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The glycocalyx of human cells differs from that of many other mammals by the lack

of the sialic acid N-glycolylneuraminic acid (Neu5Gc) and increased abundance of

its precursor N-acetylneuraminic acid (Neu5Ac). Most humans also have circulating

antibodies specifically targeting the non-human sialic acid Neu5Gc. Recently, several

additional mammalian species have been found to also lack Neu5Gc. In all cases,

loss-of-function mutations in the gene encoding the sialic acid-modifying enzyme CMAH

are responsible for the drastic change in these species. Unlike other glycan antigens,

Neu5Gc apparently cannot be produced by microbes, raising the question about the

origin of these antibodies in humans. Dietary exposure and presentation on bacteria

coating themselves with Neu5Gc from the diet are distinct possibilities. However, the

majority of the non-human species that lack Neu5Gc do not consume diets rich in

Neu5Gc, making it unlikely that they will have been immunized against this sialic acid. A

notable exception are mustelids (ferrets, martens and their relatives) known for preying on

various small mammal species rich in Neu5Gc. No studies exist on levels of anti-Neu5Gc

antibodies in non-human species. Evolutionary scenarios for the repeated, independent

fixation of CMAH loss-of-function mutations at various time points in the past include

strong selection by parasites, especially enveloped viruses, stochastic effects of genetic

drift, and directional selection via female immunity to paternal Neu5Gc. Convergent

evolution of losses of the vertebrate-specific self-glycan Neu5Gc are puzzling and may

represent a prominent way in which glycans become agents of evolutionary change in

their own right. Such change may include the reconfiguration of innate immune lectins

that use self-sialic acids as recognition patterns.
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INTRODUCTION

The glycocalyx of all vertebrate cells is decorated with abundant terminal sialic acids. These acidic
nine-carbon backbone sugars cap the ends of tens to hundreds of millions of glycan chains per cell.
In mammalian species and other vertebrates, the sialic acids N-acetylneuraminic acid (Neu5Ac)
and its derivative N-glycolylneuraminic acid (Neu5Gc) are the two most common forms, each a
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family of molecules with various modifications of the canonical,
9-carbon monosaccharide (1). Until recently, humans were the
only mammalian species known to lack the sialic acid Neu5Gc,
as our lineage fixed the loss-of-function mutation affecting the
single copy CMAH gene that encodes the sialic acid-modifying
enzyme CMAH over 2 million years ago in the lineage leading
to H. sapiens (2, 3). More recently, several other species of
mammals have been documented to also lack Neu5Gc due to
ancientmutations fixed over 30million years ago in these lineages
(4–6). The loss of function of the CMAH enzyme prevents the
modification of the precursor monosaccharide to the derived
sialic acid Neu5Gc (in their respective sugar-nucleotide form,
CMP-Neu5Ac and CMP-Neu5Gc). As illustrated in Figure 1, the
lack of this enzymatic function can lead to drastic changes in
the molecular composition of the glycocalyx of cells throughout
the body. Recent evidence has shown that humans are not

FIGURE 1 | Modification of CMP-Neu5Ac to CMP-Neu5Gc. (A) The enzyme CMAH, encoded by a single gene in all mammals, catalyzes the derivatization of Neu5Ac

to Neu5Gc in the form of their sugar nucleotides, cytidine monophosphate (CMP). (B) Due to the large number of sialic acids terminating many of the glycan chains on

the glycocalyces of most cells, the loss of function of the CMAH gene leads to a drastic change in the molecular identity or “flavor” of the glycocalyx, as indicated by a

small fraction of a red blood cell membrane, redrawn and modified from Viitala and Järnefelt (7). (C) Micrographs showing green immunofluorescent staining of

Neu5Gc on chimpanzee but not human sperm cells stained with affinity purified chicken anti-Neu5Gc IgY antibody and fluorescent secondary, controls include

sialidase treated or anti-IgY secondary antibody alone, nuclei stained by DAPI (blue) reprinted from Ghaderi et al. (8) with permission.

