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With the advent of combined immunotherapies, personalized dendritic cell (DC)-based

vaccination could integrate the current standard of care for the treatment of a large variety

of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the

innate and adaptive immune system, and have critical roles in the induction of antitumor

immunity. However, despite proven immunogenicity and favorable safety profiles,

DC-based immunotherapies have not succeeded at inducing significant objective clinical

responses. Emerging data suggest that the combination of DC-based vaccination with

other cancer therapies may fully unleash the potential of DC-based cancer vaccines

and improve patient survival. In this review, we discuss the recent efforts to develop

innovative personalized DC-based vaccines and their use in combined therapies, with

a particular focus on ovarian cancer and the promising results of mutanome-based

personalized immunotherapies.
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INTRODUCTION

Dendritic cells (DC) are the most potent professional antigen-presenting cells (APC) and play
critical roles in regulating the innate and adaptive immune responses (1). In their immature
state, DC patrol the tissue microenvironment and become activated in the presence of foreign
pathogens. This activation occurs following stimulation by exogenous danger signals via pattern
recognition receptors (PRR) such as Toll-like receptors (TLR) (2, 3) and leads to DC migration to
the draining lymph node and the presentation of the processed epitopes to T cells (4). During the
T cell activation, DC engage the T-cell receptor (TCR), secrete specific cytokines and stimulate the
immune responses toward TH1, TH2, or Tregs depending on the cytokine environment. Due to
their proficiency at antigen cross-presentation (i.e., the presentation to both CD4+ and CD8+ T
cells), DC have been used as vaccine platforms to induce anti-tumor cytotoxic T lymphocyte (CTL)
CD8 immune responses (5–8).

Various types of DC-based vaccines have been evaluated in clinical trials. The most commonly
used preparation involves the reinfusion of ex-vivo derived DC pulsed with tumor-associated
antigens (TAAs) or tumor cell lysates and stimulated with a defined maturation cocktail. In the
earlier trials, the gold standard maturation cocktail included the pro-inflammatory cytokines
TNF-α, IL-1β, and IL-6 in combination with prostaglandin E2 (PGE2) (8–10). However, despite
the important roles of PGE2 in promoting DCmigration (11) and in enhancing T cell proliferation
(12), it has also been shown that PGE2 may induce differentiation of regulatory T cells (13),
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increase the expression of the pro-tolerogenic enzyme
indoleamine 2,3-dioxygenase (IDO) (14), and may limit IL-
12p70 production (15). As these PGE2-related activity may
curtail the anti-tumoral immune response, alternative methods
of ex vivo maturation of DC have been explored such as the
triggering of co-stimulatory pathways (e.g., CD40-CD40L)
(16) and the activation of the TLR using agonists such as poly
IC (TLR3) (17), resiquimod (TLR7/8) (8) and 3-O-deacylated
monophosphoryl lipid A (MPLA) (18), a modified TLR4 agonist
with less toxicity than LPS. Moreover, DC subsets have been
directly targeted in vivo by administration of TAAs directly to
DC or by intra-tumoral administration of immunomodulatory
molecules to activate local DC.

Although, DC-based vaccinations looked promising after
Sipuleucel-T (Provenge R©) approval in 2010, a DC-based
immunotherapy for the treatment of advanced prostate
cancer (19), unfortunately, the vaccination against established
malignancies has generally shown limited clinical benefit. There
are a number of potential factors that can impact the efficiency
of DC-based vaccines. For instance, there is a reduction TAAs
expression by tumor cells leading to immunosuppression and the
immune evasion of cancer cells. Tumor cell elimination may also
be blunted by the immune suppressive barriers overexpression,
such as checkpoint receptor signaling (CTLA-4, PD-1/PD-L1)
and immunomodulatory cellular subsets [Tregs and myeloid-
derived suppressor cells (MDSCs)] (20, 21). Moreover, there
are evidences of defects in both the number and functions of
DC subsets, which facilitate tumor progression and immune
evasion (22–29). Overall, the transition of DC from an in vitro
cell culture to an in vivo immunosuppressive environment may
alter the effectiveness of DC-based immunotherapy.

