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Childhood obesity is associated with the development of severe comorbidities, such

as diabetes, cardiovascular diseases, and increased risk of osteopenia/osteoporosis

and fractures. The status of low-grade inflammation associated to obesity can be

reversed through an enhanced physical activity and by consumption of food enrich

of anti-inflammatory compounds, such as omega-3 fatty acids and polyphenols. The

aim of this study was to deepen the mechanisms of bone impairment in obese

children and adolescents through the evaluation of the osteoclastogenic potential

of peripheral blood mononuclear cells (PBMCs), and the assessment of the serum

levels of RANKL and osteoprotegerin (OPG). Furthermore, we aimed to evaluate

the in vitro effects of polyphenol cherry extracts on osteoclastogenesis, as possible

dietary treatment to improve bone health in obese subjects. High RANKL levels were

measured in obese with respect to controls (115.48 ± 35.20 pg/ml vs. 87.18 ±

17.82 pg/ml; p < 0.01), while OPG levels were significantly reduced in obese than

controls (378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively, p < 0.01).

Lower Ad-SoS- and BTT Z-scores were measured in obese compared to controls

(p < 0.05). A significant elevated number of multinucleated TRAP+ osteoclasts (OCs)

were observed in the un-stimulated cultures of obese subjects compared to the

controls. Interestingly, obese subjects displayed a higher percentage of CD14+/CD16+

than controls. Furthermore, in the mRNA extracts of obese subjects we detected

a 2.5- and 2-fold increase of TNFα and RANKL transcripts compared to controls,

respectively. Each extract of sweet cherries determined a dose-dependent reduction

in the formation of multinucleated TRAP+ OCs. Consistently, 24 h treatment of

obese PBMCs with sweet cherry extracts from the three cultivars resulted in a

significant reduction of the expression of TNFα. In conclusion, the bone impairment in
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obese children and adolescents is sustained by a spontaneous osteoclastogenesis that

can be inhibited in vitro by the polyphenol content of sweet cherries. Thus, our study

opens future perspectives for the use of sweet cherry extracts, appropriately formulated

as nutraceutical food, as preventive in healthy children and therapeutic in obese ones.

Keywords: obesity, inflammation, polyphenols, sweet cherry, osteoclastogenesis, CD14+/CD16+ monocytes,

osteoporosis, osteopenia

INTRODUCTION

Childhood obesity is one of the major health problems in
the western world. It is associated with severe co-morbidities
including diabetes, cardiovascular diseases (1, 2), and bone loss,
which can occur early in the life (3, 4). It has been reported
that the incidence of bone fractures increases in overweight/obese
children and adolescents (5). The relationship between childhood
obesity and bone impairment has been deepened in animal
models. Indeed, Shu et al., found that mice fed with high fat
diet (HFD) showed bone loss mainly due to high osteoclastic
bone resorption, which is mediated by the increase of pro-
osteoclastogenic cytokines and pre-osteoclasts in the bone
marrow microenvironment (6).

Osteoclasts (OCs) derive from monocyte precursors which
fuse thank to macrophage colony-stimulating factor (MCSF) and
receptor activator of nuclear factor kappa-B ligand (RANKL)
and become multinucleated cells able to resorb bone. RANKL
is mainly produced by cells of the osteoblastic lineage.
However, in inflammation also immune cells represent also
an important source of the inflammatory cytokines [revised
in Dar et al. (7)]. Recently, it has also been reported that
bone marrow adipocytes produce RANKL (8), whose action
could be inhibited by Osteoprotegerin (OPG), the soluble
decoy receptor of RANKL (7). Other cytokines could also
support osteoclastogenesis together with RANKL (9), such as
TNFα. High levels of this cytokine have been demonstrated
in bone diseases as well as in obesity (10–13). This last
condition is associated with high levels of pro-inflammatory
cytokines, such as interleukins, adipokines, and chemokines,
which contribute to the chronic low level of inflammation
and oxidative stress which are responsible of the different co-
morbidities related to obesity (14, 15). This status of chronic
inflammation can be prevented or even reversed by the loss
of body weight through a reduction of food intake and
enhanced physical activity (16). It has been reported that physical
activity directly or indirectly decreased inflammation (17–19).
Moreover, eating foods rich in bioactive anti-inflammatory
compounds, such as omega-3 fatty acids (FAs) and polyphenols,
has been demonstrated to reduce inflammation (20, 21). In
particular, the anti-obesity effects of polyphenol-rich diets have
been associated to the property of polyphenols to interact
with adipose tissues (pre-adipocytes, adipose stem cells, and
immune cells).