alone in this loss, instead several other species of mammals
have independently fixed different loss-of-function mutations
of their Cmah gene at various time depths during evolution,
leading to loss of Neu5Gc in entire lineages or just individual
species (6). These losses have occurred through exon deletion,
premature stop codons, or frameshift mutations in the gene
encoding the CMAH enzyme (4–6). The picture emerging is
that of a phylogeny of mammals punctuated with taxa that
have lost the capacity to synthesize Neu5Gc (Figure 2). These
taxa include New World primates (>100 species of South and
Central American primates known as Platyrrhynes), Mustelidae
(57 species of small carnivores including ferrets, martens and
weasels), pinnipeds (33 species comprising seals, sea-lions and
walruses), Procyonidae (∼15 species including racoons, ring-
tails and coatis,) hedgehogs (17 species), bats from at least two
different lineages, spermwhale (a single species), and white-tailed
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FIGURE 2 | Parallel evolution and loss of an innate self-signal. Humans cannot synthesize Neu5Gc, because human CMAH was inactivated over two million years

ago (red). The inactivating mutation apparently fixed rapidly after originating, which suggests that the loss could have been adaptive—driven by pathogen avoidance,

reproductive conflict, or a combination of the two. Independent losses of Cmah function have recently been found in New World Primates, Mustelids and several other

groups. Figure modified from Springer and Gagneux (9). In some lineages, such as bats and toothed whales, only certain species lost the capacity to make Neu5Gc

(indicated by lines that are both blue and red).

deer (a single species) (4–6). For most of these groups, only a few
representative taxa and a few individuals have been studied at the
genomic level, and so there is the possibility that the Cmah gene
remained intact or polymorphic in some of the taxa.

An obvious prediction is that additional taxa with inactivated
Cmah genes will be discovered as additional complete genome
sequences are obtained. These cases of convergent molecular
evolution result in an overall reconfiguration of the outermost
layer of the glycocalyx, now lacking Neu5Gc and carrying an
excess of Neu5Ac, given that human and non-human cells
retain comparable levels of sialic acid (10) (see Figure 1B

for red blood cells and Figure 1C for sperm cells). Among
the many functions of the glycocalyx, molecular identity is
paramount (11–13). The molecular patterns, as defined by
composition and structure of the glycocalyx have evolved into
self-associated molecular patterns (SAMPs) (14), that contribute
to efficient surveillance by innate immune receptors including
complement factor H and Siglecs, which can inhibit immune
response upon engagement with SAMPs (14, 15). Losing
Neu5Gc would dramatically alter self-recognition. This would
have required evolving altered receptor specificities, affinities,
and knock-on effects in signaling pathways due to altered
engagement of innate receptors. The biochemical impact of
the altered sialome on the human glycocalyx could have had
many other effects, including changes in inflammation and
metabolism (16, 17).

Another potential consequence are autoreactive antibodies
produced against the lost sialic acid. Indeed, despite the
absence of endogenous Neu5Gc, experimental studies in
humans and in Cmah(−/−) mice have revealed that dietary
Neu5Gc, in both free and glycoconjugate-bound forms, can
become incorporated into tissues in trace amounts. This

incorporation occurs especially in tissues with rapid growth
and/or turnover rates, including epithelia, endothelia, fetal
tissues, and carcinomas (18–20). It has also been established
that all humans have various levels of circulating antibodies
specific for glycans carrying this foreign molecule, essentially
making Neu5Gc a “xeno-autoantigen,” which can cause
“xenosialitis,” an inflammation due to reaction against a
xeno-sialic acid that is now part of “self ” molecules (21–24).
Surprisingly, even humans on diets extremely rich in Neu5Gc
do not appear to accumulate beyond trace levels of this
dietary xenoglycan.

How ingested Neu5Gc becomes incorporated into the human
body remains incompletely understood. There is evidence that
Neu5Gc is converted to GalNGc and can then be incorporated
into the glycosaminoglycan chondroitin sulfate, an important
component of extra-cellular matrices and skeletal bone (25).
This incorporation has recently allowed the identification of
GalNGc in bones and in fossilized bones as old as 3 million
years, opening the possibility to study ancient glycomes of
extinct hominins (26). There is much ongoing research to
understand the potential effects of incorporation of dietary xeno-
sialic acid and targeting antibodies against xeno-sialic acid,
xenosialitis in the context of cancer and autoimmunity and
even unexplained infertility, where chronic immune reactions
to incorporated xenoglycans could contribute to xenosialitis
(22–24, 27–29). Aside from humans, natural levels of anti-
Neu5Gc antibodies in other species lacking Neu5Gc have not
been studied to date. However, anti-Neu5Gc antibodies have
been seen in chickens, where antibodies can be efficiently
generated upon immunization (18) and are the basis of
immune assays for the detection of Neu5Gc in human
samples (30).
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NATURAL IMMUNIZATION
AGAINST NEU5GC-GLYCANS

