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Dendritic cells (DC) fulfill an essential sentinel function within the immune system, acting

at the interface of innate and adaptive immunity. The DC family, both in mouse and

man, shows high functional heterogeneity in order to orchestrate immune responses

toward the immense variety of pathogens and other immunological threats. In this review,

we focus on the Langerin+CD8+ DC subpopulation in the spleen. Langerin+CD8+

DC exhibit a high ability to take up apoptotic/dying cells, and therefore they are

essential to prime and shape CD8+ T cell responses. Next to the induction of immunity

toward blood-borne pathogens, i.e., viruses, these DC are important for the regulation

of tolerance toward cell-associated self-antigens. The ontogeny and differentiation

pathways of CD8+CD103+ DC should be further explored to better understand the

immunological role of these cells as a prerequisite of their therapeutic application.

Keywords: Conventional dendritic cells, cross-presentation, dendritic cell subsets, immunotherapy,

macrophages, marginal zone, plasmacytoid dendritic cells, spleen

INTRODUCTION

Dendritic cells (DC) link pathogen sensing and activation of innate immunity to the initiation
of (primary) adaptive immune responses. For the latter, DC function as professional antigen
(Ag)-presenting phagocytes that orchestrate the priming and polarization of naïve T cells.
Importantly, next to stimulating protective immunity following infection, cancer or vaccination,
DC are also crucial for the maintenance of immunological (self-) tolerance.

In the steady state, the murine DC family encompasses several cell populations that are
very heterogeneous in development, phenotype and differ in their immune-regulatory functions.
This variety among DC that have evolved at distinct immunological sites, allows immune
responses to be specifically tailored to a given pathogenic threat (1, 2). In general, DC can be
categorized into two classes (Figure 1A). The first class consists of the natural type I interferon-
producing plasmacytoid DC (pDC: CD11cintCD45RA+Ly6C+ cells). These pDC are poor in Ag-
presentation but play a crucial role as first-line defense against viral infections and are involved
in anti-tumor responses as well (3). The second class of DC comprises conventional (classical)
DC (cDC), which are characterized by the expression of high levels of CD11c and MHC class
II (MHCII). These cDC can be further separated into functionally specialized cDC1 and cDC2
populations, initially according to their phenotype, and later through their molecular signatures,
ontogeny and unique transcription factor dependency (4) (Table 1). These cDC1 and cDC2
populations are defined across different organs, and display distinct responses to pathogen- and
danger-associated signals and, subsequently, specialized capacities to interact with T cells (5, 6).
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Understanding DC biology becomes even more complex as
both the cDC1 and cDC2 populations can be further divided
based on their localization and migratory abilities into (i)
peripheral tissue (migratory) DC and (ii) lymphoid organ-
resident DC subpopulations. Whereas, resident DC do not leave
the lymph nodes (LN), spleen or thymus, migratory DC are the
prototypic DC described by the Langerhans paradigm (7, 8).
These migratory DC strategically line the barrier organs toward
the external environment (e.g., skin and mucosa), and sample
the tissues for invading pathogens (including commensals) and
incoming immunogenic particles. Upon Ag encounter, together
with pro-inflammatory stimuli, these DC move from the tissues
into the T cell areas of local LN where they initiate protective T
cell responses (9).

In this review, we will first recapitulate cDC heterogeneity
in the spleen, and then zoom in on one particular splenic DC
subset, namely, Langerin+CD8+ cDC1. In particular, we will
summarize recent highlights in the biology of this DC subset,
discuss its functional specialization in mice, touch upon the
human equivalents and finally conclude by discussing potential
concepts to harness these Langerin+CD8+ cDC1 to develop
improved therapeutic and / or vaccination strategies.

HETEROGENEITY OF SPLENIC cDC
SUBSETS

The spleen is the largest secondary lymphoid organ of the body
and is functionally linked to the systemic blood circulation
(Figure 2A). Histologically, the spleen consists of red pulp (RP)
and white pulp (WP). The RP is a loose venous sinusoidal
meshwork involved in blood filtration, while the WP contains
T cell-rich periarteriolar lymphoid sheaths (PALS) and discrete
B cell follicles. Thereby, the WP resembles the lymphoid
structures found in LN and is thus essential for the induction
of adaptive immune responses. A specialized environment called
the marginal zone (MZ) is uniquely situated at the transition
site between the scavenging RP and the lymphoid WP. As the
arterial bloodstream opens into the marginal sinuses, most of the
blood entering the spleen passes theMZ (Figure 2A). The splenic
MZ, therefore, is together with the RP involved in the filtration
of the blood and constitutes the prime site for the detection of
blood-borne Ag (10).

Ag larger than 75 kDa are trapped and cleared by a large
number of specialized MZ-resident phagocytic cells, including
marginal zone macrophages (MZM), marginal metallophilic
macrophages (MMM) and marginal zone B cells (MZB), thereby
initiating immune responses against systemic pathogens (10–
13) (Figure 2B). Moreover, the MZ is of vital importance for
the clearance of apoptotic cells and the subsequent induction
of self-tolerance, which can be abrogated by the depletion of
macrophages (Mφ) in the MZ (14, 15).