Therefore, ongoing trials using DC-based vaccines are
evaluating the use of combined immunotherapies to favor
DC activation and promote T cell functions, and overcome
tumor immune evasion. The Indian government agency
(CDSCO-Central Drugs Standard Control Organization)
recently approved in 2017 an autologous monocyte-derived and
tumor lysate-pulsed mature DC-based vaccine (APCEDEN R©)
for treatment of four cancer indications (prostate, ovarian, colo-
rectal and non-small cell lung carcinoma) (30). The multicentric
phase II clinical trial by Bapsy et al. (31) demonstrated that
this formulation was safe and well-tolerated in patients with
refractory solid tumors. Moreover, the efficacy profile of
APCEDEN R© therapy demonstrated a survival benefit of >100
days (30).

HUMAN BLOOD DENDRITIC CELLS

DC originate from the common myeloid bone marrow
progenitor cells and can be found in both, lymphoid and non-
lymphoid tissues in an immature state (1). DC are heterogeneous
and consist of multiple specialized subtypes, which are defined
based on their phenotypic and functional characteristics,

Abbreviations: DC, Dendritic cell; APCs, Antigen-presenting cells; CTL,

Cytotoxic T lymphocyte; TAAs, tumor-associated antigens; MoDC, Monocyte-

derived DC; OS, Overall survival; TILS, tumor infiltrating lymphocytes.

including morphology and immunological features (expression
of surface markers, cytokines, chemokines, and transcription
factors). The homology of human DC and mouse DC
populations have been extensively studied using transcriptional
profiling (32–36). In humans, all DC express high levels of
MHC class II molecules (HLA-DR), and lack lineage-specific
surface markers for T cells (CD3), B cells (CD19/20), and
natural killer cells (CD56). The DC subtypes found in the blood
are myeloid DC (mDC) (also termed CD11c+ conventional
DC, cDC), which can be further divided into CD141+ mDC,
CD1c+ mDC, and CD123+ plasmacytoid DC (pDC) (37). The
CD1c+ mDC account for the majority of the mDC population
in the human blood representing approximately 1% of all
mononuclear cells, with the CD141+ mDC representing only
0.1%. Compared with CD141+ mDC, the CD1c+ mDC have
an inferior capacity to cross-present antigen to CD8+ T cells
(35, 38). Human CD141+ DC are homologous to the mouse
cross-presenting CD8α+/CD103+ DC, and are characterized by
the exclusive expression of XCR1 and Clec9A (33, 39–43). The
pDC are specialized producers of type I interferons in response
to viruses (44) and can, on one end, induce Tregs expansion
and tolerance (45, 46), while effectively cross-present antigens
to CTL (47–49). Using mass cytometry (i.e., CyTOF), Guilliams
et al. identified that the combination of the twomarkers (CADM1
and CD172a) could be used as flow cytometry markers to
identify the conventional subsets of mDC across tissues and
species (human, macaque and mouse) (50). Thus, CD141+

DC can be defined as CADM1hiCD172alo, while the CD1c+

mDC correspond to CADM1loCD172ahi cells. Notably, the
conventional identification of mDC or pDC (37) has lately been
challenged by a study, which, using single-cell transcriptome
profiling, demonstrated that human blood DC could be further
stratified into six distinct populations (51). This increasing
knowledge about DC subsets will certainly be exploited for the
design of novel strategies to improve the clinical efficacy of
cancer vaccines.

The isolation of DC subset is another for the generation of
DC-based vaccine has also improved over the years. Initially,
DC subsets were isolated directly ex vivo from the peripheral
blood to produce DC-based vaccines for immunization of B cell-
lymphoma patients against their TAAs (52). As DC have a low
frequency in peripheral blood, low numbers of DC were isolated
using this method. Nowadays, most clinical studies employ
monocyte-derived DC (MoDC) in the generation of DC-based
vaccine because of the relative ease at obtaining sufficient number
of cells from peripheral blood and their functionality (53, 54).
MoDC are a subset of DC exhibiting common features with
cDC (55), including the ability to migrate, to potently stimulate
CD4+ and CD8+ T cells, to produce key cytokines (IL-1, IL-
6, TNF-α, IL-12, and IL-23) (56), and to express cell surface
markers such as CD11c and MHC II (55). Autologous MoDC
can be obtained by culturing human peripheral blood monocytes
(CD14+) in the presence of GM-CSF and IL-4 (57) with the
resulting vaccines eliciting tumor-specific T cell responses and
some clinical efficacy (56).