There are four main differences between immunization against
Neu5Gc and other xenoglycans, such as the disaccharide alpha-
Gal, or alloglycans such as ABO oligosaccharide antigens. First,
in the case of other xenoglycans, immunization against the
missing, terminal “self ”-glycan is thought to be caused by
encounters with microbial glycans with the same structure (31,
32). Considering that the synthesis of endogenous Neu5Gc
has never been documented for any microbe, it would appear
unlikely that this microbial priming method occurs for Neu5Gc
(33, 34). Despite the apparent lack of Neu5Gc synthetic
capacity in microbes, however, at least one microbe, Non-
typeable Haemophilus influenzae (NTHi), can scavenge dietary
Neu5Gc and incorporate it into its own glycolipids. There is
evidence that young human infants are “xeno-autoimmunized”
against Neu5Gc by early H. influenzae infection and this
method has also been utilized for experimental immunization
of Cmah(−/−) mice in the laboratory (35). Immunization thus
seems to depend on diets rich in Neu5Gc from red meats
or certain marine sources (fish eggs or echinoderms (27, 36).
Secondly, unlike other xenoglycans, it is important to stress
that the monosaccharide Neu5Gc itself is immunogenic, none
of the constituent monosaccharides of alpha-Gal (galactose) or
ABO antigens (fucose, galactose, N-Acetylgalactosamine, and
N-Acetylglucosamine) are foreign to individuals lacking these
structures and once ingested, they are incorporated as non-
antigenic glycans or metabolized (37). The antigenicity of other
xenoglycans, is largely determined by glycosidic linkages, rather
than by the nature of the monosaccharide: galactose-alpha-1,3-
galactose for alpha-Gal; fucose-alpha-1,2-galactose for the H
antigen; H antigen with N-Acetylgalactosamine for A antigen;
or H antigen with alpha-1,3-galactose for B antigen. Thirdly,
unlike the other immunogenic glycans, Neu5Gc can be part of
numerous different antigens depending on the identity of the
sialoglycoconjugate they occur on. Finally, sialic acids are one to
several orders ofmagnitudemore abundant than either alpha-Gal
or ABO glycans (38, 39). These three differences: dietary origin,
antigenicity of the monomer itself, and ubiquity/abundance on
the cell surface make Neu5Gc a unique antigen, whose loss may
lead to wide-ranging physiological effects (37, 38).

While humans have many dietary sources for Neu5Gc, among
the New World primates, there are very few species that eat
vertebrate meat. Capuchin monkeys (genera Cebus and Sapajou)
are known to prey on young coati (40), relatives of racoons
belonging to the family of Procyonidae, and on lizards or birds,
but these prey species all lack endogenous Neu5Gc (5, 41). It is
thus very unlikely that these NewWorld primates are immunized
against Neu5Gc in the wild, but captive capuchin monkeys may
be exposed to Neu5Gc through monkey chow containing red
meat (Primate Info Net, University of Wisconsin). Hedgehogs
and other insectivores, consume mostly insect prey that lack
sialic acids and thus can be safely expected not to be naturally
immunized against Neu5Gc (6). The same can be said for the
different bat species that lack Neu5Gc, as these all feed on insects,
fruit, or nectar (42). Pinnipeds (seals, sea-lions and walruses)

are all strict carnivores and some of their prey include fish and
marine invertebrates that could contain Neu5Gc (43). Studies of
pinniped immune responses to sialic acids are urgently needed.
The one species of whale also lacking Neu5Gc is the sperm whale
(Physeter catodon) (6), whose diet consists mostly of giant squid
and other cephalopods (squid and octopus) with occasional fish
(44). Again, such a diet is unlikely to expose spermwhales to large
amounts of Neu5Gc (45), leading to the prediction that they will
not have circulating antibodies against the xenoglycan. Mustelids
are the one group of species for which it can be assumed that
dietary exposure and immunization occurs, as they are all known
to feed on a variety of small mammals and vertebrates (46).

EVOLUTIONARY MECHANISMS FOR THE
FIXATION OF LOSS-OF-FUNCTION
MUTATION

The loss-of-function mutations of the Cmah gene are by
definition recessive, as one copy of the functional gene suffices
to generate a Neu5Gc positive phenotype in a diploid organism.