The splenic DC compartment only consists of resident DC
as the spleen is not connected to the afferent lymphatic system
by which migratory DC traffic from the peripheral tissues to LN.
Historically, splenic cDC were defined based on the reciprocal
expression of CD4 and CD11b or the CD8αα homodimer
into at least three distinct DC subsets: (i) a CD8αα-expressing

CD8+CD11b− cDC1 subset, and a CD11b+ cDC2 subpopulation
that can be further divided into (ii) CD4+CD8− DC and
(iii) CD4−CD8− double-negative DC subsets. To date,
unsupervised phenotypic analysis, for example using (single
cell) RNA sequencing and high-dimensional flow cytometry
or mass cytometry, has added a large number of additional
subpopulation-specific markers, confirming the existence of
heterogeneity (DC subsets) within both cDC1 and cDC2
subpopulations (16). All of these phenotypically distinct cDC
subsets may exert specialized roles in, respectively, promoting
and suppressing different facets of immunity (Table 1).

Splenic cDC1
Analysis by flow cytometry indicated that the majority of splenic
CD8+ cDC1 co-express the C-type lectin receptors DEC205
(CD205) and Langerin (CD207) (Figure 1B). Initially, staining
spleen sections for DEC205 localized CD8+ cDC1 in the PALS
only (11, 15, 17–20), resulting in the dogma that CD8+ cDC1
were restricted to the WP (17, 19, 21–23). In contrast, Langerin
was predominantly detected in the MZ and only in limited
amounts in the RP and the PALS by histology (24–28). This
discrepancy in (co-) localization of Langerin and DEC205
between methods may be due to DEC205 levels too low to be
detected by histology, resulting in variable DEC205 expression on
slides. Therefore, it is now generally accepted that in the steady
state CD8+ cDC1 are mainly located in the MZ and RP, and that
they are not limited to the WP (28–30) (Figure 2B).

CD8+ cDC1 are characterized by a high ability to
cross-present cell-associated and soluble Ag (31–36), and
predominantly induce TH1-type helper T cell responses (36–38),
as well as regulatory T cells (TREG) via TGFβ (Figure 2C).
Moreover, CD8+ cDC1 can activate and polarize invariant
natural killer T (iNKT) cells via CD1d presentation of glycolipid
Ag (39).

Although multiple reports revealed considerable
heterogeneity within this subpopulation, functional features (e.g.,
cross-presentation) are, nevertheless, mainly attributed to the
cDC1 subpopulation as a whole. However, differential expression
of DEC205 and CX3CR1, for example, is believed to divide
the CD8+ DC subpopulation into subsets that have distinct
functions in pathogen-recognition and immune-modulation
(40, 41) (Figure 1B). Although the origin of CX3CR1

+CD8+

DC is not clear yet, these cells seem to lack many functional
hallmarks of classical CD8+ cDC1, including cross-presentation
and IL-12 secretion in response to microbial challenge. In
addition, CX3CR1-expressing DC rearranged immunoglobulin
genes and are thought to rather resemble pDC and to be closely
related to CD8− DC (41), and therefore might not be considered
as cDC1. Another chemokine receptor highly expressed on
splenic CD8+ cDC1 is XCR1 (42), which potentially allows close
interaction with activated T cells and NK cells. Surprisingly
however, Diphtheria-toxin (DT) treatment of XCR1-DTR
knock-in mice did not result in complete depletion, indicating
that splenic CD8+ cDC1 include a distinct population that is not
eliminated due to heterogeneous XCR1 expression (43). Also in
the absence of functional Notch2 signaling the number of CD8+

DC is diminished, suggesting that at least a subset of splenic
CD8+ cDC1 also depend on Notch2 (44).
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FIGURE 1 | Development and division of the DC network. (A) The DC family can be divided into two distinct classes; plasmacytoid DC (pDC) and conventional DC

(cDC). Subsequently, these cDC can be further subdivided into a cDC1 and a cDC2 population, of which both a lymphoid organ-resident and migratory tissue-specific

subpopulations exist. A selection of transcription and other factors important for cDC1 and cDC2 differentiation and homeostasis is indicated in italics (B) Resident

CD8+ DC in the spleen consist of, at least, three subsets with both phenotypical and functional specializations. Expression of selected markers on these subsets is

pointed out with the indicated color-code. (C) Multipotent progenitors in the BM give rise to DC via a hierarchical series of dichotomous cell fate decisions. Selected

transcription factors and other mediators important for DC development are indicated in italics. HSC, hematopoietic stem cell; CMP, common myeloid progenitor;

MDP, macrophage/DC precursor; CDP, common DC precursor; pre-DC, precursor DC.

Taken together, these observations indicate that several
distinct resident CD8+ cDC1 subsets are present in the spleen,
but that the potential functional heterogeneity within this cDC1
subpopulation is currently underappreciated, and that several
cDC1-specific functions might turn out to be rather CD8+

subset-restricted characteristics.

Splenic cDC2
CD11b+CD8− cDC2 are the most abundant cDC in the
lymphoid organs. In contrast to CD8+ cDC1, this cDC2
subpopulation is known to be heterogeneous, but less well
defined in function. In general, CD8− cDC2 (also characterized
by the specific expression of the C-type lectin receptor
DCIR2) are preferentially involved in MHCII-restricted

Ag presentation and TH2 priming (31, 45), although they
also have the ability to cross-present exogenous Ag under
certain circumstances (34, 46, 47).

