serum miR-191 is currently being investigated as a potential
non-invasive candidate for aneuploidy, whereas other miRNAs,
including miR-191, miR-372, and miR-645, have been implicated
in IVF failure, and elevated levels of miR-25, miR-302c, miR-
196a2, and miR-181a have been identified in degenerate embryos
as compared with their levels in blastocyst embryos (62).

In addition to regulating multiple cellular processes, various
miRNAs are also implicated in regulating the immune system,
including the differentiation and function of innate immune cells
(63, 64). miRNAs have also been shown to regulate immune
responses to bacterial, viral and parasitic infections (65–67). For
example, miR146a polymorphism has been linked to increased
risk of malaria in pregnant women. Also, miR 221 negatively
regulated innate antiviral response, while miR 34/449 family has
been implicated in various viral infections [(66), review]. The
role of miRNA in bacterial infections is being studied in various
scenarios- from a suggested role in Helicobacter pylori and
Epstein-Barr virus-induced cancers [(68), review], to pathogen
triggered TLR pathway stimulation.

MultiplemiRNAs are up-regulated via TLR-ligand stimulation
in monocytes (69) and suggested to play a major role in
mediating immune tolerance by regulating the TLR pathway
through TLR-receptor transcription and/or creating feedback
loops by suppressing key downstream molecules that in turn
down-regulate TLR activation (70). Moreover, the pattern of
miRNA expression is related to the type of TLR ligand involved
in its stimulation, overall ligand concentration, and the type of
cells being stimulated.

Increases in miR-146a levels in response to LPS stimulation
was observed in THP1 cells (63, 69, 71, 72). Additionally,
Nahid et al. (71) showed that exposure to high-dose LPS
(1,000 ng/mL) increases levels of the inflammatory cytokines
tumor necrosis factor (TNF)α, IL-1-receptor-associated kinase
(IRAK)1, and TNF-receptor-associated factor (TRAF)6 along
with a simultaneous increase in miR146a levels. On the
other hand, when the same cells were primed with low-
dose LPS (10 ng/mL), transient elevations in TNFα, IRAK1,
and TRAF6 were observed along with upregulated miR146a
levels, with subsequent exposure to high-dose LPS (1,000 ng/mL)
resulting in a blunted TNFα response in the presence of
upregulated miR146. Other studies suggested that elevated miR-
146a levels are involved in regulating TLR signaling and cytokine
production by downregulating the inflammatory response (73,
74). Furthermore, miR-146a induction is mediated by NF-κB via
TLR-ligand stimulation (69). Conversely, miRNAs can directly
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target TLRs in order to create a feedback loop that regulates
the inflammatory response, with previous studies reporting
that miR-105 targets the mRNA encoding the TLR2 receptor
in order to attenuate its translation (75, 76). Additionally,
miR-146a targets TRAF6 and IRAK activities to inhibit TLR4
signaling and downregulate NF-κB activation (69). By contrast,
miRNAs, such as miR-155, can be significantly downregulated
after the induction of endotoxin tolerance, suggesting cross-talk
between miRNAs in order to maintain immune homeostasis and
suppress proinflammatory responses. In addition to miRNAs,
long non-coding RNAs are also altered upon endotoxin challenge
and negatively regulate TLR signaling, thereby contributing to
immune tolerance.

miRNAs are also being studied as diagnostic and therapeutic
tools (77). A recent study suggests that decidual tissue from
patients with recurrent spontaneous abortions shows decreased
expression of miR-146a-5p (78). Similarly, quantification of 30
miRNAs from peripheral blood taken during the first trimester
was used to predict preeclampsia, a late pregnancy complication
(79). These observations support further study of miRNAs from
gestational tissues and peripheral blood to investigate their role(s)
in both endotoxin tolerance and pregnancy complications.

PLACENTA AND microRNA

The human placenta produces numerous miRNAs. miRNAs play
roles in various key steps in pregnancy, including implantation,
maintenance, and labor (80–84). miRNAs have been identified
in trophoblasts and mostly originated from the two largest
clusters on chromosomes 14 and 19 (C14MC and C19MC,
respectively). Most miRNAs identified in primary trophoblasts
originate from C19MC, which gives rise to 46 intronic miRNAs
that are converted to 54 mature miRNAs (85). miRNAs from
C19MC are found in human embryonic stem cells and play an
important role in cell proliferation, invasion, and differentiation.
C19MC expression is reduced in extravillous trophoblasts and
several malignancies while the increase in C19MC expression
confers resistance to viral infections (85, 86).