Sweet cherries are a source of dietary phenolic compounds
(∼1,500mg total phenols per kg fresh weight), including
phenolic acids (hydroxycinnamic acids) and flavonoids

(anthocyanins, flavan-3-ols and flavonols), which are known for
their health benefits and important role in preventing several
chronic diseases related to oxidative stress (22, 23). Moreover,
they show a low glycemic index respect to other fruits and
vegetables and represent a source of vitamins, especially vitamin
C and minerals, such as potassium, phosphorus, calcium, and
magnesium (24, 25).

Studies in vitro and in vivo have reported that sweet
cherries have anti-inflammatory and anti-carcinogenic activity,
and characteristics for prevention of cardiovascular disease and
diabetes (26).

In the light of these evidences and of the increasing interest
on the polyphenol effects on childhood obesity, the aim of this
paper were: (a) to deepen the mechanisms of bone impairment
in obese children and adolescents, through the evaluation
of the serum levels of RANKL and OPG together with the
osteoclastogenic potential of peripheral blood mononuclear cells
(PBMCs), and (b) to evaluate in vitro, the effects of polyphenols
from sweet cherry extracts on osteoclastogenesis, as possible
dietary treatment to improve bone health in obesity.

MATERIALS AND METHODS

Subjects
Twenty-five obese children with a mean age of 10.8 ± 2.6
years were enrolled at Endocrinology Unit of Pediatric Hospital
Giovanni XXIII, University A. Moro of Bari. Inclusion criteria
were body mass index (BMI) ≥95th percentile for age and sex.
Exclusion criteria were: type 2 diabetes mellitus, secondary or
syndromic forms of obesity, hypothyroidism, Cushing disease,
viral hepatitis, metabolic or genetic liver diseases, ongoing
therapies for chronic systemic diseases. The control group
consisted of 21 normal weight healthy children matched
for age and gender, recruited on a voluntary basis in the
outpatient clinic, who referred to hospital for minor surgery or
electrocardiographic record for minor trauma to head, limbs, or
chest pain. All the enrolled patients signed an informed consent
form. The local ethic committee approved the study. The study
was conducted in accordance to the criteria of the declaration
of Helsinki. All subjects were in good general health and were
not taking drugs in the last 3 months. Serum levels of (25)OH-
vitamin D, osteocalcin, calcium, phosphorus, RANKL, OPG, and
alkaline phosphatase were measured as previously reported (10).
Bone quality was assessed by QUS measurements, performed
with a DBM Sonic 1200 bone profiler (Igea S.r.l., Carpi, MO,
Italy) employing a sound frequency of 1.25 MHz, as previously
described (27).
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Cells and Culture Conditions
PBMCs were isolated by centrifugation of peripheral blood
samples over Histopaque 1077 density gradient (Sigma
Chemical, St. Louis, MO), and cultured in α-MEM (Life
Technologies, Paisley, UK) supplemented with 10% fetal bovine
serum, 100 IU/ml penicillin, and 100µg/ml streptomycin
(Life Technologies, Inc. Ltd, Uxbridge, UK). To obtain fully
differentiated human OCs, the PBMCs were cultured in the
presence or absence of 25 ng/ml recombinant human MCSF and
30 ng/ml RANKL (R&D Systems, Minneapolis, MN) for about
20 days. In some experiments, PBMCs were also cultured in
the presence of 75 and 100µg/ml of polyphenol extracts from
Giorgia, Bigarreau, and Ferrovia both for mRNA extraction
(24 h), MTT assay (24 h) (28), and for osteoclastogenesis (about
20 days) evaluation. The concentrations of the polyphenol
extracts were selected according to literature data (29) and
calculated according to a previous in vitro study on the effect
of quercetin-containing cherry extracts on HepG2 cells (30)
by considering 440 dalton as the average molecular weight
of the compounds in the extracts; then, they were prepared
through vacuum drying of the extracts and re-suspension in
a suitable medium for the biological assays. Mature OCs were
identified as tartrate-resistant acid phosphatase-positive (TRAP)
multinucleated cells (Sigma Aldrich, Milan, Italy) containing
three or more nuclei. OC resorbing activity was demonstrated by
plating the cells on multiwell slides (4 × 105 cells/well) coated
with a calcium phosphate film (MilleniumOsteologic; Millenium
Biologix Inc, Ontario, Canada). This system incorporates a
resorbable artificial bone in the form of submicron calcium
phosphate films. The photomicrographs were obtained using a
Ellipse E400 microscope (Nikon, Tokyo, Japan) equipped with
Nikon Plan Fluor 10×/0.30 dicl. The microscope was connected
with a Nikon digital camera DxM 1200; the acquisition software
was Lucia G version 4.61 (build 0.64) for Nikon Italy.