With recent technological advances in isolation of specific
immune cell populations, second generation DC vaccine have
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focused on the collection of blood-derived primary DC subsets.
As previously mentioned, naturally circulating DC have a low
frequency in peripheral blood (<1% of leukocytes). Nonetheless,
there exist significant transcriptional and functional differences
between the blood-derived DC in comparison with the in vitro
generated MoDC suggesting that blood-derived DC may be
superior for therapeutic vaccination (32, 58). Early phase I
results suggest that vaccination with peripheral blood-derived
pDC or mDC is safe and well-tolerated amongst patients with
advanced-stage melanoma (59), prostate carcinoma (60) or acute
myeloid leukemia (61). One such trial is based on a novel
type of blood-derived DC vaccine is being assessed within
the collaborative European project entitled “Professional cross-
priming for ovarian and prostate cancer” (PROCROP). For
this trial, a CD141+ subset of blood-derived mDC, which has
superior capacities at cross-presenting TAAs to CD8+ T cells
(39, 42, 62), is being evaluated as a personalized DC vaccine.

Altogether, clinical trials have yet to prove that blood-derived
DC vaccines are more efficacious than in vitro generated MoDC
(63). For instance, the development of second generations of
DC-based vaccines may also face multiple technical challenges
such as the limited availability of cells that can be purified, the
large amount of blood or leukapheresis to be collected, and the
negative effects of chemotherapy that may reduce the number of
DC in the peripheral blood (64).

DENDRITIC CELL DYSFUNCTION
IN CANCER

Optimal DC function is necessary for the initiation of protective
anti-tumor immunity. Yet, it is known that immunosuppressive
factors expressed by the tumors cells, including IDO (65, 66),
Arginase I (67), IL-10 (68, 69), TGF-β (23, 70), PGE2 (71, 72), and
VEGF (73–77), can impair the differentiation, maturation, and
function of the host DC (78–80), which may become tolerogenic
and favor the stimulation of regulatory T cells (81, 82). For
instance, high level of intratumoral pDC is associated with
poor disease outcome across several tumor types (83, 84). The
impairment of DC differentiation (80, 85), and the resulting
inadequate antigen-presenting functionality of DC, contributes
to T cell anergy or exhaustion is well documented in cancer. In a
breast and pancreatic cancer study, tumor-derived granulocyte-
stimulating factor induced alterations in the development of
CD141+ DC, which were associated with impaired CD8+ T
cell responses and correlated with poor clinical outcomes (86).
An additional mechanism contributing to the impaired antigen
processing ability of intra-tumoral DC is the accumulation of
pathological amount of lipid by the DC due to up-regulated
expression of scavenger receptor A (SR-A) (87). These lipid-laden
DC have reduced capacity to stimulate allogeneic T cells (87).

It was previously demonstrated that DC derived from
patients with advanced cancer are weak stimulators of T
cells compared to healthy volunteers (88). In some tumors,
as cancer progresses, tumor-infiltrating DC accumulate and
switch from immunostimulatory to regulatory phenotypes
(23), and correlates with the increased expression of negative

costimulatory molecules such as TIM3 (89), PD-L1 and PD-
1 (90) as well as the production of L-Arginase (91). In fact,
this is a predominant mechanism of DC dysfunction in ovarian
carcinoma, with PD-1+ PD-L1+ CD277+ DC accumulating in
the tumor over the course of the disease (90, 92). The increased
expression of PD-1 was shown to affect the function of DC by
inhibiting NF-κB activation, and was associated with decreased T
cell activity and reduced tumor-infiltrating T cells in advanced
cancer (93). CD277 was shown to be universally expressed in
ovarian cancer-infiltrating DC and may affect the expansion of
TCR-stimulated T cells.

