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Cells must be able to interpret signals they encounter and reliably generate an appropriate

response. It has long been known that the dynamics of transcription factor and kinase

activation can play a crucial role in selecting an individual cell’s response. The study

of cellular dynamics has expanded dramatically in the last few years, with dynamics

being discovered in novel pathways, new insights being revealed about the importance

of dynamics, and technological improvements increasing the throughput and capabilities

of single cell measurements. In this review, we highlight the important developments in

this field, with a focus on the methods used to make new discoveries. We also include

a discussion on improvements in methods for engineering and measuring single cell

dynamics and responses. Finally, we will briefly highlight some of the many challenges

and avenues of research that are still open.
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INTRODUCTION

Specificity requires a cell to be able to recognize heterogeneous signals as inputs and reliably
compute heterogenous outputs in response. Cells receive signals that can be derived from the
organism itself—autocrine, paracrine, and endocrine signals—from the environment, or from other
organisms, for example, during infection. Frequently, several signals are present simultaneously
and in rapidly changing amounts and durations. Despite this, cells must be able to reliably
differentiate signals and generate a specific response based on the signal identity, intensity (i.e.,
the amount of signal present), frequency (i.e., the duration the signal is present for), and context
(i.e., the other signals present and the cellular state).

Accordingly, cells have evolved myriad mechanisms to receive, transmit, and process
information reproducibly in a fluctuating and noisy environment. Cells generally first “encode”
the signal they receive, by transmitting information about the signal into the activation of specific
signaling pathways. Cells are then able to “decode” this information into phenotypic responses
and changes in gene and protein expression. Notably, stochastic fluctuations in the concentration
of signaling molecules, the numbers of intracellular signaling proteins, and the composition of
the microenvironment can be substantial at the single cell level (1). Therefore, the pathways have
evolved to be robust to this unavoidable biological noise. The signaling pathways are also frequently
redundant or overlapping; many cellular signaling pathways are able to transmit information from
a variety of signals to produce heterogeneous outcomes, while many signals can affect multiple
pathways (2–4).

Over the past couple decades, it has become increasingly clear that cells use a variety of signaling
architectures to encode detailed information about the signals they encounter as temporal patterns
of activation of transcription factors, kinases, calcium ions, and other signaling molecules (5–7).
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Cells must therefore also possess mechanisms to interpret this
dynamic information and translate it into a transcriptional or
phenotypic response. One classic example is the discrimination
of nerve growth factor (NGF) and epidermal growth factor
(EGF) by rat neuronal precursors. NGF stimulation produces
sustained activation of the ERK pathway that prompts the
cell to differentiate, while EGF stimulation engenders transient
activation of the ERK pathway that is decoded as a proliferative
cue (Figure 1A) (8–10). Another classic example is the nuclear
factor (NF)-κB innate immune signaling pathway, which
exhibits oscillatory activation patterns when stimulated with
tumor necrosis factor (TNF)-α, but sustained activation when
stimulated with lipopolysaccharide (LPS), resulting in different
gene expression patterns (11–13).

The importance of dynamic decoding of stimulus dose and
identity has also been described in several other pathways. For
example, p53 is known to use dynamics to differentiate doses of
gamma radiation, and between gamma and UV radiation (14,
15). The Msn2 pathway in yeast uses dynamics to differentiate
between osmotic and oxidative stress, as well as the severity
of glucose starvation (16). Moreover, the Notch pathway has
been recently discovered to differentiate between some Delta-like
ligands using dynamic patterns (17). Finally, recent studies have
described how individual cells interpret multiple, simultaneous
stimulants (18, 19). These are only a few examples in a large space;
we strongly encourage readers to reference some of the excellent
reviews published on cellular encoding and decoding for a more
complete overview, especially of classic examples (20–22).

Clearly, dynamic encoding and decoding are widespread in
biology, but studying how cells interpret cellular dynamics can
be challenging, because population measurements occlude the
behavior of individual cells (Figure 1B), and making targeted
perturbations in signaling pathways is difficult. In order to
understand how individual cells encode and decode dynamics,
often multiple different measurements have to be made in the
same single cell at multiple timepoints. Features of the signaling
dynamic patterns (Figure 1C) can then be correlated to other
measurements of cell behavior to understand how the cell is using
dynamics. Recently, the portfolio of high-throughput and single-
cell technologies has expanded greatly and become accessible to a
wider spectrum of labs, allowing signaling dynamics to be studied
in myriad systems.