Flow Cytometry Analysis
Fresh peripheral blood samples from patients and controls
were stained with PerCp-CD14 and FITC-CD16 antibodies (all
Beckmann Coulter, Milan, Italy). Events were acquired using C6
flow cytometer (Becton Dickinson Immunocytometry System,
Mountain View, CA, USA). The area of positivity was determined
using an isotype-matched mAb, a total of 106 events for each
sample were acquired.

RNA Isolation and Real Time-PCR
Amplification
Freshly isolated PBMCs of patients and controls, PBMCs
treated for 24 h with polyphenol extracts from sweet cherries
as well as OCs cultured in the presence of polyphenol
extracts from sweet cherries were subjected to mRNA extraction
using spin columns (RNeasy, QIAGEN, Hilden, Germany),
and reverse-transcription using iScript Reverse Transcription
Supermix (Bio-Rad Laboratories, Hercules, CA). The resulting
cDNA was amplified using the SsoFast EvaGreen Supermix
(Bio-Rad Laboratories) using the Chromo4 Real-Time PCR
Detection System (Bio-Rad Laboratories). The following primer
pairs were used for the real-time PCR amplification: RANKL

S: CGTTGGATCACAGCACAT, RANKL AS: GCTCCTCTT
GGCCAGTC; TNFα S: ATCTACTCCCAGGTCCTC, TNFα
AS: GATGCGGCTGATGGTGT; calcitonin receptor (CalcR)
S: AACAATAGAGCCCAAGCCATTTC, CalcR AS: CCAGCA
CAGCCATCCATCC; Cathepsin K (Cath K) S: GGCTCAAGG
TTCTGCTAC, Cath K AS: GCTTCCTGTGGGTCTTCTTCC;
RANK S: CAGGATGCTCTCATTGGTCAG, RANK AS: AGA
AAGGAGGTGTGGATTGC; GAPDH S: TCATCCCTGCCT
CTACTG; AS: TGCTTCACCACCTTCTTG.

Reagents and Standards for Chemical
Procedures
Formic acid, LC-MS grade water and acetonitrile were
purchased from J.T. Baker (Deventer, Holland). Furulic
acid, cyanidin-3-O-glucoside chloride, cyanidin-3-O-rutinoside
chloride, delphinidin-3-O-glucoside chloride, quercetin-3-O-
rutinoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside,
kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside,
(+)-catechin, (–)-epicatechin, procyanidins B1 and B2, and
epicatechin gallate were purchased from Extrasynthese (Genay,
France). Cyanidin-3-O-sophoroside chloride, quercetin-4′-O-
glucoside, chlorogenic acid, neochlorogenic acid, and cynarin
were purchased from Phytolab (Vestenbergsgreuth, Germany).

Fruit Collection
Three sweet cherry cultivars (cv. Ferrovia, Bigarreau, and
Giorgia) grown in Apulia region (Southern Italy) was used in
this study. Samples were harvested at commercial maturity (1st
decade of May−2nd decade of June), on the basis of total soluble
solids (TSS), measured as ◦Brix using a portable refractometer
(Atago PR32, Norfolk, Virginia, USA), and titratable acidity
(TA) which was determined in the juice by titration with
0.1N of NaOH (J.T. Baker, Deventer, Holland) to a pH 7
end point (TSS = ∼ 17 ◦Brix; TA = ∼ 7 g/L of citric acid
equivalents), in 2014 season using 7 years-old sweet cherry
trees located in Turi. The trees were trained to a central leader
system and planted at a spacing of 4m × 4m and were
grown under usual conditions of irrigation, fertilization, and
pest control (31). Five kg of cherries for each variety were
taken on the same day, from four different branches of an
individual tree and mixed, then they were frozen in liquid
nitrogen and vacuum packed in plastic bags and stored at−80◦C
for further analysis.