Interestingly, abundant expression of miRNA does not
always translate to functional significance. A previous study
reported the deletion of the miR379/410 cluster (from C14MC)
without consequence (84). Additionally, miR-675 exhibits anti-
proliferative effects by silencing insulin-like growth factor
receptor-1, whereas miR-675 deletion is associated with placental
overgrowth (87). Moreover, miR-378a-5p and miR-376c are
involved in trophoblast proliferation and invasion regulated
by the nodal signaling pathway (88, 89), and the miR17-92
cluster regulates primary human trophoblast differentiation (90).
Furthermore, recently identified miR-155 inhibits trophoblasts
invasion and is implicated in the pathogenesis of preeclampsia,
and increased levels of plasma and placental miR-210 have
been reported in association with preeclampsia (91). Although
additional miRNAs continue to be discovered their precise
clinical implications and roles remain elusive; however, a non-
invasive sampling of such placenta-derivedmiRNAs is potentially
useful for diagnosing placental dysfunction.

The majority of miRNAs function in the cell of origin by
regulating mRNA levels and translation; however, some miRNAs
are selectively secreted by cells into the extracellular space
(mainly packaged within EVs) to regulate intercellular signaling
of distant “target” cells. Analyses of miRNA from EVs show that
EVs’ miRNAs content is distinct from that found in the cytoplasm
of donor cells from which they were derived. This suggests active
miRNA sorting into these vesicles (92–95), although the exact
mechanism remains unclear. Our unpublished data confirm that
placental miRNAs play an important role in placental endotoxin
tolerance resulting in blunted immune response to repeated
exposure to LPS. Specifically, placenta-derived miR519c (derived
from C19MC) was shown to inhibit TNFα gene expression in
our placental explant model. miR519c is placenta-specific and
produced by trophoblasts and can be released as free miRNA or
packaged into EVs.

EXTRACELLULAR VESICLES IN
GESTATIONAL TISSUES

EVs are membrane vesicles of various sizes that are secreted
by almost every cell type and multiple organisms ranging from
bacteria to humans. EVs are broadly classified according to
size and origin into two different categories: exosomes and
microvesicles (MVs; including microparticles and apoptotic
bodies) (14, 96). MVs are larger membrane-derived vesicles
>150 nm in size and secreted directly from the cell membrane.
Exosomes are cell-secreted, membrane-derived nanovesicles,
which represent a subpopulation of EVs measuring from 40
to 120 nm and with a density of between 1.13 and 1.19
g/mL (14). Exosomes arise from the endosomal compartment
as intraluminal vesicles and are secreted by the fusion of
endosomes or multivesicular bodies (MVBs) with the cell
membrane. Additionally, exosomes can be described according
to morphological characteristics (spherical or cup-shaped) and
surface markers (CD63, CD9, CD81, and Tsg101) (14, 97).
Various gestational tissues, including pre-implantation embryos,
oviduct epithelium, placental trophoblasts, and endometrium,
secrete EVs, with their source determined according to cell-
specific markers. Previous studies suggest that miRNAs are
protected from RNase degradation in serum by encapsulation
within EVs, which act as carriers of regulatory RNA (53, 98).

THE ROLE OF EXTRACELLULAR
VESICLES IN NORMAL PREGNANCY AND
GESTATIONAL VASCULAR DISORDERS

The placenta releases EVs as early as the sixth gestational week,
with this activity implicated in regulating maternal pregnancy
physiology and fetal development, including pregnancy-induced
hypertension, gestational diabetes, preterm labor, and delivery
(14, 15, 97, 99). EVs (especially exosomes) play a vital role in
the preparatory cross-talk between endometrium and embryo
at the onset of pregnancy (83, 100–102). Trophoblast-derived
EVs harbor molecules specific to placental physiology and
cell-cell communication and that exert diverse effects on
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maternal and embryonic compartments. Thesemolecules include
fibronectin, syncytin, galectin-3, human leukocyte antigen-G,
and cytokines as well as bioactive lipids and/or miRNAs, capable
of immunomodulation (103). Placental alkaline phosphatase
(PLAP), a membrane protein of the placenta, is primarily
produced by syncytiotrophoblasts and used as a marker to
identify placenta-derived exosomes inmaternal circulation (104).
PLAP+ exosomes have only been described in the peripheral
circulation of pregnant women (13, 14), with the number of
placental exosomes positively correlated with total exosomes
concentrations during the first trimester in normal pregnancy
(105). The total number of exosomes (CD63+) and placental
exosomes (PLAP+) present in maternal plasma increases
exponentially in the second and third trimesters (14). Although
PLAP shows potential as a useful marker for measuring exosomes
in normal pregnancy, its levels have not yet been quantified
in pathological pregnancies. Furthermore, syncytiotrophoblast
EVs are secreted into maternal circulation as early as the tenth
gestational week, their numbers increasing by the third trimester;
however, their excessive secretion has also been reported in
association with preeclampsia (15).