For example, optogenetics has enabled precisely targeted
activation of signaling pathways allowing for greater
understanding of the role of dynamics in development and
cancer signaling (23–26). Advances in microfluidics have
enabled new precision in stimulation timing and dosage
(19, 27–29), as well as studies of single cell protein secretion
or transcriptomics (30–33). Finally, new reporters have created
opportunities tomakemeasurements in novel signaling pathways
and contexts (29, 34–41). In this review, we will highlight various
experimental strategies that have been successfully used to study
cellular dynamic decoding, with an emphasis on single cell
studies. We will also discuss recent technological developments
that have enabled the field to grow rapidly, and end by discussing
some potential future avenues of study and technological
challenges that still persist.

DYNAMIC DECODING OF CELLULAR
INFORMATION

Population-level studies have revealed some of the connections
between signaling dynamics and cellular responses (12, 13, 42,
43). However, as discussed previously, population measurements
are not necessarily indicative of single cell behavior (Figure 1B).
In order to understand how single cells decode dynamic
signals into a phenotypic response, it is necessary to make
combined measurements of the signaling dynamics and the
downstream cellular response in the same single cell. Microscopy
has proven to be an invaluable tool for these studies, given
the versatility of measurements that it can make, including
not only live-cell fluorescence for measuring the signaling
dynamics themselves, but also single molecule fluorescence in
situ hybridization (smFISH) for measuring gene expression
(44), and immunofluorescence or other antibody-based methods
for measuring protein expression. In addition, there has been
recent work to combine other modalities, such as RNA-seq and
microfluidics, with live-cell imaging, expanding the repertoire of
possible measurements. Here we present a collection of recent
studies that demonstrate effective strategies for probing the
connection between dynamics and cellular responses on a single
cell level.

Live-Cell Imaging Coupled With
Measurements of Physical Phenotypes
The most straightforward way to interrogate how cells decode
dynamics is to measure signaling dynamics and clear phenotypic
responses, such as cell death, cell migration, or cell division.
These measurements are well-adapted to live-cell microscopy, as
measurements of cellular dynamics and the phenotypic response
can be made using the same measurement modality with few
technical limitations.

For example, p53 is a transcription factor with a critical role
in regulating cell growth and apoptosis in response to DNA
damage (45). Previous population-level studies suggested cells
with p53 activation below a specific threshold would initiate
growth arrest, while cells above that threshold would undergo
apoptosis (46). However, single cell studies using a fluorescent
p53 reporter showed that in order to undergo apoptosis, p53
levels in the cell must indeed reach a threshold, but that this
threshold increases over time (Figure 2A) (47). Therefore, the
decision of apoptosis or cell growth arrest is determined by the
dynamics of p53 activation, as opposed to a static threshold.
This observation could only have been made using a single cell
dynamical approach.

A similar study revealed aspects of TNF signaling that are
correlated with apoptosis. TNF signaling initiates a pro-apoptotic
cascade, as well as induction of pro-survival genes by NF-κB
(48). Using a microfluidic device to precisely control stimulus
timing and dosage, Lee et al. showed that short pulses—as short
as 1 min—of TNF-α can be more effective at inducing apoptosis
than longer pulses. Single-cell measurements of NF-κB activation
showed that longer pulses of TNF sustained longer residence
times of NF-κB in the nucleus, suggesting that NF-κB dynamics
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FIGURE 1 | Fundamentals of dynamic encoding and decoding. (A) Cells can encode information about the signals they encounter as dynamic patterns of signaling

pathway activation. These patterns can then be decoded to produce a specific response. For example, NGF creates sustained ERK activation, which leads to

differentiation, while EGF creates transient ERK activation, which leads to proliferation. (B) Population-level measurements, such as a western blot, can hide the

behavior of single cells in the underlying system. For example, an analog or digital response could produce similar western blots, despite having different amounts of

active cells and activity per cell. (C) Examples of some features of dynamic traces that can be used to encode information.

are correlated with the relative balance of pro-apoptotic and pro-
survival signaling (49). The pro-apoptotic arm of the pathway
is initiated on a slower time-scale than, and is inhibited by, the
pro-survival arm of the pathway (48, 50, 51). Therefore, the
authors propose a model where the sustained NF-κB activation
caused by longer TNF pulses, maintains inhibition of the pro-
apoptotic signaling arm, leading to greater relative pro-survival
signaling (49).