Extraction of Polyphenols From Sweet
Cherry and HPLC-MS/MS Analysis
Polyphenols were extracted from cherries and analyzed through a
capillary HPLC 1100 coupled with a triple quadrupole QQQmass
detector (Agilent Technologies Palo Alto, CA, U.S.A.), following
the procedure proposed in our previous researches (31, 32).

Roughly 100 g of partially defrosted sweet cherry sample were
pitted and a homogenate was obtained using an IKA A11—basic
homogenizer (IKA—WERKE GMBH & CO.KG—Germany).
To avoid compounds degradation, the homogenization was
completed in darkness and the sample was placed on ice
during the whole procedure (around 5min). Ten gram of
homogenate was put in a glass flask with 10mL of 1%
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hydroxybutyl anisole (BHA) in methanol and 100 µL of ferulic
acid internal standard solution (1,000µg/mL of methanol).
Then, the obtained solution was sonicated in an ultrasonic bath
of 130W and 40 kHz (SONICA 2200 EP, SOLTEC, Milano,
Italy) for 1 h at 25◦C and the liquid phase was separated by
filtration under vacuum. The extraction procedure was repeated
twice for the solid phase utilizing fresh methanol (10 and
5mL for 30min, respectively). Finally, the pooled extracts
were concentrated down to 10mL through a rotavapor Buchi-
R-205 under vacuum at 40◦C, and stored at −25◦C until
further analysis.

A Zorbax column SC-C18 (50 × 2.1mm i.d., particle size
1.8µm, Agilent Technologies) was used, with the following
gradient system: water/formic acid (99:1, v/v) (solvent A) and
acetonitrile/formic acid (99:1, v/v) (solvent B), 0.8min, 95%
A−5% B; 2.1min, 90% A−10% B; 5.6min, 88% A−12% B;
8min, 81% A−19% B; 9.2min 81% A−12% B; 11.2min 5%
A−95% B; 12.8min 5% A−95%; 13.2min 95% A−5%; stop
time 15min. The column was kept at 60◦C, the flow was
maintained at 0.5 mL/min and the sample injection was 1.1 µL.
Both positive and negative ESI mode was used for ionization
of molecules with capillary voltage at 4,000V. Nitrogen was
used both as drying gas at a flow rate of 8 L/min and
as nebulizing gas at a pressure of 30 psi. Temperature of
drying gas was 350◦C. In the full scan (MS) and product ion
(MS/MS) modes, the monitored mass range was from m/z
100 to 1,200. Typically, 2 runs were performed during the
HPLC-ESI-MS analysis of each sample. First, an MS full-scan
acquisition was performed to obtain preliminary information
on the predominant m/z ratios observed during the elution. An
MS/MS full-scan acquisition was then performed: Quadrupole
1 filtered the calculated m/z of each compound of interest,
while Quadrupole 3 scanned for ions produced by nitrogen
collision of these ionized compounds in the chosen range
at a scan time of 500 ms/cycle. All data were acquired and
processed using Mass Hunter software (version B.01.04; Agilent
Technologies). The optimized parameters (fragmentor voltage
and collision energy) for each compound together with the
mass transitions adopted for multiple reaction monitoring
(MRM) are listed in Table 1S (Supporting Information). To
gauge linearity, calibration curves with five/seven concentration
points for each compound were prepared separately. Calibration
was performed by linear regression of peak-area ratios of the
polyphenols to the relative internal standard vs. the respective
standard concentration.

Statistical Analyses
Means and standard deviations of the raw data and regression
analysis of calibration samples were carried out using
STATISTICA 6.0 software package (StatSoft Inc., Tulsa,
OK, U.S.A.).

For statistical analyses of clinical data, the Statistical Package
for the Social Sciences (SPSS) for Windows, version 22.0 (SPSS
Inc., Chicago, IL, USA) was used. Comparison between groups
were performed by T-test. Correlations were analyzed with
Spearman or Pearson correlation test. The limit of statistical
significance was set at 0.05.

