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Treatment of cancer patients has been recently revolutionized by the application of

various immunotherapeutics. However, the response rates are still limited ranging

between approximately 20 and 40% suggesting that combinations of immunotherapy

with conventional treatment, like chemotherapy, radiation, epigenetic modulators,

targeted therapies using small molecules as well as other (immuno) therapeutics, might

be an option to increase systemic anti-tumor immunity. It is postulated that different

non-immune based therapies in combination with immunotherapies could reprogram

the immune suppressive tumor microenvironment and enhance the immunogenicity

of tumor cells leading to an improved therapeutic efficacy and a better patients’

outcome. Despite there exist various examples of increased objective responses

achieved by adding these different therapies to immunotherapies, strategies for rational

and evidence-based design of checkpoint inhibitor combinations to maximize the clinical

benefit for patients are urgently required. Therefore, the main purpose of this review is

to summarize recent results obtained from experimental models and clinical trials to

enhance tumor immunogenicity by combining immunotherapy with other therapeutic

options to maximize patients’ outcome and minimize adverse events.
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INTRODUCTION

During the last decade novel tumor immunotherapeutic approaches have recently revolutionized
the cancer treatment. In particular the clinical success of monoclonal antibodies (mAb) directed
against immune checkpoint (iCP) molecules, such as the T lymphocyte antigen 4 (CTLA-4) and
the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway, was
a breakthrough achievement resulting in the Nobel Price of Medicine 2018. The anti-CTLA-4 mAb
Ipilimumab was the Food and Drug Administration (FDA) approved checkpoint inhibitor (iCPI)
followed by approval of Pembrolizumab, Nivolumab, and Cemiplimab directed against PD-1, in
2014, 2016, or 2018, respectively, for non-small cell lung cancer (NSCLC), melanoma, renal cell
carcinoma (RCC), bladder cancer and/or squamous cell skin cancer and the anti-PD-L1 mAbs
Durvalumab, Atezolizumab, and Avelumab in 2017 after promising results in NSCLC, urothelial
carcinoma and Merkel cell carcinoma (1–3). Currently, a number of other “next generation” iCPIs
directed against e.g., the lymphocyte-activation gene 3 (LAG-3), the T cell immunoglobulin and
mucin domain-3 (TIM-3) and B7-H4, are tested in experimental models and/or clinical trials
(4, 5). Despite the rapid progress in approvals for iCPIs in an expanding spectrum of malignancies,
there exists accumulating evidence that approximately only one-third of patients achieve a durable
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long-term response as stand-alone intervention with iCPIs (6, 7).
This might be due to primary and acquired resistance and thus
limit the efficacy of the treatment (8–10) suggesting that a high
frequency of patients do not respond to iCPI alone. In contrast,
recent efforts combining iCPIs with conventional and other
(immuno)therapies achieved response rates of over 50% (11, 12),
since they not only mediate anti-neoplastic effects by cytotoxic
and cytostatic mechanisms, but also by local as well as systematic
modulation of immunological functions (13, 14).

Currently, a number of preclinical and clinical
trials for iCPIs across all tumor types coupled with
a second immunotherapeutic modality or combined
with e.g., chemotherapy, targeted therapies, radiation
therapy (RT), epigenetic modulators, inhibitors of
histone deacetylases (HDAC), DNA methyltransferases
(DNMT), or cyclin-dependent kinases 4 and 6 (CDK4/6),
are conducted (13, 15).

So far, 7 iCPIs and 1 combination immunotherapy regimen
have been approved by the FDA since 2011 (16, 17). However, it
is very obvious that these approaches will increase by rationally
designed synergistic combinations based on an individualized
patients’ setting (14). Therefore, biomarkers are urgently required
(i) to select patients who will benefit and respond to treatment
and (ii) to identify the best combinations of agents for each
patient to improve response rates, enhance treatment efficacies
and mitigate toxicities (18, 19). The aim of these combinations
are to enhance effector function of immune cells leading to
tumor elimination, to modulate the immune suppressive tumor
microenvironment (TME), to recruit T cells to the tumor, and
to revert immune escape mechanisms (20). It is suggested that
overcoming the different resistance mechanisms might be one
major key for enhancing the efficacy of immunotherapies. This