Live-cell microscopy has also been used to understand how
the spatiotemporal dynamics of the mitogen-activated protein
kinases (MAPKs) regulate mating processes in single yeast cells.
In order to undergo successful mating and fusion, individual
yeast cells must remodel their cell walls, arrest the cell cycle,
and polarize their growth (52, 53). A Förster resonance energy
transfer (FRET) reporter of the activity of two MAPKs, Fus3 and
Kss1, coupled with visual observation of cell shape and growth,
revealed that elevated Fus3 activity at the sites of polarized
growth were required for initiating polarity and fusion between
mating cells, showing that the spatiotemporal patterning of Fus3
activity, and not just Fus3 levels, are required for the correct
mating phenotype (54).

Reporters of multiple different pathways can also reveal how
the context of an immune stimulus can affect how an immune cell
will respond (55). Innate immune cells use pattern recognition
receptors (PRRs), such as Toll-like receptors (TLRs), to detect
molecules that are indicative of an infection. A cell line expressing
both an NF-κB and a c-Jun N-terminal kinase (JNK) reporter was
challenged with increasing levels of immune stimulation, from
only LPS to infection with Salmonella typhimirium, allowing for

measurements of the cell’s signaling response in each case (35).
This work showed how an individual cell uses TLR signaling
to discriminate similar signals in a variety of different contexts.
For example, in a population of cells exposed to S. typhimirium,
uninfected cells typically activated only NF-κB, while those cells
that were infected with bacteria typically activated both JNK and
NF-κB (35).

Multiple live-cell reporters exist that broaden the types of
physical phenotypes that can be directly measured using live-
cell microscopy. For example, fluorescent probes have been
developed that allow for quantitative measurements of single
cell kinase activation (34, 37), visualization of various modes of
cell death and caspase activation (36, 56), as well as cell cycle
progression and measurements of proliferation rate (57). This
proliferation reporter was used in conjunction with a FRET-
based reporter of ERK activity to show that cells use ERK
pulse duration and overall activity to regulate entry into S-
phase and cell cycle timing. Subsequent experiments using high
content immunofluorescence (HCIF) suggested that the main
quantitative factor controlling steady-state proliferation in single
cells is ERK output (58).

These experiments are clear examples of ways that we can
begin to understand how signaling dynamics generate physical
phenotypic responses. Furthermore, the development of new
biosensors, improvements in our ability to regulate cellular
dynamics (see “Experimental strategies for engineering or
modulating dynamic signaling patterns”), and improvements in
high-throughput phenotype characterization (59), should allow
for even more insight in this area of research.
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FIGURE 2 | Examples of decoding dynamic signaling patterns. (A) Apoptosis

due to p53 signaling is not determined by a static threshold, but by a dynamic,

increasing threshold. Some cells do not undergo apoptosis, even though they

have higher p53 levels than some cells that do undergo apoptosis. Figure

adapted from Paek et al. (47). (B) Subpopulations with distinct patterns of

NF-κB activity exist in single cells stimulated with LPS. These patterns are

correlated with different gene expression patterns for known NF-κB targets.

Figure adapted from Lane et al. (32). (C) Basal rates of adipocyte

differentiation are low in vivo, despite large pulses of glucocorticoid production

daily. However, continuous glucocorticoid inputs of similar total magnitude

induce more stabilization of PPARG, indicated in green, and higher

differentiation rates. Figure adapted from Bahrami-Nejad et al. (73).

Live-Cell Imaging Coupled With
Measurements of Gene Expression
and Transcription
Signaling pathways often exert control over the cell by making
changes to the expression of specific target genes. In such
cases, dynamic signaling patterns are likely to be decoded as
quantitative changes in gene expression. However, unraveling

this connection can bemore challenging thanmeasuring physical
phenotypes because it requires measuring signaling dynamics
and gene expression in the same single cell. Notwithstanding
this complication, many recent studies have demonstrated
experimental strategies to successfully combine measurement
modalities to uncover interesting results.

For example, the nuclear abundance of NF-κB varies
significantly in both stimulated and unstimulated cells,
suggesting that NF-κB transcription might also be highly
variable (60). However, smFISH measurements in single cells
show that transcript levels for many NF-κB targets vary less than
the activity of NF-κB (61). Measurements of a fluorescent NF-κB
reporter, combined with end-point smFISH quantification of
NF-κB regulated transcripts, showed that dynamic quantities,
such as fold change of NF-κB, were better predictors of
transcriptional levels than static quantities, such as NF-κB
nuclear abundance. Subsequent mathematical modeling revealed
a potential mechanism based on an incoherent feed-forward loop
generated by transcription factor competition (61). Recent work,
also using a smFISH-based strategy, further showed that fold
change of NF-κB was an accurate predictor of transcript levels
at promoters with both high and low levels of TNF-induced
transcription (62).