EVs in pregnancy play a pro-coagulant role to a greater
degree than that observed in non-pregnant women (103). Levels
of EVs harboring the tissue factor antigen, which is involved
in the first step of the coagulation cascade, increase during
pregnancy, and a significant increase in EVs harboring tissue
factor is related to gestational vascular disorders, suggesting a
pro-coagulant immune profile in such situations. Moreover, EVs

play a significant role in regulating the inflammatory milieu
during pregnancy, as EVs from pregnant women show higher
levels of inflammatory proteins. Furthermore, EVs from hypoxic
trophoblasts exhibit a more intense inflammatory response
to peripheral blood mononuclear cells than do EVs from
normal trophoblasts. Additionally, placenta-derived EVs carry
a functional Fas ligand and TNF-related apoptosis-inducing
ligand molecules that convey signals for apoptosis, suggesting
a role in establishing EV-mediated immune privilege on behalf
of the fetus (106). It is also possible that placental EVs
modulate the response to LPS in pregnant women. Unpublished
data from our lab showed that exosomal miRNAs mediate
endotoxin tolerance in the placenta after repeated LPS exposure.
Cytochalasin-D, an inhibitor of exosomes release and uptake,
blocked endotoxin tolerance and restored the proinflammatory
response in placental explants treated with repeated doses of LPS,
thereby suggesting that exosomes mediate endotoxin tolerance in
the placenta.

EXTRACELLULAR VESICLE TARGETING
OF SPECIFIC TISSUE AND CELLS

The process of EV formation is complex and aimed at secreting
selectively prepared vesicles with their content and presenting
surface markers geared toward specific target cells. Although the
mechanisms of exosomes biogenesis and release continue to be
investigated, little is known regarding how exosomes’ content is

FIGURE 1 | Hypothetical illustration showing LPS mediated inflammatory response, possible mechanism of anti-inflammatory miRNAs mediated endotoxin tolerance

as well as packaging within extracellular vesicles (EVs; including exosomes and microvesicles) in a placental trophoblast. The initial LPS dose stimulates TLR4

pathway in the placental trophoblast to prompt the initial inflammatory response, while also upregulating miRNA transcription. The miRNAs are either found freely in

the cytoplasm and released outside the cells, or selectively packaged into extracellular vesicles by various mechanisms. Exosomes are formed intraluminally in the

endosomal system within multivesicular bodies (MVB) while microvesicles are secreted by membrane derived vesicle formation. They are selectively packaged with

nucleic acids (DNAs, mRNAs, miRNAs), proteins, lipids and carbohydrates, specific to the cell of origin and the intended target. The EVs and free miRNAs are

transported to the target cell via the extracellular space.
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FIGURE 2 | Hypothetical illustration showing the development of endotoxin tolerance in a target cell mediated by miRNA packaged within the EVs. EVs carrying

miRNAs (and other contents) are released from the original placental trophoblasts upon exposure to initial LPS dose as seen in Figure 1. The released EVs travel to

the target cells where they are selectively internalized by different mechanisms as shown. Microvesicles are internalized into the cytoplasm by fusing with the cell

membrane while exosomes are internalized into vesicular bodies, lipid rafts on cell surface or by directly binding with specific cell surface receptors (96). The target cell

in this scenario can represent a distant cell (exposed to first dose of LPS) or the original trophoblast cell (exposed to a second dose of LPS). We hypothesize that the

miRNAs within the EVs are released into the cytoplasm and enter the nucleus thereby negatively regulating the inflammatory pathway at multiple levels (including direct

inhibition of TLR4, downregulating mRNA translation of TLR and negative feedback for NF-κB mediated TLR4 pathway). Upon exposure to a second dose of LPS, the

original tolerized cell generates an attenuated inflammatory response (since it has high levels of anti-inflammatory miRNAs as a result form the first LPS exposure).

regulated as well as which cells they target. Cell-specific markers
presented by exosomes are proposed to play a role in target-
cell identification and interaction. Adaptor proteins reportedly
recruit an exosome-associated helicase (MTR4) to unique RNA
substrates, and exosome cofactors, such as the TRAMP-like
protein complex, localize to the cytoplasm and recruit exosomes
to specific viral RNA for degradation (107). Other examples of EV
targets include cancer cells, which subsequently use EVs to target
other organs, such as the lung and liver, to identify pre-metastatic
niches based on specific integrin composition (108).