Abbreviations: ADCC, antibody dependent cell mediated cytotoxicity; AML,

acute myeloid leukemia; APC, antigen presenting cell; CAF, cancer-associated

fibroblast; CDK4/6, cyclin-dependent kinase 4 and 6; CLL, chronic lymphatic

leukemia; CP, cyclophosphamide; CRC, colorectal cancer; CTL, cytotoxic T

lymphocyte; CTLA-4, T lymphocyte antigen 4; DC, dendritic cells; DNMT,

DNA methyltransferase; ECM, extra cellular matrix; EGF, epidermal growth

factor; EGF-R, EGF receptor; Fas, factor associated with suicide; FDA,

Food and Drug Administration; HDAC, histone deacetylase; HDACi, HDAC
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cancer; ICAM-1, intracellular adhesion molecule-1; ICM, tumor extracellular

matrix; iCP, immune checkpoint; iCPI, immune checkpoint inhibitor; IDO,
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monoclonal antibody; MDSC, myeloid-derived-suppressor cell; MHC, major

histocompatibility complex; MMP, metalloproteinase; MSC, mesenchymal stem

cell; NK, natural killer; NSCLC, non-small cell lung cancer; OS, overall survival;

PBMNC, peripheral bloodmononuclear cell; PD-1, programmed cell death protein

1; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; RCC,

renal cell carcinoma; RFS, relapse-free survival; RT, radiation therapy; sting,

stimulator of interferon genes; TA, tumor antigen; TAA, tumor associated antigens;

TAF, tumor associated fibroblasts; TAM, tumor-associated macrophages; TAN,

tumor-associated neutrophil; TCR, T cell receptor; TEX, tumor-derived exosomes;

TGF, transforming growth factor; TIL, tumor infiltrate lymphocyte; TIM-3, T

cell immunoglobulin and mucin domain-3; TKI, tyrosine kinase receptor; TLR,

toll-like receptor; TME, tumor microenvironment; TNBC, triple negative breast

cancer; Treg, regulatory T cells; TREX1, three prime repair exonuclease 1; VEGF,

vascular endothelial growth factor; VEGF-R, vascular endothelial growth factor

receptor; VISTA, V-domain Ig suppressor of T cells activation.

report summarizes the rational for the design of some promising
regimens combining iCPIs with other treatment options and
future strategies in order to attack the primary tumor, but also
cancer cells within the patients’ body including cancer stem cells,
metastasis and circulating tumor cells (Figure 1).

COMBINATION OF IMMUNOTHERAPIES
WITH OTHER IMMUNOTHERAPIES

Due to the increase in available iCPIs and other
immunotherapeutics, such as novel iCPIs, e.g., antagonistic
antibodies directed against LAG-3, V-domain Ig suppressor
of T cells activation (VISTA), and T cell immunoglobulin and
mucin domain-3 (TIM-3) or activating antibodies against e.g.,
OX40, 4-1BB, ICOS, and CD40, novel vaccines, cytokines,
anti-killer inhibitory receptors (KIR), oncolytic viruses, and
cellular therapies, an abundance of possibilities exists, which are
currently studied in animal models and/or clinical trials (21, 22).
The rational for these combinations are the distinct molecules,
but complementary pathways, which are targeted and therefore
might result in synergistic effects. The following part briefly
summarizes some selected major concepts.

Combinations of iCPIs With Other iCPIs
Inhibition of CTLA-4 and PD-1 act on distinct pathways, e.g.,
central vs. peripheral immunity, the blockade of both pathways
is complementary suggesting that simultaneous inhibition of
these targets have additional anti-tumor activity (23). The first
iCPI combination employed was Ipilimumab with anti-PD-1 in
melanoma resulting in an increased efficacy, but also high levels
of adverse events (23, 24). Examples of other iCPI combination
strategies include anti-PD-1 and anti-PD-L1 antibodies in
combination with established or novel iCPIs, such as anti-TIM-3,
anti-OX40, anti-LAG-3, and anti-VISTA, respectively.