The heterogeneous cDC2 population can be further
subdivided according to the differential expression of CD4
and the endothelial cell-selective adhesion molecule (ESAM),
although this does not result in clearly defined homogenous
populations (48), which makes it difficult to determine individual
immune-modulatory capacities. Due to their similarities in
phenotype and gene expression profiles, both CD4+CD8− cDC2
(which largely co-express ESAM) and CD4−CD8− double-
negative cDC2 are often collectively referred to as CD8− cDC2
(19, 49–52), however, according to recent studies these two
subsets appear different (44, 53). For example, ESAMlow cDC2
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TABLE 1 | Steady state cDC subset characteristics in mouse and human.

Murine Splenic cDC

Populations

cDC1 cDC2

General

Phenotype

CD8+, CD11c+, CD24+, DEC205+,

Clec9a+, ICAM+, MHC II+, XCR1+
CD11c+, CD11b+, CD36−, CD172+,

Clec12a+, DCIR2+, MHC II+

Subpopulations Langerin+ Langerin− ESAM+ ESAM−

Subpopulation-

specific markers

CD36+, CD80+,

CD86+, CD103+
CD36+/−, CD80#,

CD86#, CD103−
CD4+, CX3CR1

− CD4−

Microenvironment MZ PALS MZ / BC MZ / BC

Cytokines IL-12, (TGFβ, IFNγ) IL-6, IL-12 (TGFβ) IL-4, IL-6,

IL-23, IFNα/β

n.d.

TH Responses TH1 TH1, TREG TH2, TH17 n.d.

MHC Class I

Cross-presentation

++ — — (+; Ag-dependent) n.d.

MHC Class II

Presentation

+ + ++ ++

Human cDC

Populations

cDC1 cDC2

Subpopulations CD141 (BDCA3)+ CD1c (BDCA1)+

Phenotype BTLA+, CD11b+, Clec9a+,

MHC II+, Necl2+, XCR1+
CD1b+, CD14+, CD11b+, CD11b+,

CD172+, CD301+, CX3CR1
+, DCIR+,

MHC II+CD1a#, Langerin#

Microenvironment Blood, Spleen (Superficial zone) Blood, Spleen

Cytokines IL-12, TNFα, IFNγ IL-1β, IL-6, IL-8, IL-10,

IL-12, IL-23, TNFα

TH Responses TH1, TH17 TH1, TH17

MHC Class I

Cross-presentation

++ ++

MHC Class II

Presentation

++ ++

++, +, +/−, and −, represent very high to low to absent expression; #, inducible expression; BC, bridging channel; MZ, marginal zone; n.d., not determined in detail; PALS, Periarteriolar

Lymphoid Sheaths.

exhibit a more myeloid signature with Csf-1R, Csf3R, CCR2
and Lysozyme expression, suggesting that they are related to
monocytes rather than to cDC. As migratory ESAM−CD11b+

tissue cDC2 can arise from both bone marrow (BM)-DC
progenitors and monocytes, it is still under debate whether these
splenic ESAMlow cDC originate from circulating monocytes or
not (44, 54). Most likely they arise from early progenitors such as
Macrophage and Dendritic Cell Precursors (MDP) without the
contribution of the Common Dendritic Cell Precursor (CDP)
(44, 55).

CD8− cDC2 reside in the MZ and bridging channels of
the spleen (18, 31, 56), which are interruptions in the MZ

where the PALS is in contact with the RP allowing T cell
entry into the WP (57, 58) (Figure 2B). The development of
CD8− cDC2 (and more specifically, of the ESAM+ CD8−

cDC2 subset) depends on Notch2 (59). Furthermore, the G
protein-coupled receptor EBI2 determines the specific MZ
positioning, thereby allowing signaling and crosstalk with
MZ B cells and other cells via LTßR and SIRPα, which is
essential for the homeostasis of CD8− cDC2 (18, 56, 60). In
addition, Runx3 is required for the specification and homeostasis
of CD8− cDC2, as ablation of Runx3 expression resulted
in a substantial decrease of CD8− cDC2 numbers in the
spleen (55).

Frontiers in Immunology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 741

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Backer et al. Marginal Zone Langerin+CD8+ cDC1

FIGURE 2 | Structure and cellular composition of the murine spleen. (A) The spleen consists of red pulp (RP) and white pulp (WP). Blood enters the spleen via the

splenic artery, which is subsequently branching into the trabecular arteries and central arteries. Finally, small arterioles and capillaries end up in the RP. The RP is a

venous sinusoidal system containing connective tissue, sinuses and venules. Here, blood can leave the open ends of splenic RP capillaries, allowing free percolation

into the RP and subsequent re-collected into the sinuses for venous drainage. In mice, the WP is composed of B cell follicles and T cell areas (the periarterial

lymphatic sheaths, PALS) surrounding a central arteriole. The marginal zone (MZ) separates the WP from the RP. As marginal sinuses are opening in the MZ, most of

the arterial blood that enters the spleen is running through the MZ. Furthermore, re-circulating lymphocytes can leave the blood in the MZ. (B) At least 2 types of

macrophages are present in the MZ. Marginal metallophilic macrophages (MMM) are located as a tight network in the inner part of the MZ near the WP. Marginal zone

macrophages (MZM) can be found in the outer MZ facing the RP. Scattered between these MZM are marginal zone B cells (MZ B cells) and Langerin+CD8+ cDC1,

whereas cDC2 are mainly located in so called bridging channels, which are interruptions in the MZ sinus and macrophage rims. Some Langerin+CD8+ cDC1 are also

present in the RP and WP T cell areas. In the RP, red pulp macrophages (RP Mφ) can be identified. (C) Langerin+CD8+ cDC1 are involved in the direct uptake,

processing and cross-presentation of blood-borne antigens (Ag). Upon Ag encounter ¬, Langerin+CD8+ cDC1 migrate out of the MZ into the WP T cell areas ­ to

prime Ag-specific T cell responses ®. Depending on the type of Ag, this results in CD8+ T cell activation, or in CD8+ T cell tolerance ¯. Moreover, Langerin+CD8+

cDC1 are able to acquire Ag from other cells (e.g., potentially from MMM), via a process called Ag-transfer °.
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SPLENIC LANGERIN+CD8+ cDC1