Therefore, the immunosuppressive DC, controlled by the
tumor microenvironment, plays an important role in supporting
tumor progression, and probably limiting the success of DC-
based vaccine in cancer patients. There is increased awareness
on the influence of age-related changes on the development
of tumors and on treatment prognosis. Aging has already a
profound effect on DC function, affecting numbers and functions
of pDC (94), and inducing substantial changes in gene expression
profile of CD1c+ DC as illustrated by significant down-regulation
of antigen presenting and energy generating genes (95). Thus,
to overcome systemic immune dysfunction and augment DC-
induced responses in vivo, many investigators are combining
DC-based vaccines with tumor-damaging agents or considering
the use of DC-based vaccines to treat earlier in the course
of the disease (96). Notably, combining CD40 agonists with
TLR3 activation was shown to be sufficient to reverse the
immunosuppressive phenotype of tumor-infiltrating DC into
APCs capable of priming anti-tumor T cell responses (97).

ACTIVE INGREDIENTS OF DC-BASED
CANCER VACCINES

Tumor Antigens
TAAs are a crucial component of DC vaccines as they represent
the targets for CTL-generated anti-tumor immune response.
Non-mutated self-antigens resulting from over-expression of
tissue- or lineage-specific genes induced by transformation
induce low T cell reactivity due to central tolerance mechanisms.
Conversely, mutated neo-antigens are generated by somatic
mutations due to the tumors’ inherent genetic instability
rendering them tumor-specific and private, with the advantage
of being recognizable for T cells and not impacted by
central tolerance.

Defined Antigens
The most widely used cancer vaccines tested so far were based on
defined, shared TAAs (e.g., MART-1, gp100, CEA, PSA, p53, NY-
ESO-1, MAGE-A3), which are HLA restricted (98–103). Both,
individual and the combination of several defined antigens were
tested, but only achieved limited clinical efficacy (104–106). A
potential disadvantage of immunotherapy targeting one or few
defined TAAs is the possibility of rapid development of tumor
escape variants that lose the expression of these epitopes (107).
Using multiple (defined or undefined) antigens as vaccine targets
may be crucial for achieving significant clinical benefit and may
overcome the challenge of tumor escape via antigen-loss.
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Neo-Antigen-Targeted Approaches
The high mutational rate of tumor cells results in the expression
of neo-antigens that are tumor specific. The identification of
patient specific TAAs, including both shared tumor antigens
and neo-antigens, is now possible using next-generation
sequencing (NGS) and bioinformatics tools (e.g., NetMHC) (108)
complemented or not by direct isolation of HLA-bound peptides
(immunopeptidome) andmass spectrometry (MS) analysis (109).
The personalized cancer vaccine can be manufactured based on
neo-antigens that have been identified and used to manufacture
peptides or RNA for the pulsing of DC. Nonetheless, two major
challenges arise from this approach: the time between tumor
resection and first vaccine injection, which can reach several
months, and the cost of the neo-antigen identification process.

Three recent Phase I clinical trials confirmed promising
potential of personalized cancer vaccines based on neo-antigens
(110–112), with the study by Carreno et al. utilizing DC-based
vaccine (110). Whole-exome sequencing was carried out to
identify somatic mutations in tumors from three patients with
melanoma and short peptides coding for seven neo-antigens
were pulsed onto autologous DC. Despite the small sample size,
the study proved that neo-antigen cancer vaccines could elicit
neo-antigen specific T cell response with some patients showing
stabilized or non-recurrent disease (110).