TABLE 1 | Characteristics of study population.

Controls N = 21 Obese patients N = 25

Gender (male/female) 9/12 9/16

Age (yr) 8.23 ± 3.19 10.8 ± 2.6

Tanner Stage (I, II, III, IV, V) 6,10,4,1,0 8,11,4,2,0

Height SDS 0.36 ± 1.02 0.23 ± 1.48

Weight SDS 0.43 ± 0.87 2.22 ± 0.70**

BMI-SDS 0.25 ± 0.78 2.31 ± 0.41**

Waist circumference (cm) 72.5 ± 7.2 92.04 ± 23.08**

Total cholesterol (mg/dl) 154.8 ± 28.32 164 ± 33.18

HDL (mg/dl) 55.67 ± 9.30 49.08 ± 8.13

LDL (mg/dl) 97.10 ± 21.03 107.54 ± 37.62

Triglycerides (mg/dl) 67.24 ± 19.16 73.00 ± 32.74

Insulin (microU/mL) 9.78 ± 4.50 24.60 ± 12.02**

Glucose (ml/dl) 81.16 ± 7.14 87.22 ± 11.35

HOMA-IR 2.56 ± 0.40 4.93 ± 1.91**

25-OH Vitamin D (ng/ml) 38.64 ± 14.70 29.70 ± 12.89

Osteocalcin (ng/ml) 38.26 ± 19.22 47.44 ± 21.02

PTH (pg/ml) 43.05 ± 15.06 44.07 ± 17.09

Calcium (mg/dl) 9.71 ± 0.40 9.43 ± 0.41

Phosphorus (mg/dl) 4.54 ± 1.4 4.54 ± 0.51

Ad-Sos-Z-score 0.48 ± 0.85 −1.05 ± 1.17*

BTT-Z-score 0.15 ± 0.72 −0.39 ± 1.23*

RANKL (pg/ml) 87.18 ± 17.82 115.48 ± 35.20§

OPG (pg/ml) 436.75 ± 95.53 378.02 ± 61.15§

SDS, standard deviation score; BMI, body mass index; PTH, parathyroid hormone; Ca,

calcium; P, phosphorus; B-ALP, bone alkaline phosphatase; RANKL, receptor activator of

nuclear factor kappa-B ligand; OPG, osteoprotegerin. §p < 0.01; *p < 0.05; **p < 0.001.

RESULTS

Clinical Characteristics
The characteristics of the study population were reported in
Table 1. Although, in the normal range, lower Ad-SoS- and BTT-
Z-scores were measured in obese patients compared to controls
(P < 0.05). The serum levels of 25-OH Vitamin D, calcium,
phosphorus, and osteocalcin were comparable to those measured
in controls. Interestingly, higher RANKL levels were measured
in obese patients with respect to the controls (115.48 ± 35.20
pg/ml vs. 87.18 ± 17.82 pg/ml; p < 0.01), while OPG levels
were significantly reduced in obese patients than in controls
(378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively,
p < 0.01). With adjustment for age RANKL levels correlated
with waist circumference (r = 0.144 p < 0.022), and SDS-BMI
(r = 0.129 p < 0.038), whereas OPG levels correlated with waist
circumference (r = −0.348 p < 0.0001), SDS-BMI (r = −0.381
p < 0.0001), BTT-Z-score (r = 0.208 p < 0.002), HOMA-IR
(r=−0.359 p < 0.0001).

Osteoclastogenesis in Obese Children and
Adolescents
OC formation was evaluated in cultures of PBMCs from
obese patients and controls. A significant elevated number of
multinucleated TRAP+ OCs were counted in the un-stimulated
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cultures of obese patients (Figure 1B) compared to the controls
(Figure 1A), as reported in the histogram (Figure 1C). The
addition of the pro-osteoclastogenic M-CSF and RANKL in the
cultures from patients did not affect the OC number, but they
appear larger compared those observed in the un-stimulated
cultures (Figure 1E). Indeed, the number of large OCs (>10
nuclei) was greater in stimulated compared with un-stimulated
cultures from obese patients (35 ± 5 vs. 20 ± 6, p < 0.01).
Conversely, M-CSF and RANKL are necessary to trigger OC
formation in cultures from controls (Figure 1D), as reported in
the histogram (Figure 1F).