Expression of the endocytic receptor Langerin is a classical
hallmark of Langerhans cells (LC) in the epidermis and skin-
draining lymph nodes (61, 62). However, Langerin expression is
not restricted to LC as also other skin DC subsets (i.e. dermal
CD103+ DC) express Langerin and are functionally distinct (63–
66). In addition, Langerin+ DC can be found as interdigitating
cells in the T cell zones of LN, as well as in the gut and the
lung (25, 62, 67–70). Among splenic cDC, Langerin expression
is mainly found on CD8+ cDC1, though its expression is lower
than on LC and primarily intracellular in location (71). Although
percentages vary depending on the genetic background of the
experimental mice, the Langerin+CD8+ DC subset constitutes
the majority of CD8+ cDC1 in the spleen and DT-mediated
ablation in Lang-DTREGFP mice can reach about 70% of the
splenic CD8+ cDC1 subpopulation (24, 72–75).

Langerin+CD8+ cDC1 are primarily localized in the MZ,
just internal to the F4/80+ RP Mφ, interspersed with MZM
and forming a ring around the CD169+ MMM (Figure 2B).
In addition, a minor fraction of Langerin+CD8+ cDC1
can be found in the RP and PALS (74). Compared to
their Langerin− counterparts, Langerin+CD8+ cDC1 share a
common morphology with a similar expression profile of the
classical splenic cDC1 markers like CD8αα, CD24, CD36,
DEC205, Clec9a, ICAM, and XCR1 (Figure 1B and Table 1).
In addition, Langerin+CD8+ cDC1 co-express high levels of
the integrin CD103. In steady state, splenic cDC display
a rather immature phenotype with low levels of MHCII
and co-stimulatory molecules (76). In contrast to Langerin−

cDC1, the baseline expression of the activation markers CD80
and CD86 are slightly higher on the Langerin+CD8+ cDC1
subset (24, 72, 75), but whether this reflects a functionally
more mature state remains unknown. However, steady state
levels of serum IL-12 were significantly decreased in mice
depleted of Langerin+CD8+ cDC1, indicating that these DC
are responsible for basal IL-12 production (77). At least,
Langerin−CD8+ cDC1 are not unresponsive to inflammation as
the characteristics of upregulated activation markers during Toll-
like receptor (TLR) or glycolipid antigen α-galactosylceramide
(α-Gal-Cer) stimulation are similar to Langerin+CD8+ cDC1
(75). Conclusively, Langerin marks a proportion of CD8+ cDC1
in the splenic MZ. Based on their specific localization and
phenotypic characteristics, it is suggestive that Langerin+CD8+

cDC1 are important regulators of immune responses toward
blood-borne Ag in the steady state and during inflammation.

ONTOGENY AND MOLECULAR
REGULATION OF LANGERIN+CD8+ cDC1

To date, conclusive data are lacking to define Langerin+CD8+

and Langerin−CD8+ DC as distinct steady state cDC1 subsets,
because alternatively, Langerin-expression could merely reflect
different developmental stages within the CD8+ cDC1 subset
(Figure 1B). CD8+ cDC1 express much lower levels of Langerin
as compared to LC and they lack the LC-specific intracellular
organelles known as Birbeck granules. In addition, the spleen

does not drain the skin. Therefore, Langerin+CD8+ cDC1 in
the spleen are unrelated to LC and are continuously replaced by
blood-borne precursors of a non-LC origin (65, 67).

In the tissue, cDC have, in general, a relatively finite half-
life of about 4–6 days, with CD8+ cDC1 in the spleen having
even higher turnover rates (36). Indeed, DT-mediated depletion
of a significant proportion of splenic CD8+ cDC1 in Lang-
DTREGFP knock-in mice was evident for a period of 2–3 days
after which Langerin+CD8+ cDC1 repopulated the spleen and
reached homeostatic levels again by day 7 (72, 73, 78). This differs
somewhat from Langerin+CD8− dermal cDC1, which follow a
similar kinetics after DT-mediated depletion, but fail to reach
full reconstitution (79). Langerin+CD8+ cDC1 exhibit decreased
survival as compared to Langerin−CD8+ cDC1 upon in vitro
activation or upon in vivo cell transfer. For example, treatment
of mice with TLR-ligands or the innate invariant NKT (iNKT)
cell ligand α-Gal-Cer also resulted in a fast decline of splenic
Langerin+CD8+ cDC1 numbers, which peaked after 15–24 h.
However, Langerin−CD8+ cDC1 numbers remained unchanged,
suggesting that activation does not convert Langerin+ into
Langerin− cDC1 but that Langerin+CD8+ cDC1 are rather
sensitive to activation-induced cell death (24, 75, 80). Although
the exact mechanisms remain elusive, in this setup TNFα may be
one factor inducing cell death in Langerin+CD8+ cDC1 (80).