Combination of Immunotherapies With
Vaccines
Despite cellular therapies are still in their infancy compared
to iCPIs the combination of different cellular therapies with
antibodies directed against iCPs is promising and first results
from in vivo models and clinical trials exist. Currently, a
number of clinical trials using two or more combinations are
investigated including different whole cell-based vaccines like
tumor-infiltrating lymphocytes (TIL), T cell receptor (TCR),
or chimeric antigen receptor (CAR)-modified T cells and
dendritic cell (DC)-based vaccines (25). Interestingly, another
novel approach is the co-delivery of PD-L1 siRNA with a DC-
based mRNA vaccine, which caused a downregulation of PD-
L1 in tumor-antigen presenting DCs thereby boosting anti-
tumor responses (26). Despite preliminary investigations gave
promising results, the major challenges of the combination of
whole cell-based vaccines with iCPIs are adverse events due
to toxicities and autoimmunity, which have to be reduced
(27). It is also noteworthy that a synergistic effect of a
synthetic DNA vaccine with antibodies directed against iCPIs was
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FIGURE 1 | Immune check point inhibitor therapy and combinations. The major combinations of iCPIs and other therapies are summarized and presented in the first

circle, while the second circle illustrates the triple combinations currently in clinical trials.

found, which was due to alterations of the immune regulatory
environment (28).

Combinations of iCPIs With IgG Antibodies
In addition to cellular therapies, the use of antibody dependent
cell mediated cytotoxicity (ADCC) has recently been suggested
as a promising combination with iCPIs (29). Immunoglobulin
(Ig) G1 monoclonal antibodies (mAbs) have the highest capacity
to induce ADCC in comparison to Ig isotypes (30–32). Thus,
a number of IgG1 mAbs, such as Trastuzumab, Cetuximab
and Rituximab, directed against the HER-2/neu, EGF-R, or
the B cell-restricted antigen CD20, have been developed and
were used for the treatment of different tumor types, such
as colorectal cancer (CRC), head and neck squamous cell
carcinoma (HNSCC), Non-Hogkin lymphoma and chronic
lymphatic leukemia (CLL), respectively. These mAbs exert anti-
tumor properties by inhibition of tumor growth, but modulation
the immune cell activity (33–35). A combination of iCPIs
with IgG1 mAbs can boost the innate and adaptive anti-tumor
activity, recruit effectors, alters the composition of the TME by
elimination of dysfunctional lymphocytes thereby enhancing the
efficacy, durable responsiveness and patients’ survival as shown
for CRC and HNSCC (29). However, the inhibitor mediated
ADCC and the recruitment of CD8+ cytotoxic T lymphocytes

(CTL) to the tumor is associated with negative feedback loops,
such as enhanced infiltration with Tregs and MDSC as well as an
increased expression of different iCPIs (29). Thus, co-targeting
of both immune suppressive mechanisms and the synergistic
activity of e.g., Cetuximab and iCPIs might improve the outcome
of patients. Indeed, a number of ongoing studies investigate the
combination Cetuximab with various iCPIs including Avelumab
in order to generate a beneficial immune effect.

COMBINATION OF ICPI WITH
CONVENTIONAL TREATMENT AND
INCREASED SUSCEPTIBILITY OF TUMOR
CELLS TO LETHAL SIGNALS FROM CTL
MEDIATED BY DEATH RECEPTORS