Whole Tumor Preparations
In indications where surgery can be performed as part of the
treatment, the resected tumor tissue can be used as a source of
patient-specific TAA by preparing a tumor cell lysate. Alfaro et al.
used freeze-thaw lysis from biopsies to generate glioma-specific
lysate (113). The treatment induced IL-12 production in each
patient and circulating tumor cells markedly dropped in 6 of 19
cases with five patients experiencing disease stabilization (114).
The immunogenicity of tumor cell lysate can be enhanced using
alternative lysate preparation methods such as freeze-thaw, UV
irradiation or oxidation treatment (115–120). Our group showed
that tumor cells oxidation using hypochlorous acid (HOCl)
combined with freeze-thaw cycles results in primary necrosis of
tumor cells, and increases immunogenicity of the resulting tumor
lysate (121). The main advantages of using autologous tumor
lysate as a source of TAAs are the absence of HLA restriction and
the reduced time and cost of manufacturing in comparison to the
neo-antigen prediction strategies.

RECENT ACCOMPLISHMENTS IN
PERSONALIZED
DC-BASED IMMUNOTHERAPY

Current Treatment Strategies for Advanced
Ovarian Cancer
A DC-based vaccine generated by differentiation of autologous
Mo-DC pulsed with HOCl oxidized autologous tumor cell
lysate (OC-DC vaccine) was tested in platinum-treated,
immunotherapy-naïve, recurrent ovarian cancer patients in
a single-center, multi-cohort, non-randomized phase I trial
(122). During the study, a total of 392 vaccine doses were

administered intra-nodally under ultrasound guidance without
serious adverse events. The results of the first of three cohorts
was reported by Tanyi et al. (122). In this study, the DC-based
vaccine was administered either alone, in combination with
bevacizumab or in combination with bevacizumab and low-
dose intravenous cyclophosphamide until disease progression
or vaccine exhaustion. This OC-DC vaccine induced T cell
responses (increased in IFN-γ production) to autologous
tumor antigens, which were detected in 11 of 22 evaluable
patients on week 12. Moreover, this antitumor immune response
was associated with significantly prolonged survival with
increased neo-antigen specific T cells responses, both previously
recognized and non-recognized neo-epitopes.

Overall from the 25 patients treated two (2) patients showed
partial response and 13 patients experienced stable disease, which
persisted for a median of 14 months from enrolment. Of note,
vaccine responders experienced significantly longer progression-
free survival (PFS) compared to non-responders patients. The
2-year overall survival (OS) rates of the responder patients
was 100%, whereas the 2-year OS of non-responders was 25%.
The best results were obtained with the triple combination of
vaccine plus bevacizumab and cyclophosphamide. This study
demonstrated that the use of OC-DC vaccine was safe and
elicited a marked antitumor immunity, including tumor-specific
neo-antigens. Altogether, personalized DC vaccines using whole
tumor lysate can drive responses to private antigens and, in
combination with other immunotherapy treatments, can greatly
improve clinical outcome.

Promising Phase 3 Studies in Progress
An exhaustive list of DC-based studies is available in Table 1.
Notably, a phase 3 trial is currently testing DC vaccine loaded
with autologous tumor lysate (DCVax-L) in patients with
newly diagnosed glioblastoma following surgery as add-on to
the standard of care combining radiation and chemotherapy
(NCT00045968; Northwest Therapeutics). Patients are receiving
temozolomide plus DCVax-L (n = 232) or temozolomide and
placebo (n = 99). DCVax-L is administered intra-dermally six
(6) times the first year and twice per year thereafter. Following
recurrence, all patients are allowed to receive DCVax-L. The first
reported results showed that the median OS was 23.1 months
from surgery as compared with the 15-17 months achieved with
SOC only in past studies (123). Only 2.1% of patients had a
grade 3 or 4 adverse event related to the vaccination treatment.
Due to its safety profile, this DC vaccine has the potential to be
administered in a wide range of indications and applied in a wide
range of combinations.

Another phase 3 study is currently evaluating the efficacy
adjuvant vaccination using RNA-loaded autologous DC vaccine
to treat patients with uveal melanoma (NCT01983748). This
study will compare standard of care treatment with vaccination
(8 intravenous of vaccine over 2 years).

Finally, a phase 3 study is currently evaluating active
immunization in adjuvant therapy of patients with stage 3
melanoma with natural (BDCA3+) dendritic cells (nDC) pulsed
with peptides (NCT02993315). Patients will receive nDC vaccine
by three (3) intranodal injection per cycle for amaximum of three
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(3) cycles or placebo injections to determine if adjuvant nDC
vaccination improves 2-year RFS rate.