cDC are of myeloid origin and develop from hematopoietic
stem cells (HSC) in the BM, but the exact developmental
pathways of different cDC lineages remain controversial and
difficult to elucidate (1, 5, 50, 54, 81–86) (Figure 1). It is generally
accepted that all cDC precursors share a common differentiation
pathway depending on the transcription factors PU.1 and Zbtb46
until they become committed common DC precursors (CDP)
(87, 88). Subsequently, the developmental pathway of pDC and
cDC diverges as CPD have the ability to differentiate into either
cells of the pDC lineage or cDC precursors (pre-DC). Pre-DC,
that are dependent on FLT3-L (89, 90), migrate into peripheral
tissues to further mature into either cDC1 or cDC2 driven
by specific transcription factors and cytokine combinations (1,
91, 92). Further differentiation of cDC1 is strictly guided by
the hierarchical expression of Irf8, Id2, and Batf3, as targeted
deletion of these transcription factors in mice leads to severe
developmental defects in cDC1 causing a marked decrease of
splenic CD8+ DC numbers (34, 93–95).

So far, no Langerin+CD8+ cDC1-specific transcriptional
program has been identified. Moreover, both Langerin+CD8+

and Langerin−CD8+ cDC1 express similar levels of the cDC1-
associated transcription factors Irf8, Id2, Nfil3, and Batf3 (75),
indicating that the two subsets share a similar ontogeny and thus
do not arise from distinct developmental pathways. Indeed, the
complete lack of CD8+ cDC1 in Irf8-deficient mice suggests that
Irf8 is critically involved in Langerin+CD8+ cDC1 development
(96–99). Interestingly, infection with intracellular bacteria
(e.g., Mycobaterium tuberculosis, Listeria and Toxoplasma)
could functionally restore the CX3CR1

−Langerin−CD8+ cDC1
compartment in Batf3 KO mice, while these mice still lack
the majority of splenic Langerin+CD8+ cDC1 (100, 101).
Purified Langerin−CD8+ cDC1 started to express Langerin
upon transfer into naïve mice, with up to 60–70% of cells
stably expressing the Langerin receptor 40 h post transfer (75).
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Moreover, gain of Langerin expression by Langerin−CD8+

cDC1 has been associated with their differentiation into a
more mature cDC population with increased capacity to
phagocytose dead cells, secrete IL-12 and cross-prime CD8+

T cells (75). The cytokine granulocyte-macrophage CSF (GM-
CSF) enhances the differentiation of cross-presenting splenic
CD103+ cDC1 during bacterial infection (102), but whether
GM-SCF signaling is also able to induce Langerin expression
on these cDC1 is not clear yet. Conclusively, these data suggest
that Langerin−CX3CR1

−CD8+ DC might be precursors of
the (functionally mature) Langerin+CD8+ subset, and that the
differentiation into mature Langerin+CD8+ DC depends on
Batf3 and yet undefined conditions (75, 94).

CROSS-PRESENTATION OF
CELL-ASSOCIATED AG BY
LANGERIN+CD8+ DC

CD8+ cDC1 not only cross-present Ag under inflammatory
settings, as cross-presentation by these cDC1 under steady state
conditions is important for efficient induction of tolerance to
self-Ag. Moreover, antigen-presenting cells (APC) in the splenic
MZ exhibit a high phagocytic capacity for dying / apoptotic
cells, suggesting that the MZ is essential for the initiation
of immune self-tolerance (14). Indeed, experiments using
intravenously injected apoptotic cells revealed that these cells
initially accumulated in the MZ where they were preferentially
phagocytosed by CD8+ cDC1 rather than by CD8− cDC2.
Notably, not all CD8+ cDC1 had the ability to cross-present,
as only about half of the CD8+ cDC1 phagocytosed apoptotic
cells, independent of the number of injected apoptotic cells (24).
Phagocytic active CD8+ cDC1 specifically expressed Langerin
and CD103, whereas Langerin− cDC1 did not acquire apoptotic
cells (24, 75). Phagocytosis of apoptotic cells by Langerin+CD8+

cDC1 induced their migration from the MZ to the WP (24).
This is in line with previous studies demonstrating redistribution
of CD8+XCR1+ cDC1 from the MZ to the center of the T cell
zones, where CD8+ T cells concentrate upon challenge with LPS
(21, 28). Here, phagocytosis of apoptotic cells by Langerin+CD8+

DC resulted in efficient cross-presentation of their cell-associated
Ag, while no significant CD4+ T cell priming was detected
(24, 72).

The observed differences in uptake and cross-presentation
between Langerin+CD8+ and Langerin−CD8+ cDC1 could
result from a general inability of Langerin−CD8+ cDC1 to
phagocytose apoptotic cells due to a lack of the respective
uptake receptors for apoptotic cells. For example, antibody (Ab)-
mediated Ag targeting to the recognition receptors DEC205
and Clec9a resulted in efficient cross-presentation and CTL
priming (31, 103). Because Langerin+CD8+ cDC1 highly
express DEC205 and Clec9a, as well as increased levels
of the supposed dead-cell receptor CD36 (24), this cDC1
subset may represent a functionally distinct population with
specific phagocytic capacities for apoptotic cells as compared
to Langerin−CD8+ cDC1. Indeed, Langerin+CD8+ cDC1
displayed an intrinsic activity for the uptake of cell-associated Ag,

while Langerin+CD8+ and Langerin−CD8+ cDC1 did not differ
in their capacity to phagocytose bacteria, beads or soluble Ag
(24). Nevertheless, CD8+ T cell activation in response to soluble
Ag was much stronger in Langerin+CD8+ cDC1 compared to
Langerin−CD8+ cDC1. This suggests that, although both cDC1
subsets acquired comparable amounts of Ag, Langerin+CD8+