Balancing Selection Maintaining
Polymorphisms
Some animals, including several dog and cat breeds, are
polymorphic for Neu5Gc expression. While overall tissue
expression is thought to be low, expression on blood cells in
these animals can be high (47, 48). Polymorphisms involving
Neu5Gc on the ganglioside GD3 exist in felids and are called
AB blood groups in domestic cats (not related to primate ABO
blood groups), where cats lacking Neu5Gc-GD3 have circulating
antibodies specific for Neu5Gc (47). Dog breeds also differ in
their expression of Neu5Gc on red blood cell glycolipids (48).

Due to the recessive nature of loss of function mutations, their
increase in frequency within a population must be mediated by
selection on homozygous carriers, who have fitness advantages
conferring higher survival and/or reproductive success. For
example, selection for polymorphisms involving a loss-of-
function mutation could be based on the accompanying ablation
of the glycan used as a receptor by pathogens (49–52).

Examples of Neu5Gc specific pathogens abound including
the protozoan malaria parasite P. reichenowi (53), the swine
pathogen E. coli K99 (54) and the macaque monkey virus
SV40 (55).

In contrast a number of human-specific pathogens evolved
specificity for Neu5Ac, including the causative agent of
human malignant malaria P. falciparum,the toxins of cholera
agent V. cholerae (56) and typhoid fever agent S. typhi
(57), and most influenza A viruses (58). Loss-of-function
mutations, especially in polymorphic populations, could also
provide partial protection from enveloped viruses that bear
the antigenic glycan acquired from the cell membrane of the
previous, Neu5Gc positive host. The latter mechanism would
be analogous to such protection in alpha-Gal negative Old
World primates (59–61) and across ABO mismatched humans
(62–65). Such protective mechanisms are thus observed both,
between species and within species with existing (balanced)
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polymorphisms. Balanced polymorphisms are maintained by
frequency-dependent selection, i.e., selection favoring the rare
variants, thus preventing their extinction but also preventing
their fixation (see Figure 3) (66). Such dynamic co-evolutionary
processes between pathogens and their hosts are the inspiration
behind the terms evolutionary arms race and Red-Queen
effects (15, 67).

Fixation of the loss-of-function allele, on the other hand, could
happen either via directional selection or genetic drift, where
small founder populations consist mostly of homozygous carriers
of the loss-of-function mutation. First defined using plants in
1962 (68) and recently applied to primates by Galili (65), the idea
of “catastrophic selection” combines these ideas with very strong
selection. It is not clear how such “catastrophic selection” differs
from short episodes of strong selection, possibly accompanied by

demographic bottlenecks, which could also result in the fixation
of loss-of-function mutations. Alternatively, selective pressure
for Cmah loss-of-function could occur through reproductive
conflict as discussed below.

Female Immune-Mediated Selection
Against Paternal Neu5Gc
Mammalian sperm are highly sialylated as a mechanism to
enhance sperm survival and function along the perilous journey
through the female reproductive tract to the site of fertilization in
the oviduct (69–71). Mammals make anti-sperm antibodies when
directly exposed to sperm (72). Major human sperm antigens
include, highly sialylated GPI-anchored glycoproteins such as
CD52 (73, 74), which in males that have a functional CMAH

FIGURE 3 | Schematic of the interplay of natural and sexual selection acting on cell-surface sialic acids. (A) Natural selection by pathogens recognizing and exploiting

Neu5Gc (blue diamond) as a receptor on host target cells can select for mutant CMAH(−) alleles that abolish expression of Neu5Gc in homozygote individuals and

prevent infection. Such homozygous null individuals have only Neu5Ac on their cells (red diamonds) and at higher frequencies would be targeted by other pathogens

adapted or adapting to the host glycan change (magenta). This equilibrium would result in maintenance of glycan polymorphism by balancing selection. (B)