RT With Immunotherapy—and First Results
RT is used a standard treatment of many cancers by reducing
the risk of recurrences after surgery as curative treatment of
localized tumors or as palliative treatment to reduce the bulk of
tumors. In addition, so called abscopal effects were demonstrated
outside of the irradiated field (36). While RT can be immune
suppressive, it can also enhance antigenicity and adjuvanticity by
promotion of the release of tumor antigens (TA) combinations of
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immunotherapy with RT has been suggested (37–39). Although
durable responses are rare, most patients benefit from this
treatment by distinct mechanisms (40) including RT-mediated
enhancement of T cell responses and changes in the TME
composition. For example RT can reprogram the anti-myeloid
TME to a pro-myeloid TME allowing recruitment of antigen
presenting cells (APC) and T cells mediated by the induction
of type I IFN due to activation of stimulator of interferon
genes (STING) and its upstream signaling pathways. Cross
presentation of tumor associated antigens (TAA) to CTL results
in activation of T cells, which release IFN-γ known to increase
and/or induce major histocompatibility complex (MHC) class
I surface expression, (41–43) the factor associated with suicide
(Fas) and the intracellular adhesion molecule-1 (ICAM-1) (44–
46) involved in elimination of tumor cells. However, TFG-β is
also released during RT, which inhibits immune responses by
decreasing the capacity of DC to present TAA, T cell function,
and HLA class I antigen expression on tumor cells thereby
promoting tumorigenesis, which is associated with poor clinical
outcome of patients (47). Other radiation induced cytokines,
chemokines, and growth factors influence the balance between
immune clearance and immune tolerance in the TME, play a
dual role on the tumor infiltrating immune cell repertoire and
on the modulation of anti-tumoral immune responses (48). In
addition, RT can upregulate PD-1 and PD-L1 on tumor and
immune cells (49, 50) providing a window of opportunity for
anti-PD-L1/PD-1 inhibitor treatment by diminishing resistance
to RT and upregulating the sensitivity to iCPI (51). Thus, iCPIs
might work synergistically with the RT-induced T cell response
through redundant pathways.

Indeed, preclinical data suggest that different immune
modulators synergize with RT leading to tumor regression (52).
For example, the combination of RT with an anti-CTLA-4
mAb not only increased the density of TILs and the CD8+

vs. CD4+ T cell ratio in a murine carcinoma model, but
also resulted in a more oligoclonal T cell repertoire required
to achieve tumor rejection thereby supporting the synergic
activity of RT and CTLA-4 blockade (53). The feasibility
combining focal radiation with systemic TGF-β blockade due
to increased peripheral blood mononuclear cell (PBMNC) and
central memory CD8+ T cell counts as well as abscopal effects
was demonstrated in a metastatic breast cancer model (54).
A combination of RT with STING agonists enhanced T cell
priming and reduced tumor growth (41, 55). In sum, RT has the
potential to efficiently induce the secretion of type I IFN and
enhances the expression of the three prime repair exonuclease
1 (TREX1) known to degrade cytosolic double stranded DNA,
which represents a key regulator of the cellular response to
RT. TREX1 controls the immunogenicity of radiated cells by
amplifying the immunogenicity of tumor cells and the abscopal
responses (55).

Since tumors are often infiltrated by suppressive cells
expressing high levels of PD-L1, high radiation doses might be
more effective in eliminating tumor cells. So far, the dose and
fractionation of RT in immunemodulation has not been analyzed
in detail. However, there exists evidence that the recruitment of
DC to tumor cells is dependent on the RT dose and fractionation.

Thus, RT must be administered at optimal doses, schedules and
sequences to obtain a robust anti-tumor immunity.

In this context, a number of clinical trials have been
completed, are currently recruiting or planned in different
cancer types combining different FDA-approved iCPIs with
radiotherapy including several radiation doses (56–58) (see
ClinicalTrials.gov). Chemo-radiation combined with anti-PD-L1
antibody or placebo demonstrated a progression-free survival
of PD-L1 antibody treated patients compared to placebo (59)
demonstrating a beneficial effect of RT with iCPIs. This is
further in line with improved anti-CTLA-4 mediated T cell
responses upon in situ vaccination by RT (60). Furthermore, a
combination of in situ vaccination with intra-tumoral injection
of tumor-specific antibodies and systemic CTLA4 improved
primary tumor response and survival in an experimental
model (61).