and Langerin−CD8+ cDC1 subsets exhibit inherent differences
in their Ag-processing machinery. To examine this in more
detail, mice were challengedwith exogenous cytochrome c (cyt c).
As this pro-apoptotic molecule induces apoptosis when diverted
into the cytoplasm, cyt c specifically depleted cells that possess
cytosolic export mechanisms required for cross-presentation
(104). Indeed, cyt c treatment selectively and dose-dependently
ablated Langerin+CD8+ cDC1 but not Langerin−CD8+ DC.
Moreover, depletion of splenic Langerin+CD8+ cDC1 in Lang-
DTR mice also abrogated CD8+ T cell responses (72, 77).
These data would identify Langerin+CD8+ cDC1 as the main
professional cross-presenting subset within the CD8+ cDC1
subpopulation (24, 41, 72, 104).

Presentation of cell-associated Ag by Langerin+CD8+ cDC1
is critical for the maintenance of self-tolerance. Depletion of
Langerin+CD8+ cDC1 prior to injection of MOG-expressing
apoptotic cells and subsequent MOG/CFA immunization
resulted in Ag-specific CD8+ T cell hypo-responsiveness
and impaired EAE-progression (24). Whether this tolerance
depends on the induction of regulatory T cells (TREG) by
Langerin+CD8+ cDC1 remains unknown. However, DEC205
and Langerin Ag-targeting experiments revealed that, in contrast
to Langerin+ migratory skin cDC, Langerin+CD8+ cDC1 in
the spleen were inefficient in generating TREG in vivo (105).
Splenic Langerin+CD8+ cDC1 can also acquire, process and
cross-present lymphoma-derived Ag, both in vitro and in
vivo (106). In this setting, Langerin+CD8+ cDC1 exhibit
a tolerogenic function, indicated by decreased antitumor
immunity, resulting from impaired naïve CD8+ T cells priming,
possibly due to the lack of DC maturation and enhanced
expression of the T cell suppressive ligand PD-L2 (106). In
response to phagocytosis of dead cells, Langerin+CD8+ cDC1
strongly upregulate the expression of CD80 and the TNF
superfamily ligand 4-1BBL (24), both T cell co-stimulatory
molecules. Therefore, in combination with the appropriate
stimulation such as TLR or licensing by bystander iNK T cells,
Langerin-targeted Ag could stimulate immunity and thus Ag-
specific CTL responses (72, 103). In line, Langerin+CD8+ cDC1
specifically enhanced protective immune responses when pre-
activated CD8+ T cells were transferred as antitumor treatment
strategy (106).

Notably, the spleen is, next to the liver and BM, important
for the clearance of aged red blood cells (RBC), where mainly
Mφ in the peripheral RP actively remove these senescent
RBC (erythrophagocytosis) (107). However, damaged RBC that
undergo ‘programmed cell death’-like apoptosis (eryptosis)
are primarily taken up by splenic MZM and Langerin+

cDC (108).
In summary, the Langerin+CD8+ cDC1 subset is

predominantly involved in clearance and cross-presentation
of circulating apoptotic cells, but not, or only minimally, in
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MHCII presentation and subsequent CD4+ T cell priming
in responses to the same Ag. Again, this does not answer
whether the ability to cross-present depends on a certain
maturation stage characterized by the expression of Langerin, or
whether Langerin+CD8+ and Langerin−CD8+ cDC1 are two
functionally discrete cDC1 subsets, and this should be examined.

FUNCTION OF LANGERIN+CD8+ DC
DURING SYSTEMIC INFECTION

Langerin-expression identifies the cross-presenting cDC1 subset
in the spleen. So far, it is not clear whether Langerin is
merely a phenotypic marker for this specific CD8+ cDC1
subset, or whether the receptor actually exhibits functional
properties. In LC, Langerin is associated with the formation
of Birbeck granules. However, these structures are absent in
Langerin+CD8+ cDC1, and their formation cannot be induced
by stimulation with anti-Langerin monoclonal Ab (67). In
general, C-type lectin receptors like Langerin function as innate
pattern recognition receptors. Langerin itself recognizes cell-
surface carbohydrate structures on pathogens (e.g., mannose,
fucose and n-acetylglucosamine). This recognition normally
results in the internalization and subsequent presentation of
pathogen-associated Ag on MHC molecules (109, 110). DEC205
is found inMHCII-rich late endosomes and lysosomes (111), and
Ab-mediated Ag targeting to DEC205 in the absence of adjuvant
resulted in CD4+ T cell priming and TREG expansion (112).
However, direct comparison of Ab-mediated Ag targeting to
Langerin and DEC205 indicate that, although targeting Langerin
and DEC205 both resulted in comparable TH1 responses as
determined by CD4+ T cell IFNγ production, DEC205 targeting
resulted predominantly in CD8+ T cell proliferation (31, 103).
In contrast, langerin-targeting resulted in efficient priming of
both CD4+ and CD8+ T cells which was persistent for at least
14 days (113), indicating that Langerin on Langerin+CD8+

cDC1 may be involved in the delivery of Ag for presentation
on both MHCI and MHCII molecules (103). As DEC205 and
Langerin are co-expressed by CD8+ cDC1 subset, these data
might suggest that both lectin receptors feed into different Ag-
processing and presentation pathways. Since Langerin deficiency
did not impair Ag-presentation of soluble Ag by LC (114), the
expression of Langerin on Langerin+CD8+ cDC1 per semay not
be a prerequisite for cross-presentation.