A similar example involved studying the responses of NF-
κB to simultaneous LPS and TNF-α stimulation to understand
how cells respond to multiple stimuli. A fluorescent reporter was
used to measure NF-κB activation in 3T3 cells across a range
of LPS and TNF-α concentrations. For most concentrations,
the response could be classified as an LPS-only or TNF-α-
only response, but for a number of intermediate concentrations,
there was a synergistic response that had characteristics of both
TNF- and LPS-stimulated cells. Subsequent smFISH measuring
the mRNA of a number of relevant chemokines and cytokines
revealed that dual-responding cells had, on average, higher
expression of Cxcl10 and Csf3 (18). Similar strategies have also
been successfully used in other signaling systems (63–65).

Single-cell dynamic imaging can also reveal new phenomena
that can be further studied using other techniques. For example,
the HIV virus is known to integrate into the host genome
and lay dormant in some T lymphocytes, which presents a
major obstacle for treatment with antiretroviral therapy (66).
Although these latent reservoirs of virus exhibit stochastic,
low level activation, the molecular regulators controlling viral
activation are still incompletely understood (67). NF-κB is
a known regulator of the HIV long terminal repeat (LTR)
promoter; however, a recent study using fluorescent reporters of
HIV and NF-κB activation revealed that NF-κB activation is not
predictive of levels of viral activation across different clones (68).
Instead, using smFISH and chromatin immunoprecipitation
(ChIP), the authors found that the chromatin environment
regulates transcriptional bursting and can explain clone-to-
clone variability. These findings revealed that NF-κB-chromatin
interactions are required to explain transcriptional bursting and
viral activation (68).

FISH-based strategies have also been used to elucidate the role
dynamics can play in vivo during development. For example,
it had been shown that myogenesis requires transient, not
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sustained, activation of Notch, but the mechanism of transient
Notch activation was not clear (69). Recently, it was revealed
that the Notch pathway also uses dynamics to encode and
decode information about the identity of the activating stimulus
(17). A creative experimental system, using engineered “sender”
cell lines that produce either Dll1 or Dll4 and a “receiver”
cell line with a chimeric Notch receptor driving expression of
a fluorescent protein allowed measurements of the dynamics
of Notch activation in the presence of either ligand. These
experiments revealed that Dll1 stimulation leads to pulsatile
Notch activation, while Dll4 creates sustained Notch activation,
with differences in gene expression as a result. The results were
reproduced in an in vivo model by electroporating either Dll1
or Dll4 into one side of the neural crest of a chick embryo and
then using hybridization chain reaction (HCR) FISH to stain for
MyoD1, a muscle regulatory factor. Their results revealed that
MyoD1 is upregulated by Dll1, which creates pulsatile dynamics,
while Dll4, which creates sustained dynamics, downregulated
MyoD1 (17).

In systems where endpoint measurements of gene expression
are insufficient, multiple fluorescent reporters can be used to
measure signaling and transcriptional output simultaneously.
For instance, TNF-α is a known regulatory target of NF-κB,
that can subsequently regulate downstream responses through
paracrine and autocrine signaling (11, 32, 70). A cell line
with reporters for both NF-κB activity and transcription from
the TNF-α promoter was used to simultaneously measure
the signaling and transcriptional dynamics in real-time.
Measurements revealed low correlation between many measures
of NF-κB activity and the output from the TNF-α promoter.
However, the time-integrated NF-κB activity was well correlated
with the total output from the TNF-α promoter, demonstrating
that continuous measurements of transcriptional activity can
reveal more information than endpoint measurements in some
systems (71).

Finally, it is now also possible to measure signaling dynamics
and genome-wide transcriptional responses in the same single
cell. RNA-seq provided a method to measure the entire
transcriptome of a single cell, but it remained unsolved how to
connect those data with measurements of transcription factor
activation dynamics. Lane et al. used microfluidics to isolate
cells for live-cell imaging and single-cell RNA-seq to connect
the identity of the cell in both datasets. Their results revealed
that distinct patterns of NF-κB signaling in response to the
same stimulus correlated to different global transcriptional
responses (Figure 2B) (32). The ability to measure global gene
expression resultant from heterogeneous dynamics is exceedingly
useful, because it allows for phenotypic characterization of single
cell dynamics without a need for a priori knowledge of the
target genes.