Anti-Neu5Gc antibody-expressing CMAH(−/−) females, immunized by dietary consumption of Neu5Gc rich food (red meat) or by sperm antigens containing Neu5Gc,

favor loss-of-function alleles on sperm due to reproductive incompatibility with CMAH(−/+) or CMAH(+/+) males expressing Neu5Gc on their sperm. Once the

frequency of the CMAH(−) allele reaches a certain level, this process can drive the fixation of the CMAH(−) allele in a population via directional selection. Figure

modified from Ghaderi et al. (8).
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allele, carry Neu5Gc (75). Theoretically, immunization of females
homozygous for the loss-of-function allele of Cmah could occur
via insemination by males that have Neu5Gc-bearing sperm.
Indeed, we have shown experimentally, using Cmah(−/−) mice
immunized against Neu5Gc, that their immune response against
Neu5Gc bearing sperm severely reduces female fertility (8). In
a further study, we demonstrated that Neu5Gc bearing sperm,
both, sperm from either wild type mice or from Cmah(−/−) mice
exposed to seminal fluid from wildtype mice containing Neu5Gc-
rich CD52, are both targeted by antibodies and are increasingly
phagocytosed by female uterine immune cells (75). These insights
have potential relevance for human fertility where Neu5Gc or

anti-Neu5Gc antibodies in the reproductive tract are common
among infertility patients, but not healthy controls (29).

In addition to blocking fertilization, it is possible that anti-
Neu5Gc immunity from a primedCMAH(−/−)mother (29) could
also negatively affect a CMAH(+/−)embryo or fetus in a manner
similar to hemolytic diseases of the newborn caused by ABO
glycan mismatches.

Reproductive xenosialitis could thus be a plausible mechanism
mediating directional selection, leading to the fixation of the
loss-of-function allele in the population, irrespective of the
mechanism(s) involved for the initial selection favoring the
mutation (see Figure 4).

FIGURE 4 | Exogenous (dietary) Neu5Gc and anti-Neu5Gc antibody as contributing factors to unexplained human infertility. The combination of incorporated dietary

xenoglycan Neu5Gc (even in trace amounts) from red meat and milk products including cow milk-based infant formula and anti-Neu5Gc antibodies in males or

females (A) could have deleterious consequences on human fertility via a number of potentially additive mechanisms which include: (B) coating of sperm by male

and/or female anti-Neu5Gc antibodies, interference with sperm function, including passage through cervical mucins and/or other restrictive parts of the female

reproductive tract such as the utero-tubal junction, (C) increased sperm death via female cellular and humoral immunity, where most sperm are killed by female

immunity, (D) interference with sperm capacitation when sperm membranes get dynamically reconfigured, (E) interference with sperm penetration of vestment,

interference with sperm-egg interactions, (F) interference with endometrial decidualization and receptivity resulting in reduced success of implantation. Figure modified

from Ma et al. (75) with permission.
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CONCLUSIONS AND PERSPECTIVES

It is interesting that watershed events, such as the loss of Neu5Gc
from the glycocalyx of human cells have occurred numerous
times in many mammalian and other vertebrate species. These
cases of convergent evolution represent precious opportunities
for increased understanding of evolutionary processes. In some
respects, Neu5Gc is an ideal self-molecule as it is “private” to
vertebrates and, based on current data, has yet to be successfully
mimicked by microbes. Against the background of this benefit,
the loss of Neu5Gc appears paradoxical andmay implicate strong
selective regimes, either catastrophically caused by pathogens,
or under directional sexual selection via female immunity to
paternal xenoglycans. Massive genetic drift, or combinations of
milder selection and founder events, can also not be excluded.

More information on species expected to encounter Neu5Gc
in their diets, i.e., mustelids, pinnipeds, and humans, is needed
to begin answering several outstanding questions in the field:
For instance, what are the potential protective functions of
anti-Neu5Gc antibodies in species that lack this sialic acid,
especially as regards ongoing protection from cross-species

infections by enveloped viruses bearing Neu5Gc on their
viral envelopes? Or on the flip-side, what are the potential
liabilities of anti-Neu5Gc antibodies due to autoimmunity
against incorporated dietary Neu5Gc? Evolutionary events such
as the ones discussed here exemplify how glycans, rather than
representing the end result of different evolutionary histories
and contingencies, can become an evolutionary force of their
own and constrain future evolution of entire lineages including
subsequent compensatory evolution of glycan binding immune
receptors (15, 76).
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36. Yeşilyurt B, Sahar U, Deveci R. Determination of the type and quantity of sialic

acid in the egg jelly coat of the sea urchin Paracentrotus lividus using capillary

LC-ESI-MS/MS.Mol Reprod Dev. (2015) 82:115–22. doi: 10.1002/mrd.22448

37. Stanley P, Cummings RD. Structures common to different glycans. In: Varki

A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. eds. Essentials

of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

Press (2015). p. 99–112.