To investigate the mechanisms of the enhanced
osteoclastogenesis in obese we evaluated both the percentage of
CD14+/CD16+ circulating pre-osteoclasts as well as the levels of
the pro-osteoclastogenic cytokines RANKL and TNFα in PBMC
extracts. Interestingly, patients displayed a high percentage
of CD14+/CD16+, compared to the controls (Figure 2).
Furthermore, in mRNA extracts of obese patients we detected
a 2.5- and 2-fold increase of TNFα and RANKL transcripts
compared to controls, respectively (Figure 3).

Effect of Polyphenols From Sweet Cherry
on the Spontaneous Osteoclastogenesis of
Obese Children and Adolescents
Interestingly, we also evaluated in vitro the effect of polyphenol
cherry extracts on osteoclastogenesis as possible dietary
treatment to improve bone health in obesity.

Polyphenols Content in the Cherries Extracts
Table 1S listed the amount of the main flavonoids (anthocyanins,
flavan-3-ols, and flavonols) and chlorogenic acids, which were
identified as previously described (31, 32), quantified by HPLC-
MS/MS analyses in the tested cherries extracts. The content
of the phenolic compounds appeared slightly lesser in the
extract of Giorgia (1,391 mg/100 g FW) than Bigarreu and
Ferrovia (1,820 and 1,768 mg/100 g FW, respectively), even
though both the three varieties were principally characterized
by anthocyanins, especially cyanidin-3O-rutinoside, accounting
for 19–30% of total polyphenols, and chlorogenic acids
(particularly, trans-3-O-coumaroylquinic acid and trans-3-O-
caffeoylquinic acid) ranging between 70 and 80% of the total
polyphenols (Table 1S).

Polyphenols Effect on Osteoclastogenesis of Obese

Children and Adolescents
We investigated the effect of polyphenol extracts from Giorgia,
Bigarreau, and Ferrovia on PBMC cultures of patients. We
demonstrated that each extract determined a dose-dependent
reduction in the formation of multinucleated TRAP+ OCs
(Figures 4A–C). Furthermore, using the highest dose of
polyphenol extracts from Giorgia, Bigarreau, and Ferrovia we
demonstrated that the treatment also resulted in a significant
reduction of resorption activity (Figure 4D), together with
a significant reduction of the expression of OC marker
genes, such as calcitonin receptor, cathepsin K and RANK
(Figure 4E). Consistently, 24 h treatment of PBMCs from
patients with polyphenol extracts from Giorgia, Bigarreau, and

Ferrovia resulted in a significant reduction of the expression
of TNFα (Figure 5A), whereas RANKL levels were unchanged
(Figure 5B). Furthermore, by MTT we demonstrated that
polyphenol extracts did not significantly affect cell viability
of PBMCs from patients (Figure 6). These results suggested
that polyphenols from sweet cherry inhibit osteoclastogenesis
through the reduction of pro-osteoclastogenic cytokines, without
affecting cell viability.

DISCUSSION

This study demonstrated that in obese children the reduced
bone mineral density (BMD) is associated to the decrease of
OPG levels, the increase of RANKL levels, enhanced formation
of OCs, of circulating pre-osteoclasts, and pro-osteoclastogenic
cytokines. Interestingly, the spontaneous osteoclastogenesis is
inhibited in vitro by sweet cherry polyphenol extracts.

Previous studies demonstrated that obese subjects showed
significantly lower OPG levels respect to the controls (33–35);
however no correlation has been reported between OPG and
BMI (36, 37). Otherwise, few studies measured higher levels
of OPG in obese subjects compared with the controls (38,
39). However, all the previous studies correlated the levels of
OPG with the altered HOMA-IR, fasting insulin or glucose.
Our study, to our knowledge, is the first demonstrating a
direct correlation between OPG levels and BTT-Z score in
obese children.