A PLACENTAL MODEL FOR
microRNA-MEDIATED ENDOTOXIN
TOLERANCE via EVs

Our lab demonstrated that endotoxin tolerance exists in
placental tissues (109) and we proposed a model of miRNA-
mediated placental immune tolerance packaged within EVs.
An LPS stimulus primes placental trophoblasts to exhibit
a proinflammatory response through the TLR4 pathway,
which activates NF-κB to increase pro-inflammatory cytokine
expression and release (such as TNFα) (Figure 1). Additionally,
TLR4 activation increases the production of placenta-specific
miRNAs (either free or packaged in EVs; Figure 1) likely
also mediated by NF-κB (110, 111). Free miRNAs induce
a feedback loop to down-regulate TLR4 signaling and alter

related downstream processes, including the inflammatory
response, as well as inhibiting mRNA translation of TLR
receptors and directly attenuate TLR-receptor levels (Figure 2).
The secreted EVs translocate to specific target cells/sites,
such as placental trophoblasts (autocrine mechanisms), local
gestational tissues (paracrine mechanisms), or other maternal
and fetal compartments, via circulating peripheral blood or other
extracellular fluid, according to specific chemo-attractants or
cell-surface markers. EVs then interact with target tissue using
cognate surface markers and release their contents, thereby
potentially affecting several biological mechanisms, including
protein biosynthesis and/or post-transcriptional regulation. The
miRNAs within the EVs will reduce the ability of the target
cells to produce TNFα in response to LPS exposure. The anti-
inflammatory miRNAs implicated in endotoxin tolerance likely
act using similar mechanisms, including negative feedback loop
at the TLR receptor, to inhibit downstream regulators of the
TLR pathway as well as decrease the transcription of pro-
inflammatory molecules, such as TNFα (Figure 2).

Therefore, LPS insult of target cells/tissue harboring
these anti-inflammatory miRNAs increases the readiness for
subsequent LPS doses by attenuating the TLR response, thereby
tipping the balance against a proinflammatory environment
at the maternal-fetal interface (immune tolerance to repeated
LPS dose). Figure 3A, shows a hypothetical response involving
suppressed TNFα levels in the presence of miRNA-induced
endotoxin tolerance. Unprimed cells challenged with LPS
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FIGURE 3 | (A) Hypothetical figure illustrates the inflammatory response to

repeated LPS exposure. Exposure to the first dose of LPS increases the

proinflammatory marker TNFα. Shortly following the initial dose of LPS, the

cells also secrete specific anti-inflammatory miRNAs that accumulate in the

cytoplasm. Upon exposure to second dose of LPS, the sustained high levels

of the anti-inflammatory miRNAs will blunt the inflammatory response with

decreased TNFα levels (endotoxin tolerance). (B) Hypothetical figure illustrates

the inflammatory response in the absence of the anti-inflammatory miRNAs

mediated endotoxin tolerance. In a knockout model of specific miRNA, the

miRNA levels do not increase after initial exposure to LPS. A subsequent

exposure to a second dose of LPS thus produces an unchecked inflammatory

response with an exaggerated increase in proinflammatory cytokines (TNFα).

produced a prominent TNFα response followed by an increase
in anti-inflammatory miRNA production, which corresponds
to later down-regulation of TNFα (Figure 3A). As shown in
Figure 3A, in the presence of sustained high anti-inflammatory
miRNA expression, a second dose of LPS will lead to a muted
TNFα production by the cells (tolerized cells). However, in

the absence of these specific miRNAs, subsequent exposure to
LPS would result in failure of immune tolerance to repeated
infection resulting in exaggerated inflammation at the maternal-
fetal interface (Figure 3B). We speculate that placentas from
women with infection-induced preterm births will have reduced
expression of specific placental anti-inflammatory miRNAs.
This will lead to endotoxin tolerance failure and exaggerated
inflammatory response to repeated infections that result in
preterm births or other inflammatory diseases of pregnancy.

CONCLUDING REMARKS

In summary, we propose that miRNAs play a vital role in
mediating immune tolerance at the maternal-fetal interface by
attenuating immune responses following repeated exposure to
inflammatory insult. Packaging and transport of miRNAs by
EVs is suggested as a “smart” process specifically intended
to address the potential requirements of the target cell/tissue.
The success of this activity is dependent upon the homeostasis
of the origin cell (placenta, in this case). Therefore, normal
or pathologic conditions in the placenta might affect EVs
composition and number, resulting in an altered response
to endotoxins or other inflammatory stimuli. Additionally,
we suggest that the target cells are not randomly selected
and are, in fact, pre-identified according to specific markers
presented on the EV surface to allow specific identification
of target cell/tissue. Perturbations in this process can result
in the failure of miRNA-mediated endotoxin tolerance and an
imbalanced proinflammatory state leading to adverse pregnancy
outcomes, including preterm labor or preeclampsia. The
identification of placenta-specific miRNAs and EV markers
will promote identification of novel molecules as potential
biomarkers for further study of endotoxin tolerance, as well
as possible molecular targets for controlling injury from failed
immune tolerance.
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