CD8+ cDC1 are specialized cross-presenting cells and the
most potent producers of IL-12 under several inflammatory
settings, such as CD40 stimulation (29, 36, 37, 51, 115, 116). IL-
12 is a pro-inflammatory cytokine involved in NK cell responses
and the differentiation of TH1 T cells (117). Langerin+CD8+

cDC1 produce high levels of IL-12 upon systemic stimulation,
whereas Langerin−CD8+ cDC1 are poor IL-12 producers (77,
118). However, the requirement of IL-12 production by CD8+

cDC1 seems to depend on the type and timing of infection.
While during the first hours of infection, Langerin−CD8+ cDC1
were essential for early and transient IL-12 production, later
on and at least until 3 weeks post-infection, Langerin+CD8+

cDC1 were the dominant source of IL-12 (77). This study also
identified that the depletion of Langerin+CD8+ cDC1 resulted

in diminished protective immune responses against intravenous
Mycobacterium bovis infection. Langerin+CD8+ cDC1-depleted
mice displayed increased bacterial loads, due to decreased IL-12
production in combinationwith delayed and diminished CD8+ T
cell responses (77). Interestingly, although CD8+ T cell responses
recovered over time, the bacterial load continued to increase
and could not be controlled. This indicates that early immune
priming effects by Langerin+CD8+ cDC1 are essential for the
fate of the immune response (77), which was also found for
the negative regulatory role of LC during cutaneous Leishmania
major infection (119).

Upon activation iNKT cells rapidly produce proinflammatory
cytokines. Due to their immunoregulatory function, iNKT cells
are implicated to play a role in infectious diseases, autoimmune
diseases and cancer. iNKT cells can be activated by cDC and in
turn activate cDC to produce IL-12. Although Langerin+CD8+

cDC1 are not required for the initial activation of iNKT cells
(80), conditioning of Langerin+CD8+ cDC1 by these iNKT cells
in combination with TLR stimulation synergistically enhanced
cytokine secretion and sustained T cell priming capacities of
Langerin+CD8+ cDC1 (120).

Although the crucial role of the spleen and its CD8+ cDC1
compartment for bacterial and viral clearance and for providing
protective immunity is known, evidence about the specific
contribution of Langerin+CD8+ cDC1 in these models is so far
limited. Therefore, further studies will be needed to pursue the
implication of Langerin+CD8+ cDC1-specific functions during
systemic infections.

LANGERIN+CD8+ DC AND MACROPHAGE
INTERACTIONS

In general, CD8+ cDC1 obtain Ag directly from their
surrounding environment. The specific localization of
Langerin+CD8+ cDC1 within the MZ strongly suggests
that these cells are involved in efficient sampling of the blood
(Figure 2C). However, these DC poorly phagocytose blood-
borne Ag as compared to the various Mφ subsets in the MZ
(74). Using polystyrene particles or bacteria, <10% of the
Langerin+CD8+ cDC1 were able to phagocytose these Ag
as compared to the majority of MZ Mφ (24, 113). Thus, the
bulk of particles from the blood is cleared by Mφ and not
DC, even though the cells are in close proximity. Notably,
phagocytosis assays primarily assess the level of particle
scavenging or clearance, a feature of Mφ, but they do not provide
information regarding the efficiency of downstream steps, such
as Ag-processing and Ag-presentation by DC to T cells.

Another, although a less well appreciated mechanism of Ag
acquisition is the transfer of Ag between APC (121, 122). This
functional interaction would allow cDC to initiate protective T
cell responses even if Ag availability and accessibility is limited.
For example, Langerin+CD8+ cDC1 are able to cross-present Ag
from injected Ag-loaded allogeneic BM-DC and mount CD8+

T cell responses without affecting CD4+ T cell responses (118).
Depletion of the Langerin+CD8+ DC population in the Lang-
DTREGFP mice abrogated this indirect Ag-presentation and
thus subsequent CD8+ T cell priming. These data indicate that
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Langerin+CD8+ cDC1 were able to acquire Ag indirectly from
other APC populations via Ag-transfer in the presence of a potent
adjuvant. Notably, this Ag transfer is not limited to protein Ag, as
the glycolipid α-Gal-Cer could also be acquired and presented by
endogenous Langerin+CD8+ cDC1 (118).

Moreover, Ag initially acquired by CD169+ MMM, either
after monoclonal Ab-mediated Ag targeting or during adenoviral
infection, could specifically be presented by CD8+ DC,
suggesting transfer from MMM to CD8+ cDC1 (123–125).
Unfortunately, Langerin-expression on this cross-presenting
CD8+ cDC1 has not been studied, but as this Ag-transfer
absolutely requires a Batf3-dependent, Clec9a+ cDC1 (125),
it is very suggestive that the Langerin+CD8+ cDC1 subset
is the prime candidate to govern this process due to
its Clec9a expression, Batf3-dependency and localization in
the MZ (Figure 2C).