It is known that obesity is associated with bone fragility
and the reduced OPG levels could contribute to this status.
We also found increased RANKL levels which could explain
the bone impairment associated with excess of adipose tissue.
Interestingly, we found that RANKL levels positively correlated
with waist circumference. The correlation between a central
obesity parameter, as the waist circumference, and RANKL
levels detected in serum and saliva samples has been previously
demonstrated (40). Our data confirmed that visceral fat
accumulation represents the main parameter which can predict
the entity of bone impairment in obese subjects. These findings
also suggest to evaluate bone status in obese subjects with a higher
waist circumference than normal values. It is known that RANKL
and OPG altered levels have been associated to the altered
osteoclastogenesis characterizing bone diseases (41–43). Indeed,
it has been demonstrated that anti-RANKL antibody is useful
in the treatment of osteoporosis (44). The alterations of OPG
and RANKL levels together with the increase of CD14+/CD16+

circulating pre-osteoclasts and TNFα levels are consistent with
the spontaneous osteoclastogenesis of our obese patients as well
as of other inflammatory diseases associated with bone loss (45).
CD14+/CD16+ cells have been linked with erosive bone diseases,
such as psoriatic arthritis and multiple myeloma (46–48). It
is known that CD14+/CD16+ cells display an enhanced pro-
osteoclastogenic activity (47, 48) thus supporting the key role of
this cells in the alteration of bone health in obesity. Consistently,
rodent models of obesity also demonstrated the increase of OC
precursors in the bone marrow (49). Consistently, the ongoing
theory sustains that weight gain determines local inflammation
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FIGURE 1 | Osteoclastogenesis in obese subjects. Osteoclasts (OCs) identified as tartrate-resistant acid phosphatase-positive (TRAP+) and multinucleated cells with

three or more nuclei, differentiated from peripheral blood mononuclear cells (PBMCs) of obese subjects and controls. Few small OCs differentiated in un-stimulated

PBMC cultures of a representative control (A), whereas multinucleated TRAP+ OCs differentiated from un-stimulated PBMCs from a representative obese subject (B).

The histogram includes OC count deriving from all subjects’ cultures, stratified according the number of nuclei per OC (C). In PBMC cultures from the controls, OCs

differentiate following MCSF and RANKL addition (D), otherwise in cultures from obese subjects growth factor addition did not further increase osteoclastogenesis (E),

compared with the un-stimulated cultures. The histogram reports the results deriving from all the enrolled subjects (F).

FIGURE 2 | Circulating osteoclast precursors in obese subjects. A representative flow cytometry dot plots displayed the percentage of circulating osteoclast

precursors, identified as CD14+/16+ cells in control (A) and obese subjects (B). The histograms represent the percentage of CD14+/CD16+ cells measured for all

enrolled obese and control subjects by flow cytometry (C).

that stimulate the increased recruitment of circulating pro-
inflammatory (Ly6Chi) monocytes, also capable of differentiate
in OCs in bone. Recruited monocytes differentiate into an M1
macrophage phenotype which is responsible of the chronic
inflammation and thus organ damage associated to obesity (15).

An increased mRNA levels of pro-osteoclastogenic molecules
such as RANKL and TNFα has been found in youngmice fed with
HFD (6). Interestingly, our results also displayed high mRNA

levels of TNFα and RANKL in PBMCs from obese subjects.
It has been reported that childhood obesity is associated to a
state of chronic low-grade inflammation as well as numerous
inflammation-related molecules such as TNFα, interleukin 6 (IL-
6), and leptin. High levels of these molecules have been linked
to co-morbidities associated to obesity (50–53). Furthermore,
consisting with our results, transgenic mouse expressing human
TNFα determines the augment of OC precursor percentage (54).
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FIGURE 3 | TNFα and RANKL expression in lymphomonocytes from obese subjects. mRNA levels of TNFα (A) and RANKL (B) in lymphomonocytes from all enrolled

controls and obese subjects. Obese subjects expressed higher levels of TNFα and RANKL compared to the controls.