38. Collins BE, Blixt O, DeSieno AR, Bovin N, Marth JD, Paulson JC.

Masking of CD22 by cis ligands does not prevent redistribution of CD22

to sites of cell contact. Proc Natl Acad Sci USA. (2004) 101:6104–9.

doi: 10.1073/pnas.0400851101

39. Galili U, Tibell A, Samuelsson B, Rydberg L, Groth CG. Increased

anti-Gal activity in diabetic patients transplanted with fetal

porcine islet cell clusters. Transplantation. (1995) 59:1549–56.

doi: 10.1097/00007890-199506150-00008

40. Fedigan LM. Vertebrate predation in Cebus capucinus: meat

eating in a neotropical monkey. Folia Primatol. (1990) 54:196–205.

doi: 10.1159/000156444

41. Schauer R, Srinivasan GV, Coddeville B, Zanetta JP, Guerardel Y.

Low incidence of N-glycolylneuraminic acid in birds and reptiles

and its absence in the platypus. Carbohydr Res. (2009) 344:1494–500.

doi: 10.1016/j.carres.2009.05.020

42. Springer MS. Phylogenetics: bats united, microbats divided. Curr Biol. (2013)

23:R999–1001. doi: 10.1016/j.cub.2013.09.053

43. Tollit DJ, Schulze AD, Trites AW, Olesiuk PF, Crockford SJ, Gelatt TS,

et al. Development and Application of DNA Techniques for Validating

and Improving Pinniped Diet Estimates. Ecol Appl. (2009) 19:889–905.

doi: 10.1890/07-1701.1

44. Clarke MR, Martins HR, Pascoe P. The diet of sperm whales (Physeter

macrocephalus Linnaeus 1758) off the Azores. Philos Trans R Soc Lond B Biol

Sci. (1993) 339:67–82. doi: 10.1098/rstb.1993.0005

45. Schauer R, Kamerling JP. Exploration of the Sialic AcidWorld.Adv Carbohydr

Chem Biochem. (2018) 75:1–213. doi: 10.1016/bs.accb.2018.09.001

46. Dragoo JW, Honeycutt RL. Systematics of Mustelid-Like Carnivores. J

Mammal. (1997) 426–443.

47. Bighignoli B, Niini T, Grahn RA, Pedersen NC, Millon LV, Polli M,

et al. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH)

mutations associated with the domestic cat AB blood group. BMC Genet.

(2007) 8:27. doi: 10.1186/1471-2156-8-27

48. Yasue S, Handa S, Miyagawa S, Inoue J, Hasegawa A, Yamakawa T. Difference

in form of sialic acid in red blood cell glycolipids of different breeds

of dogs. J Biochem. (1978) 83:1101–7. doi: 10.1093/oxfordjournals.jbchem.

a131999

49. Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, et al.

Norovirus and histo-blood group antigens: demonstration of a wide

spectrum of strain specificities and classification of two major binding

groups among multiple binding patterns. J Virol. (2005) 79:6714–22.

doi: 10.1128/JVI.79.11.6714-6722.2005

50. Tan M, Jiang X. Norovirus and its histo-blood group antigen receptors:

an answer to a historical puzzle. Trends Microbiol. (2005) 13:285–93.

doi: 10.1016/j.tim.2005.04.004

51. Zakhour M, Ruvoen-Clouet N, Charpilienne A, Langpap B, Poncet

D, Peters T, et al. The alphaGal epitope of the histo-blood group

antigen family is a ligand for bovine norovirus Newbury2 expected

to prevent cross-species transmission. PLoS Pathog. (2009) 5:e1000504.

doi: 10.1371/journal.ppat.1000504

52. Zhang D, Huang P, Zou L, Lowary TL, TanM, Jiang X. Tulane virus recognizes

the A type 3 and B histo-blood group antigens. J Virol. (2015) 89:1419–27.

doi: 10.1128/JVI.02595-14

53. MartinMJ, Rayner JC, Gagneux P, Barnwell JW, Varki A. Evolution of human-

chimpanzee differences in malaria susceptibility: relationship to human

genetic loss of N-glycolylneuraminic acid. Proc Natl Acad Sci USA. (2005)

102:12819–24. doi: 10.1073/pnas.0503819102

54. Smi, H, Gaastra W, Kamerling JP, Vliegenthart JF, de Graaf FK. Isolation

and structural characterization of the equine erythrocyte receptor for

enterotoxigenic Escherichia coli K99 fimbrial adhesin. Infect Immun. (1984)

46:578–84.

55. Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA,

et al. N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol.