Combination of Chemotherapy With
Immunotherapeutic Approaches
Chemotherapeutic agents (taxanes, cyclophosphamides)
can promote anti-tumor immune responses by enhancing
proinflammatory cytokines and exerting immune modulatory
effects on tumor cells, such as e.g., an upregulation of HLA class
I antigens, as well as on the TME, like depletion of myeloid-
derived suppressor cells (MDSCs) and regulatory T cells (Tregs)
(62). A major objective is to convert so called “cold” non-
immunogenic tumors into “hot” immunogenic tumors, which
are more sensitive to immunotherapy. Thus, chemotherapy-
based immune modulation prior to iCPI treatment appears
promising. In two experimental murine models of CRC (CT26)
and RCC (RENCA) combining cyclophosphamide (CP) with
CTLA-4 blockade had contrasting effects. In CT26-bearing
hosts, CP augments the anti-tumor effect of ant-CTLA-4, while
in RENCA this combination had only a marginal effect (63).
In a clinical phase Ib study of advanced or metastatic NSCLC
patients, Atezolizumab followed by chemotherapy significantly
increased the response rate of NSCLC patients (NCT00527735)
(64). Furthermore, 50 metastatic triple negative breast cancer
(TNBC) patients treated with low-dose chemotherapy followed
by Nivolumab demonstrated an increased overall survival (OS)
with low toxicity, which was better than anti-PD-1 monotherapy
(NCT02499367, J Clin. Oncol. 36, no. 15_suppl. (May 2018)
1012–1012; doi/10.1200/JCO.2018.36.15_suppl.1012). In sum,
low-dosage immunogenic chemotherapies plus checkpoint
blockers enhance tumor immunogenicity, which might revert
tumor relapse by eliminating dormant cancer cells and thus
should be used for combination therapies. This option was in
line with results of a phase III clinical trial in NSCLC patients
treated with Pembrolizumab in combination with chemotherapy,
demonstrating a significantly increased OS and PFS compared
to chemotherapy alone with an overall response rate of 48 vs.
19% with no change in adverse events (NCT02578680). Thus,
this combination was synergistic and exhibits an acceptable
safety profile (65, 66). It is noteworthy that OS of patients was
improved independent of PD-L1 expression levels of tumor cells,
which argue for combine iCPIs with chemotherapy replacing
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chemotherapy as the standard of care for first-line treatment of
metastatic NSCLC.

COMBINATION OF IMMUNOTHERAPY
WITH TARGETED THERAPIES

Different growth factors and angiogenic factors and their
receptors, including EGF/EGF-R, VEGF/VEGF-R, and
angiopoietin, have been shown to affect the innate and
adaptive immune response and induce immune suppression
(12, 67). Based on the functions described, inhibition of these
pathways might offer novel combination opportunities and
synergies with iCPI (68). While the efficacy of immunotherapy
is often associated with a reduced recruitment of blood vessels
and activated cytotoxic T cells, anti-angiogenic therapy could
reprogram the immune suppressive TME by normalizing the
vasculature and increased T cell recruitment thereby enhancing
the efficacy of cancer treatment. However, potent inhibition of
angiogenesis increases hypoxia, which negatively interferes with
immune responses (69). Thus, the anti-cancer immune response
is impaired and vascular normalization by anti-angiogenic
inhibitors could therefore revert the immune suppression and
increase the efficacy of chemotherapy and immunotherapy
(70–73). Indeed, a number of ongoing clinical trials combine
anti-angiogenic therapy with iCPI alone or even in combination
with chemotherapy (74). These combinations have synergistic
effects and improve response rates, but some combinations
exhibit a high toxicity (75).

Some targeted agents such as B-RAF and MEK inhibitors
are associated with immune modulatory activity and might
act synergistic with iCPIs. The BRAF inhibitor Vemurafenib
was combined with anti-CTLA-4 mAb, but this combination
had adverse effects, while combining Vemurafenib with a
PD-L1 inhibitor and kinase/ERK inhibitor improved the
treatment efficacy (76–78). Other therapeutic intervention
with iCPIs include inhibitors directed against indoleamine
(IDO) phosphoinositid-3-kinase-γ (PI3K-γ) (79), and colony
stimulating factor 1, which lead in combination with anti-PD1
to a regression of all tumors and 90% survival after 90 days
(80). Inhibitors directed against the molecules CDK4/6, which
are essential for the initiation and development of breast cancer
and ALL, demonstrated growth inhibition in various cancers
as well as induction of anti-tumor immunity by enhancing
TAA expression and inhibiting regulatory T cell proliferation
(81, 82). Combining CDK4/6 inhibitors with iCPI treatment
led to complete tumor regression and immunological memory
in an experimental murine breast cancer model suggesting this
treatment regimen as a promising option (83).