Live-Cell Imaging Coupled With Protein
Expression Measurements
Frequently, a cellular response to signals that it receives is to
differentially regulate the expression or secretion of proteins. For
example, a large part of the immune response is coordination

of cytokine and chemokine secretion by immune cells at the
site of infection. Therefore, another promising avenue for
research in cellular dynamics is to study changes in protein
expression and secretion in conjunction with measurements
of dynamics. Immunofluorescence can be used to measure
intracellular protein expression, similar to measurements of gene
expression using smFISH. Alternatively, microfluidic devices or
microwell-based assays can be used to measure protein secretion
from single cells.

For example, protein quantification can be used to understand
how signaling pathways in cells control differentiation.
Hormones such as glucocorticoids strongly induce adipogenesis
in vivo and in vitro, but basal rates of preadipocyte differentiation
are low in living animals, despite large daily spikes in
glucocorticoid hormone production (72). This raises the question
of how the differentiation pathway in preadipocytes is able to
filter daily, pulsatile signals. Live cell imaging of endogenous
adipogenic transcription factors CEBPB and PPARG, and
staining for markers of fat cell differentiation, revealed that the
transcriptional circuit in preadipocytes effectively filters out
pulsatile signals, but responds to continuous signals of the same
total magnitude (Figure 2C). A model predicted that such a
response could be achieved if the system had both fast and slow
feedback loops, and further protein and mRNA staining revealed
FABP4 as a potential slow-feedback partner in the pathway (73).

Most often, protein expression is measured at the
experiment’s endpoint, but sometimes more frequent
measurements of downstream protein expression changes
are required. ERK signaling has been described as both a
“persistence detector,” which drives approximately digital
expression of target genes based on the duration of ERK
activity (74–76), and also as a system where peak amplitude
qualitatively regulates gene induction (77). Simultaneously
measuring ERK activity and induction of Fra-1, a target of
ERK, using live-cell reporters instead revealed that linear
integration of ERK activity was the primary determinant of
downstream responses (78).

Single-cell protein secretion is more challenging to measure,
because of the low amounts of protein secreted and the
need for isolating individual cells. One strategy for studying
single cell protein secretion is to use total internal reflection
microscopy to measure secreted proteins in a microwell by a
sandwich immunoassay (79). This approach was used to make
concurrent measurements of caspase-1 activation using a FRET
reporter and IL-1β secretion in single cells. Further analysis
revealed that caspase-1 activation is digital and controls a burst
of IL-1β secreted from dead macrophages (33). Alternatively,
multiple microfluidic strategies to combine live-cell imaging
and antibody-based detection of secreted proteins have been
developed (30, 31). Cells are initially captured in single cell
wells, where they can be exposed to precise doses and durations
of stimuli and imaged using a fluorescent microscope. The
media from each cell’s well can be sampled and measured with
antibodies for secreted proteins at various time points during the
experiment. Depending on the device, it is also possible to stain
cells using immunofluorescence, allowing for both secreted and
intracellular proteins to be measured (30).
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Finally, changes in protein expression can also be controlled
by chromatin regulators, which impart histone and DNA
modifications (80, 81). It is now possible to study how single cells
use different chromatin regulators to produce varying dynamics
of gene expression. Bintu et al. used a doxycycline-inducible
system to recruit individual chromatin regulators to regulate the
expression of a fluorescent protein. They showed that epigenetic
silencing and reactivation are digital processes in single cells and
that different chromatin regulators modulate the fraction of cells
silenced. Further, using a stochastic model, they describe the
different dynamics for both silencing and reactivation, created
by each chromatin regulator (82). How cells use chromatin
modifications to process signal information is still poorly
understood (83), but studies of single cell chromatin regulation
dynamics provide a promising avenue for future research.

EXPERIMENTAL STRATEGIES FOR
ENGINEERING OR MODULATING
DYNAMIC SIGNALING PATTERNS

Studying cellular decoding is more challenging than studying
cellular encoding, for technical and biological reasons. The
primary biological challenge is that cells have complicated
signaling pathways that interact with each other and control
heterogeneous outputs. Thus, it is technically difficult to prove
that the dynamics are the causative factor in the phenotypic
measurement. It has also been difficult to perturb signaling
dynamics in ways that would help to establish causality of
phenotype, especially in single cells. Here we summarize
strategies that have been successfully used to modulate signaling
dynamics, as well as significant technical advances that have
enabled novel ways of controlling signaling dynamics in
single cells.