PREDICTIVE MARKERS FOR THE
CLINICAL EFFICACY OF
DC-BASED VACCINES

Another path to the improvement of DC-based vaccine efficiency
is based on the identification of surrogate biomarkers of the
triggered immune response against the tumor that would
strongly and uniformly correlate to vaccine efficacy. Studies have
identified different potential biomarkers of clinical responses
to DC-based vaccination. For instance, in melanoma, two (2)
candidate genes were identified with a predictive value for a
positive outcome to a DC-based immunotherapy (124). The
chemokine receptor CXCR4 and the receptor for the FC portion
of IgD (CD32) were over-expressed in the lymphocytes cell
membranes and in the monocyte populations in immunological
responder patients as compared to non-responder patients (124).
Higher CXCR4 protein expression was found in CD8+ T
cells pre- and post- whereas higher CD32 protein expression
in monocyte populations was identified in responder patients
at pre-treatment time points (124). In a recent phase II
study in patients with glioblastoma, DC vaccination induced
a significant and persistent activation of CD56dim cytotoxic
NK cells, whose increased response was strongly associated
with prolonged survival, while CD8+ T cells had only a
poor contribution to anti-tumor responses (125). In NSCLC
patients, the survival time was closely associated with the
BDCA1+ DC/BDCA3+ DC ratio in peripheral blood after DC
immunotherapy (126).

Tumor-infiltrating lymphocytes (TIL) are examined
extensively in various cancer types, including epithelial
ovarian cancer, with their presence found to be an important
prognostic factor (127–134). Additionally, in ovarian cancer,
infiltrating Tregs in the tumor microenvironment correlate with
poor prognosis (135–137). In the context of DC-vaccination, in
glioma, the TIL content was identified as a predictor of clinical
response (138). An increased overlay in the TCR repertoire of
TIL and circulating T cells correlated with improved responses
to DC-based vaccination and overall survival (138). Hence, the
TIL content may be used as a selection tool to identify patients
who could potentially benefit from DC vaccination therapy.

In terms of monitoring anti-tumor vaccine trials, a study
by Kirkwood et al. found that functional assessment of T cells
such as interferon-γ production is preferable as opposed to
frequency or phenotype of effector T-cells (139). In a multicenter

study (ECOG E1696), where melanoma patients were treated
with a peptide vaccine, there was a significant difference in
OS by immune response status. Immune responders, patients
whose T cells exhibited interferon-γ response (against to one
or more of the three antigens measured by ELISPOT) lived
longer than the nonimmune responders (medianOS, 21.3 vs. 10.8
months; P = 0.033).

In conclusion, highly reliable molecular or cellular biomarkers
of the clinical efficacy of personalized DC-based vaccines are
still missing. Prospective longitudinal studies will help identify
predictive prognostic and treatment-efficacy biomarkers using
“Omics” data (140) and systems biology analysis. Therefore,
there is an urgent need for clinical studies beyond phase II
to demonstrate that DC-based vaccines can induce durable
objective responses and improve long-term survival in cancer
patients, andmaybe identify strong correlate for all malignancies.

CONCLUSIONS

The development and success of DC-based immunotherapies has
been hampered by several factors; (1) the immunosuppressive
tumor microenvironment, particularly in advanced stage of the
disease (2) the limited capacity of systemically administered DC
to localize to the tumor-draining lymph nodes, (3) the low avidity
of TAAs-specific T cells, and (4) the lack of reliable prognosis
biomarkers. The rapidly increasing knowledge about DC
subsets and the tumor-induced suppressive microenvironment
must be exploited to design novel and improved cancer
vaccines. The future of DC vaccines will certainly rely on
combination therapies. As discussed in this review, recent studies
have shown the great potential of such strategies, especially
when using personalized DC vaccines. Overcoming the cancer
immunosuppressive environment will reveal the real therapeutic
potential of such DC vaccine.
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