EPIGENETIC MODULATORS

Epigenetic modulators, like inhibitors of histone deacetylases
(HDAC+) or DNA methyltransferases (DNMT) are currently
used for the therapy of different tumor entities. This is based on
the fact that (i) HDAC is overexpressed in tumors, (ii) inhibition
of HDACnegatively interferes with the expansion ofMDSCs, (iii)

tumor antigens (TA) are often methylated and thus not presented
via HLA class I and class II molecules, and (iv) hypomethylating
agents as well as HDACi have diverse immune modulating
effects by e.g., upregulating HLA class I and components of
the IFN-γ signal pathway (84). Since the different epigenetic
modulators exhibit a low toxicity, the use of these inhibitors
might increase the efficacy of single-agent immunotherapies (85).
The combination of Ipilimumab with Nivolumab had synergistic
effects on tumor growth with 5-azacytidine and entinostat and
>90% of CRCs and 100% of metastatic mammary tumors were
illuminated. Demethylation of the PD-1 promoter on T cells by
5-azacytidine in AML patients correlated with increased PD-
1 expression, leading to the rational combination of DNMT
inhibitor with anti-PD-1 mAbs, which are currently tested in
clinical trials of NSCLC patients, but also of other cancers (86).

NOVEL STRATEGIES

Next to these options and based on the increased knowledge in
the biology of cancer and immune cells and the composition of
the TME, novel innovative strategies are currently discussed or
studied in experimental models or clinical trials in conjunction
with iCPIs. Some interesting strategies are depicted in the
following part.

Anti-KIR
Next to enhancing T cell mediated immune responses, natural
killer (NK) cells are critical effectors of the innate immune
system and are able to control tumor growth (87). This has been
shown e.g., in acute myeloid leukemia (AML) patients, in which
the number and activity correlated with relapse-free survival
(RFS) (88). NK cells express both stimulatory, but also inhibitory
receptors. The Ig-like KIRs prevent NK cell activation upon
binding to their ligands, principally HLA-C molecules (89). The
clinical relevance of KIR inhibition was demonstrated in models
of allogeneic haplo-mismatched stem cell transplantation. In the
absence of KIR/KIR-ligand binding, alloreactive NK cells were
able to eliminate residual leukemia (90). Recently, a number of
KIR antibodies have been developed that prevent the KIR/HLA-
C interaction including e.g., IPH2101. This antibody augmented
NK cell-mediated elimination of autologous human HLA-C+

AML blasts, which was confirmed in a NOD-SCID mouse model
of NK cell-mediated tumor rejection. Since a correlation between
PD-L1 and KIR expression was found in NSCLC and associated
with a poor prognosis of these patients (91), a combination of
anti-KIR and iCPIs is currently discussed.

TLR Agonists
Toll-like receptors (TLR) agonists, such as SD101 and IV270
(92, 93) are under investigation in solid tumors (94, 95) due to
their ability to induce potent anti-tumor immune response. TLR
agonists could activate the innate immune response and revert
immune suppression and tolerance (96, 97). Thus, it has been
suggested to combine them with iCPIs to suppress tumor growth
and shape the TME. First results in a murine HNSCC model
demonstrated an increased ratio of M1/ M2 macrophages, T cell
clonality and recruitment of CD8+ T cells (98).
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Modulators of Extracellular Matrix (ECM) in
Combination With Immunotherapies
Components of the extracellular matrix (ECM) have been
shown to play a key role in the initiation and progression of
tumors by regulating different steps of the cancer process (99).
Matrix components representing the matrisome in the TME
are produced by mesenchymal stem cells (MSC), pericytes
and cancer-associated fibroblasts (CAFs) and affect anti-tumor
immune response and the efficacy of immunotherapies (100).
ECMs have been shown to alter the TME and modulate the
differentiation, migration, infiltration as well as polarization
of immune cells in the TME (101). Thus, are involved in
the development of an inflamed TME by regulating the
activity of Tregs and immune suppressive myeloid cells
(102). A combination of matrix metalloproteinase (MMP)
inhibitors with an experimental mammary cancer model
delayed tumor growth, reduced metastases formation and
the percentage of Tregs and MDSCs as well as microvessel
density (103). Thus, ECM components might serve as
biomarkers to improve patients’ stratification, but also
could be used as therapeutic targets in combination with
immunotherapies (104).