Engineered Dynamics Using Optogenetics
and Other Synthetic Systems
Recent advancements in synthetic biology have opened exciting
new ways of precisely and selectively controlling dynamic
signaling. One such advancement is the field of optogenetics,
which exploits light to control protein function and cell
activities with high spatio-temporal resolution (Figure 3A).
Optogenetic tools are generally faster and more selective
than pharmacological stimulation, and their ability to
generate flexible temporal patterns brought us a concept of
engineering system identification to study the characteristics
of cellular signaling pathway in a more direct manner.
Here we introduce a few examples of optogenetic strategies
applicable to signaling dynamics, but more detailed information
about limitations and other applications have also been
recently reviewed (84–86).

One commonly used system is Phy-PIF, an optogenetic system
with a fast deactivation rate. Both binding and dissociation are
induced by light stimulation; red light induces binding and
infrared light induces dissociation (87). OptoSOS adopts this
system to activate the Ras-ERK signaling pathway by inducing
translocation of SOS to the plasma membrane. It can be used

to reproducibly activate the pathway using very short pulses
(<1min) and high frequencies of activation, enabling one to
measure the frequency response of the pathway (88). This system
was recently used to show that a mutation in B-Raf in a
human cancer line led to slower decay kinetics of the pathway,
meaning that a larger space of input frequencies and strengths
are interpreted as growth signals in this cell line (23).

Cry2 is another widely used optogenetic system. It has
a slower activation and deactivation rate compared to other
systems, but it has the unique property that it exhibits both
hetero- and homo-dimerization upon blue light stimulation.
Cry2 binds to the N-terminal domain of CIB1 in a blue-light
dependent manner. Similarly to OptoSOS, cRaf fusion to Cry2
was used to activate the ERK pathway by inducing translocation
to the plasma membrane (89) (Figure 3B). Using this system,
it was shown that pulsatile ERK activation led to higher cell
proliferation than sustained activation. Several genes that are
induced better by pulsatile ERK activation were also identified.
Photoactivation by recruiting a partner to amembrane comprises
many examples such as PKA (90), AKT (26, 91) and TrkA
(92). In addition to this heterodimerization between Cry2 and
CIB1, Cry2 is known to have a propensity for oligomerization.
This property of oligomerization was later improved with a
small change in sequences (93, 94). As many signaling events
are initiated by homo-oligomerization, particularly receptor
signaling, they have been widely applied to many signaling
pathways (95–100).

A light-oxygen-voltage-sensing (LOV) domain is a
photosensory motif found in many proteins across diverse
species. Blue light stimulation induces covalent bond formation
between the LOV domain and its flavin cofactor, leading to a
partial unfolding between the LOV domain and C-terminal A-
helix. LOV domains have been engineered for many applications
due to the small size of this domain (∼110 amino acids). For
example, a light-switchable gene promoter system was developed
by fusing a fungal LOV domain and the Gal4 transcription factor
lacking the dimerization domain (101). This system was also
applied to control temporal patterns of proneural gene Ascl1
expression in neural progenitor cells (24), and the oscillatory and
sustained expression of Ascl1 were shown to induce proliferation
and differentiation, respectively.

Contrary to the examples above exploiting translocation or
recruitment, there are many optogenetic tools that can directly
control allostery and fragment complementation. This includes
Dronpa-based strategies (25, 102), LOV domain-based proteins
utilizing photo-uncaging (103–106), and a number of light-
sensitive channels and receptors. For example, Hannanta-Anan
and Chow used melanopsin to generate a wave of calcium release
(107). By systematically controlling the calcium oscillation
amplitude, frequency, and duty cycles, they found downstream
NFAT integrates total elevated calcium concentrations due to its
slow export rate.