(2007) 81:12846–58. doi: 10.1128/JVI.01311-07

56. Alisson-Silva F, Liu JZ, Diaz SL, Deng L, Gareau MG, Marchelletta R,

et al. Human evolutionary loss of epithelial Neu5Gc expression and

species-specific susceptibility to cholera. PLoS Pathog. (2018) 14:e1007133.

doi: 10.1371/journal.ppat.1007133

57. Deng L, Song J, Gao X, Wang J, Yu H, Chen X, et al. Host adaptation of

a bacterial toxin from the human pathogen Salmonella Typhi. Cell. (2014)

159:1290–9. doi: 10.1016/j.cell.2014.10.057

58. Takahashi T, Takano M, Kurebayashi Y, Masuda M, Kawagishi S, Takaguchi

M, et al. N-glycolylneuraminic acid on human epithelial cells prevents entry

of influenza A viruses that possess N-glycolylneuraminic acid binding ability.

J Virol. (2014) 88:8445–56. doi: 10.1128/JVI.00716-14

59. Arendrup M, Hansen JE, Clausen H, Nielsen C, Mathiesen LR, Nielsen

JO. Antibody to histo-blood group A antigen neutralizes HIV produced by

lymphocytes from blood group A donors but not from blood group B or O

donors. AIDS. (1991) 5:441–4. doi: 10.1097/00002030-199104000-00014

60. Takeuchi Y, Porter CD, Strahan KM, Preece AF, Gustafsson K, Cosset FL,

et al. Sensitization of cells and retroviruses to human serum by (alpha 1-3)

galactosyltransferase. Nature. (1996) 379:85–8. doi: 10.1038/379085a0

Frontiers in Immunology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 789

https://doi.org/10.1371/journal.pone.0197464
https://doi.org/10.1073/pnas.0803943105
https://doi.org/10.1074/jbc.M112.363499
https://doi.org/10.1073/pnas.1706306114
https://doi.org/10.1073/pnas.1417508112
https://doi.org/10.1016/j.mam.2016.07.002
https://doi.org/10.15761/COGRM.1000120
https://doi.org/10.1371/journal.pone.0004241
https://doi.org/10.1172/JCI106094
https://doi.org/10.1023/A:1027378716015
https://doi.org/10.1039/C0SC00322K
https://doi.org/10.1007/s10719-008-9183-z
https://doi.org/10.1084/jem.20100575
https://doi.org/10.1002/mrd.22448
https://doi.org/10.1073/pnas.0400851101
https://doi.org/10.1097/00007890-199506150-00008
https://doi.org/10.1159/000156444
https://doi.org/10.1016/j.carres.2009.05.020
https://doi.org/10.1016/j.cub.2013.09.053
https://doi.org/10.1890/07-1701.1
https://doi.org/10.1098/rstb.1993.0005
https://doi.org/10.1016/bs.accb.2018.09.001
https://doi.org/10.1186/1471-2156-8-27
https://doi.org/10.1093/oxfordjournals.jbchem.a131999
https://doi.org/10.1128/JVI.79.11.6714-6722.2005
https://doi.org/10.1016/j.tim.2005.04.004
https://doi.org/10.1371/journal.ppat.1000504
https://doi.org/10.1128/JVI.02595-14
https://doi.org/10.1073/pnas.0503819102
https://doi.org/10.1128/JVI.01311-07
https://doi.org/10.1371/journal.ppat.1007133
https://doi.org/10.1016/j.cell.2014.10.057
https://doi.org/10.1128/JVI.00716-14
https://doi.org/10.1097/00002030-199104000-00014
https://doi.org/10.1038/379085a0
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Altman and Gagneux Evolutionary Perspective on Anti-Neu5Gc Abs

61. Kim NY, Jung WW, Oh YK, Chun T, Park HY, Lee HT, et al.

Natural protection from zoonosis by alpha-gal epitopes on virus

particles in xenotransmission. Xenotransplantation. (2007) 14:104–11.

doi: 10.1111/j.1399-3089.2007.00377.x

62. Preece AF, Strahan KM, Devitt J, Yamamoto F, Gustafsson K. Expression

of ABO or related antigenic carbohydrates on viral envelopes leads to

neutralization in the presence of serum containing specific natural antibodies

and complement. Blood. (2002) 99:2477–82. doi: 10.1182/blood.V99.