LANGERIN+CD8+ cDC1: IMPLICATIONS
FOR IMMUNOTHERAPY

The ultimate goal of every vaccination strategy to treat chronic
infections and cancer is the induction of durable and protective
T cell responses. For this purpose, proteins are very useful,
were it not that they are poorly immunogenic. Notably, the
immunogenicity of proteins can be immensely enhanced via
targeting to cDC. This Ag-targeting, in combination with
appropriate DC maturation signals like αCD40, PolyIC or
conditioning by activated NKT cell strongly boost Ag-specific
T cell responses. Therefore, identification and functional
characterization of cDC (subsets) to reinforce vaccination
efficiency is of great interest. Currently, many protein-targeting
strategies utilize DEC205 and Clec9a receptors, but this will
result in targeting of additional cell types as their expression
is not cDC restricted (103). In contrast, murine Langerin
expression is confined to the CD8+ cDC1 subpopulation.
Furthermore, the Langerin+CD8+ cDC1 subset appears
to be specialized in prolonged Ag cross-presentation with
sustained T cell priming capacities and IL-12 production,
making it a prime candidate for improved DC targeting and
vaccination strategies (120).

However, do human equivalents of murine Langerin+CD8+

cDC1 actually exist? And if so, what will be their relevance
and how much of the murine knowledge is translatable to the
human system? At first glance, similar to mice, the human
DC network can be divided into multiple phenotypically and
functionally distinct cDC1 and cDC2 resident and migratory DC
subpopulations (16, 126, 127). However, direct comparison of
the murine and human cDC subsets remains challenging (85).
First of all, several differences in DC ontogeny between mice
and men exist. For example, Irf8-deficiency in human resulted
in a lack of both cDC1 and cDC2 subsets (128). Secondly, many
of the markers used to phenotypically discriminate between
the different murine DC subsets cannot be used in humans.
Yet, it is now widely accepted that the expression of CD141
(BDCA3), Clec9a and XCR1 marks human cDC1, while human
cDC2 are identified by CD1c (BDCA1) expression (4, 126,

129–133) (Table 1). Indeed, the CD141+ cDC exhibit several
phenotypical (16, 134–137), transcriptional (138, 139) and
functional characteristics (140–142) corresponding to murine
CD8+ cDC1. On the other hand, no expression of Langerin
could be detected on these human CD141+ cDC1. Moreover,
the division of labor between human cDC1 and cDC2 might
be less strict as compared to mice. Generally, human CD141+

cDC1 and CD1c+ cDC2 are specialized in MHCI and MHCII
presentation, respectively. However, depending on the type of Ag
they encounter the both human resident cDC subpopulations can
do both (143–146). Furthermore, human cDC1 produce IL-12,
but in contrast to the mouse, also human cDC2 produce IL-12
at similar or even higher levels. These observations essentially
suggest that human cDC2 are involved in orchestrating TH1
immune responses. In line, a population of human CD1a+

cDC, closely related to CD1c+ cDC2, expresses low levels of
Langerin (142, 147–149). Accordingly, a fraction of Langerin+

cDC in the mouse lacks the expression of various markers
that are associated with cross-presenting cDC1 (e.g., CD103),
suggesting that some cDC2 are included in the Langerin+

cDC fraction as well (150). Therefore, the question whether
human CD141+ cDC1 are functional equivalents of the murine
Langerin+CD8+ cDC1 remains open, leaving the possibility that
these counterparts may be found within the human CD1c+

cDC2 subpopulation.
Another factor potentially determining the functional

specialization of the murine Langerin+CD8+ cDC1 subset
might be their unique micro-anatomical niche within the
spleen (Figure 2). Like the murine spleen, human spleen
consists of RP and WP with similar functions, except that its
micro-architecture differs in several ways. Importantly, humans
lack marginal sinuses, and therefore the well-defined MZ
found in rodents is as such absent in human spleen. Instead,
humans possess a distinct histological compartment consisting
of an inner and outer MZ surrounded by the perifollicular
zone (10, 151, 152). Although this region might functionally
represent the murine MZ, it is characterized by a different
blood flow and different cellular composition (153, 154).
To prevent confusion, this region may therefore better be
described as the superficial zone (153). DEC205+ cDC are
abundantly localized in this superficial zone (155), indicating
that these cells, equivalent to mice, are involved in initiating
(adaptive) immune responses toward blood-borne Ag. This
incomplete picture also illustrates that still many open questions
remain, which should be the subject of further research into
human cDC subpopulations in order to harness these cells
for immunotherapy.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Many (if not all) immune functions attributed to the splenic
cDC1 subpopulation appear to be exerted by the Langerin+

subset. However, several developmental and functional insights
regarding the Langerin+CD8+ cDC1 subset and, in particular,
the identification of its human counterpart remain to be

Frontiers in Immunology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 741

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Backer et al. Marginal Zone Langerin+CD8+ cDC1

clarified. On one hand, Langerin expression could reflect a
more mature state of CD8+ cDC1, enabling them to perform
their specific immune regulatory functions. On the other
hand, certain factors expressed by cell types unique to the
MZ (including MZM, MMM, MZ B cells, and sinus lining
cells) may facilitate the specific properties of, exclusively, the
Langerin+CD8+ cDC1 subset. Therefore, the elucidation of
the relationship between Langerin+CD8+ cDC1 and the MZ,
including the determination of factors supporting the unique
properties of Langerin+CD8+ cDC1, may be of particular
interest. The combination of high-dimensional techniques and
unbiased analysis has already revealed distinct differentiation
stages and/or subpopulations of human cDC1 and cDC2 (16,
126), and might allow the identification of human equivalents
of the murine Langerin+CD8+ cDC1. These human cDC could
then potentially be exploited for future therapies of e.g., chronic
inflammatory diseases or cancer.
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