Dimerization can also be induced chemically; the dimerization
of FKBP and FRB with rapamycin is a classic example that has
been used in a wide variety of applications for many years (108–
110). Though many tools are essentially irreversible due to high
affinity binding, acute induction of dimerization or translocation
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FIGURE 3 | Engineering approaches for manipulating dynamic signaling patterns. (A) Optogenetic tools can dynamically and selectively activate a pathway in isolation

from endogenous receptor signaling contexts. (B) Blue light induces dimerization between the N-terminal CIB1 and Cry2 domain fused to cRaf, leading to the

recruitment of cRaf to the membrane. Ras activates cRaf at the membrane, and thus it activates the downstream ERK pathway. (C) Microfluidic devices were used to

control the flux of small-molecule inhibitors of the Notch and Wnt signaling pathway. In-phase oscillations of these two pathways led to proper mesoderm

segmentation, whereas out-of-phase oscillation impaired segmentation.

has been an effective strategy to investigate causation of signaling
events. For instance, Santos et al. constructed the nuclear
Cdk1-FKBP and cyclin B1-FRB reporters to test the spatial
positive feedback regulation of Cdk1-cyclin B1 (111). The
chemical dimerization of these complexes in nuclei triggered
cyclin B1 nuclear translocation, which was confirmed by
translocation of a fluorescent protein fused to cyclin B1, but not
fused to FRB.

Another potential approach to control dynamics is to engineer
a fully synthetic version of the pathway in an orthogonal
cellular environment. As an example, the ERK pathway was
reconstructed in yeast, and this minimal cascade itself was shown
to generate ultrasensitivity (112). Recently, a synthetic NF-κB
signaling pathway was introduced in yeast to study its oscillatory
behavior (113). The amplitude and period of the oscillatory
response to α-factor can be experimentally regulated by tuning
the level of RelA from an inducible promoter, the stability of
the protein, and/or the promoter strength driving the expression
of the negative feedback component, IκBα. Synthetic systems
provide an easy way to manipulate pathway parameters and
circuit structures with small-molecule inputs.

Microfluidics Can Precisely Control Dose
and Timing of Stimulus
Fluidic control was a standard approach to dynamically
manipulate a stimulation pattern before genetic or synthetic
approaches became popular. A simple fluidic setup with a
pump has been used for several decades to control input flux,
including early studies of glucagon signaling (114) and calcium
signaling (115). Microfluidic devices now represent a dramatic
improvement, providing us withmore precise control to generate
virtually any kind of temporal pattern, to study both dynamic
encoding and decoding.

NF-κB activation in single cells has been well studied using
such devices (116, 117). One study showed that cells respond
to TNF-α in a probabilistic manner, meaning that only a
fraction of cells activates the NF-κB pathway when TNF-α
concentrations are low. Microfluidics-based temporal control
of TNF stimulation enabled multiple discrete pulses of TNF-α
to be delivered to the media. These experiments showed that
variability in the NF-κB response depends not only on pre-
existing cellular variability, but also on a previously unknown
stochastic element (118).
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Jeknić et al. Decoding Single Cell Signaling Dynamics

In terms of dynamic decoding, the filter characteristics of
the yeast stress pathway has been extensively studied using
microfluidic devices (16, 119, 120). By modulating the amplitude,
frequency, and duration of periodic Msn2 nuclear translocation,
it was shown that each promoter transcribed by Msn2 has
a distinct sensitivity to amplitude and pulse frequency. These
differences can differentially regulate at least four classes of genes
downstream of Msn2 (121).

Microfluidics have also been used to manipulate cellular
phenotypes by controlling signaling dynamics. For example, EGF
and NGF stimulation in PC12 cells activate the ERK pathway
in a transient and sustained manner, respectively, leading to
different cellular outcomes. With a microfluidic device, Ryu
et al. inverted the outcomes from each growth factors simply
by changing the stimulus patterns (28). As another example,
Sonnen et al. observed that the segmentation of the presomitic
mesoderm is dependent on relative timing between Wnt and
Notch signaling oscillations (29). They used microfluidics to
generate either in-phase or out-of-phase oscillations of these
two pathways and showed the out-of-phase oscillations impair
segmentation (Figure 3C).

TECHNICAL IMPROVEMENTS IN HIGH
THROUGHPUT SINGLE CELL
MEASUREMENTS

Many of the examples above show the versatility and capability
of microscopy to interrogate relationships between signaling
dynamics and downstream phenotypes in single cells. It is
becoming clear that signaling dynamics can be decoded to
distinct gene expression programs leading to diverse cellular
phenotypes; yet most studies were only able to measure a few
genes due to technical challenges. Here we will go over some
of the recent technical advancements that potentially expand the
throughput and accessibility of this measurement modality.