Other Novel Potential Combination
Partners for iCPIs
Based on the increased knowledge of the TME a number of
potential novel co-targets for iCPI combinations have been
suggested. These are the on the one hand approaches to
normalize the host and immune cell metabolism by targeting
e.g., cyclooxygenase (COX2). COX2 is overexpressed in different
cancers (105, 106). The tumor-derived COX activity causes
immune evasion. Interestingly, this could be reverted by a
combination with iCPIs. Preclinical models demonstrated that
COX inhibitors, such as aspirin, have a synergistic effect in
combination with anti-PD1 in different murine experimental
models leading to tumor eradication (107, 108).

Furthermore, exosomes known to transmit material from
tumor cells to stroma and immune cells, which could lead to
immune escape has been started to be therapeutically exploited
either as nano-particle for drug delivery, direct exosome based
immunotherapy, or removal of tumor-derived exosomes (TEX)
from the periphery (109). On the other hand, it has been
suggested to use TEX as tumor vaccines as a source of specific
stimuli for anti-tumoral immune responses (110), but the
clinical potential in monotherapy as well as in combination
with other immunotherapies including iCPI has not yet been
analyzed (111, 112).

BIOMARKERS FOR PREDICTION OF
RESPONSE TO ICPI AND
COMBINATORIAL THERAPIES

Due to the limited durable response to iCPI and combinations,
criteria to discriminate responders from non-responders prior
to the initiation of treatment as well as during treatment are
urgently needed. The predictive biomarkers might allow the

selection of patients who are more likely to respond, while
they might also allow to detect acquired resistance mechanisms.
Some reports analyzed the composition of the intra-tumoral
immune cell infiltration by IHC or multispectral imaging and
the immune cell repertoire of peripheral blood lymphocytes for
prediction of anti-tumoral immune responses (113–119). This
was extended by high throughput RNA-seq, deep sequencing
of TCR, mass cytometry as well as in silico analysis using
TCGA data and a systematic bioinformatics pipeline leading to
a multi-dimensional analysis of the immune signature regarding
the responsiveness to iCPI therapy (120, 121). Based on these
distinct approaches, an optimized immune marker panel, and
interactive bioinformatics pipeline identified a responsiveness
associated predictive signature in patients treated with anti-PD-
1 immunotherapy (122). However, it has to be pointed out that
there exists a high variability between traditional fluorescence
flow cytometric analysis as well as mass cytometry. Therefore, a
systematic prospective collection of peripheral blood from tumor
samples is mandatory for determination of immune signatures
in larger multi-center cohorts of patients treated with various
iCPIs alone or in combination. This might lead to a prediction
signature, which could be implemented in the clinical practice
prior to immunotherapy.

CONCLUSIONS

Blockade of iCPI has been successfully applied in a number
of solid tumor and hematological neoplasms resulting in an
enhancement of anti-tumor immune responses by targeting
immune regulatory pathways. However, only a limited number
of patients benefit from these therapies, which is often associated
with toxicities and side effects of an autoimmune nature.
Thus, prognostic and predictive biomarkers are urgently needed
to define patients, which respond to given immunotherapy
regimens with minimal toxicity. So far, tumor mutational
burden (TMB), the immune cell infiltration as well as the
expression of iCPs, such as PD-L1, have been discussed to
be predictive for checkpoint blockade response. In addition,
the list of combinations of iCPI with other therapies is
extensive and despite the enthusiasm and potential of iCPI
combination therapies, it further underlines the need to
identify biomarkers in order to select patients undergoing
immunotherapy combinations to provide a survival benefit
for more patients and reduced adverse effects. Recent data
suggest that next to the integration of TMB, iCPI expression
and immune cell infiltration, host genetics, microsatellite
instability, neo-antigen loss, the non-cellular composition of
the TME, and the microbiome, should be analyzed. Thus,
not only a standardized and optimized (immune)monitoring
is crucial for tailoring immunotherapies, but it should also
address the dynamics of immune response, posttranslational
modifications, the contexture of immune and tumor cells as
well as physical factors of the TME, e.g., hypoxia and pH.
Overcoming these challenges and the implementation of new
agents and combinatorial strategies are currently the major
research focus in iCPI treatment to enhance their efficacy and
avoid resistances.
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