7.2477

63. Neil SJ, McKnight A, Gustafsson K, Weiss RA. HIV-1 incorporates

ABO histo-blood group antigens that sensitize virions to complement-

mediated inactivation. Blood. (2005) 105:4693–99. doi: 10.1182/blood-2004-

11-4267

64. Onsten TG, Callegari-Jacques SM, Goldani LZ. The higher frequency of blood

group B in a brazilian population with HIV infection. Open AIDS J. (2013)

7:47–50. doi: 10.2174/1874613601307010047

65. Galili U. Evolution in primates by “Catastrophic-selection” interplay

between enveloped virus epidemics, mutated genes of enzymes synthesizing

carbohydrate antigens, and natural anti-carbohydrate antibodies. Am J Phys

Anthropol. (2018) 168:352–63. doi: 10.1002/ajpa.23745

66. Bubb KL, Bovee D, Buckley D, Haugen E, Kibukawa M, Paddock M,

et al. Scan of human genome reveals no new Loci under ancient

balancing selection. Genetics. (2006) 173:2165–77. doi: 10.1534/genetics.106.

055715

67. Van Valen LM. A new evolutionary law. Evol Theory. (1973) 1:1–30.

68. Lewis, H. Catastrophic selection as a factor in speciation. Evolution. (1962)

16:257–71. doi: 10.1111/j.1558-5646.1962.tb03218.x

69. Tollner TL, Bevins CL, Cherr GN. Multifunctional glycoprotein DEFB126–a

curious story of defensin-clad spermatozoa. Nat Rev Urol. (2012) 9:365–75.

doi: 10.1038/nrurol.2012.109

70. Tecle E, Gagneux P. Sugar-coated sperm: unraveling the functions of

the mammalian sperm glycocalyx. Mol Reprod Dev. (2015) 82:635–50.

doi: 10.1002/mrd.22500

71. Ma X, Pan Q, Feng Y, Choudhury BP, Ma Q, Gagneux P, et al. Sialylation

facilitates the maturation of mammalian sperm and affects its survival in

female uterus. Biol Reprod. (2016) 94:123. doi: 10.1095/biolreprod.115.137810

72. Heshmati HM, TalebM, Turpin G. [The blood-testis barrier].Ann Endocrinol.

(1984) 45:115–7.

73. Hasegawa A, Koyama K. Antigenic epitope for sperm-immobilizing

antibody detected in infertile women. J Reprod Immunol. (2005) 67:77–86.

doi: 10.1016/j.jri.2005.06.005

74. Kirchhoff C. CD52 is the ’major maturation-associated’ sperm membrane

antigen.Mol Hum Reprod. (1996) 2:9–17. doi: 10.1093/molehr/2.1.9

75. Ma F, Deng L, Secrest P, Shi L, Zhao J, Gagneux P. A mouse model for dietary

xenosialitis: antibodies to xenoglycan can reduce fertility. J Biol Chem. (2016)

291:18222–31. doi: 10.1074/jbc.M116.739169

76. Springer SA, Gagneux P. Glycan evolution in response to

collaboration, conflict, and constraint. J Biol Chem. (2013) 288:6904–11.

doi: 10.1074/jbc.R112.424523

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Altman and Gagneux. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 789

https://doi.org/10.1111/j.1399-3089.2007.00377.x
https://doi.org/10.1182/blood.V99.7.2477
https://doi.org/10.1182/blood-2004-11-4267
https://doi.org/10.2174/1874613601307010047
https://doi.org/10.1002/ajpa.23745
https://doi.org/10.1534/genetics.106.055715
https://doi.org/10.1111/j.1558-5646.1962.tb03218.x
https://doi.org/10.1038/nrurol.2012.109
https://doi.org/10.1002/mrd.22500
https://doi.org/10.1095/biolreprod.115.137810
https://doi.org/10.1016/j.jri.2005.06.005
https://doi.org/10.1093/molehr/2.1.9
https://doi.org/10.1074/jbc.M116.739169
https://doi.org/10.1074/jbc.R112.424523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Absence of Neu5Gc and Presence of Anti-Neu5Gc Antibodies in Humans—An Evolutionary Perspective
	Introduction
	Natural Immunization Against NEU5GC-glycans
	Evolutionary Mechanisms for the Fixation of Loss-of-function Mutation
	Balancing Selection Maintaining Polymorphisms
	Female Immune-Mediated Selection Against Paternal Neu5Gc

	Conclusions and Perspectives
	Author Contributions
	Funding
	References