As we saw in the examples above, FISH and
immunofluorescence are commonly used techniques for
capturing downstream responses. FISH can be implemented in
a high-throughput manner, as one can strip or bleach probes
and thus iterate detection (122–124). The downside of these
techniques is their cost and sensitivity, since many probes are
required to bind one species of mRNA and thereby amplify a
specific signal. Two recently developed methods utilize different
signal amplification schemes, enabling higher sensitivity and
gain. The first method is proximity ligation in situ hybridization
technology (PLISH) (125). PLISH amplifies a target region by
rolling circle amplification after generating closed circle probe
oligonucleotides by RNA-templated proximity ligation. The
second technique, called click-amplifying FISH (clampFISH),
uses non-enzymatic click chemistry to generate closed circle
oligonucleotides (126, 127). Both techniques were shown to
provide better fluorescence signals in both cell culture and tissue
samples (126).

Similar to high-throughput FISH approaches, there are
methods which attempt to determine the amount of many
specific proteins via immunofluorescence over multiple cycles.

For example, Lin et al. developed cycIF by bleaching a
fluorophore conjugated with a primary antibody with hydrogen
peroxide (128). They were able to detect 60 proteins in a tumor
tissue sample by repeating the bleaching and staining steps
for each protein of interest (129). Another group developed
the antibody elution method called 4i which elutes antibodies
with a mix of reducing agent, low pH and chaotropic salts,
and a blocking buffer (130). This is compatible with indirect
immunofluorescence, and 40 proteins were detected with
this approach. A similar approach, co-detection by indexing
(CODEX), uses oligonucleotide conjugated antibodies (131).
Instead of repeating antibody binding steps, this method first
carries out the binding process, followed by repeated detection
of the barcoded antibodies by incorporating fluorophore-labeled
nucleotides by polymerase.

These methods rely on fluorescence detection and thereby
the number of detections at a time is limited by the spectral
overlap. In contrast to these approaches, imaging mass cytometry
and multiplexed ion beam imaging use metal-labeled antibodies
(132–134). The signal from the metal isotopes are measured
via mass spectrometry, allowing simultaneous detection of more
proteins than would be possible by fluorescence. Both methods
were able to measure more than 30 proteins from tumor samples
(135, 136), and it can be also combined with high-throughput
FISH methods (137).

For live-cell image analysis, computational automation is
increasingly a requirement due to the amount of data that can
readily be acquired. One of the recent breakthroughs in this
area involves deep learning. Convolutional neural networks were
first applied to classification of histopathologic images for a
diagnostic purpose (138–140). In 2016, a software tool called
DeepCell employed this type of classification task for automated
image segmentation of cells (141). In addition to a higher
segmentation accuracy for fluorescent images, this deep learning-
based approach also allows us to segment objects using a non-
labeled image such as phase-contrast or DIC images (142–144).

CONCLUDING REMARKS

The capability and compatibility of single-cell measurement
techniques has advanced significantly in the last several years.
It is now possible to measure signaling pathway activation
and RNA, protein or metabolite levels in single cells, often
in real time. The throughput of these measurements is also
increasing rapidly, especially with the development of better
computational techniques for image analysis and iterative FISH
and immunofluorescence approaches. Moreover, our ability to
engineer single cell dynamics is also rapidly improving with the
development of techniques such as optogenetics. As a result,
studies describing how individual cells respond to inputs using
dynamic patterns have expanded into new systems and levels
of detail.

Practically, these new discoveries may reveal ways to target
signaling dynamics in disease contexts, potentially leading to
novel treatments (145). Pharmacologically altered signaling
dynamics have only been demonstrated in a few studies, but
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this may change with the development of better tools and
knowledge (64, 146). Additionally, better understanding of
dynamic cellular responses can help lead the way to cells
with functional engineered signaling circuits, which have large
potential as possible therapeutics and scientific tools (147).

Nonetheless, this field is still in the early stages and many
challenges remain to be addressed. Reporter development
remains a challenging problem, and thus reporters currently
exist for only a small subset of pathways. Furthermore,
most measurements of signaling pathways continue to rely
on exogenous reporters, which can differ from the responses
seen with endogenous proteins. While work has been done
to make it easier to directly measure endogenous proteins,
these methods still remain more difficult than using exogenous
reporters. Finally, large-scale genetic screens have enabled new
levels of understanding in many fields through the ability
to search for important effectors across the entire genome.
However, using microscopy in conjunction with genome-wide
screens is still exceedingly challenging because of the need to
connect the measurements made using microscopy to the genetic
perturbation in each cell. Thus, there is still much room for

improvement in both the techniques available to the study of
dynamics, as well as the number of systems that these techniques
can be applied to.
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