FIGURE 4 | Osteoclastogenesis inhibition by polyphenol extracts from Giorgia, Bigarreau, and Ferrovia. The formation of multinucleated TRAP+ OCs was evaluated in

un-stimulated PBMCs from all obese patients cultured in the absence or presence of 75 and 100µg/ml polyphenol extracts from Bigarreau (A), Giorgia (B), and

Ferrovia (C). PBMCs from the patients, cultured on Millenium slides coated with a calcium phosphate film, formed large resorption areas, that were reduced following

the treatment with 100µg/ml polyphenol extracts from Bigarreau, Giorgia, and Ferrovia, as quantified in the histogram (D). The mRNA levels of calcitonin receptor

(CalcR), cathepsin K (Cath K), and RANK was evaluated in PBMCs from obese patients cultured in the absence or presence of 100µg/ml polyphenol extracts from

Bigarreau, Giorgia, and Ferrovia (E).
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FIGURE 5 | RANKL and TNFα expression in lymphomonocytes from obese subjects. Twenty-four hours treatment of PBMCs from obese subjects with 100µg/ml

polyphenol extracts from Giorgia, Bigarreau, and Ferrovia resulted in a significant reduction of the mRNA levels of TNFα (A), whereas RANKL levels were unchanged

(B). The results are referred to all obese subjects.

FIGURE 6 | Effect of Polyphenol extracts from Giorgia, Bigarreau, and Ferrovia on PBMC viability. PBMCs were treated for 24 h with 75 and 100µg/ml polyphenol

extracts from Bigarreau (A), Giorgia (B), and Ferrovia (C) and analyzed by MTT assay to evaluate cell viability. Results are expressed as mean values of optical density

at 570 nm ± standard deviation (SD).

As countermeasure against chronic low-grade inflammation
associated to obesity is represented by dietary advice and
nutraceuticals (55). Evidences from in vitro and experimental
models suggest the effects of polyphenols on obesity, obesity-
related inflammation, and other metabolic disorders. Their
effects include: to induce satiety, to stimulate energy expenditure
by inducing thermogenesis in brown adipose tissue, to inhibit
adipocyte differentiation and promote adipocyte apoptosis, to
modulate lipolysis and activate oxidation (56). Evidence for the
effects of polyphenols on obesity and weight control in adult
subjects is inconsistent due to the heterogeneity among study
populations, intervention period, and polyphenol supplements
(57). At the best of our knowledge, there are no studies about
the effects of polyphenols extracts on childhood obesity and
its comorbidities.

The innovative aspect of this study is related to the inhibition
of the spontaneous osteoclastogenesis and reduction of TNFα
mRNA levels in PBMC cultures from obese children with
the use of polyphenol-rich cherry extracts. This inhibitory
effect has been observed with all the three cultivars of sweet
cherries, although the content of the phenolic compounds
appeared slightly lesser in the extract of Giorgia than Bigarreu
and Ferrovia, even though both the three varieties were

principally characterized by anthocyanins, especially cyanidin-
3O-rutinoside, and chlorogenic acids. These polyphenols’
compounds play an important role as antioxidants for bone
health, both in young people, in order to favor the formation
of peak bone mass, and in the elderly and in menopausal
women in order to prevent bone loss. Moreover, the use of these
antioxidant compounds has been proposed in anti-resorption
therapies considering also that they are able to reduce the OC
activity without determining their apoptosis, which is useful to
restore physiological bone remodeling (58). Consistently, it has
been reported that tea and dried plum polyphenols in vitro
inhibited osteoclastogenesis (29, 59). Of note, it has also been
demonstrated the inhibitory effects of sweet cherry anthocyanins
on obesity development in HFD fed mice, by slowing down
TNFα and IL-6 levels (60). However, this study did not evaluate
the effect on bone, which is known to be negatively affected by
obesity as well as by HFD. Conversely, Shen et al., reported that
in rats green tea polyphenols improved bone health in HFD-
induced obesity by the suppression of bone cell activity (61, 62).
Although the positive effect of green tea administration in obese
patients has been evaluated in different studies [revised in Suzuki
et al. (63)], there were not published data on bone effects. These
literature reports together with our findings let us to speculate
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that also sweet cherry polyphenols can have a protective effect on
bone both in HFD fed mice and obese patients.

CONCLUSIONS

Our study, to our knowledge, is the first demonstrating in
obese children a spontaneous osteoclastogenesis inhibited by
polyphenols from sweet cherry extracts, through the reduction
of TNFα, without affecting cell viability. We also demonstrated
that the spontaneous osteoclastogenesis observed in PBMCs from
obese children is supported by the high percentage of circulating
CD14+/CD16+ cells and the elevated levels of RANKL and
TNFα. Our study opens future perspectives for the use of cherry
extracts, appropriately formulated as nutraceuticals as preventive
in healthy children and therapeutic in obese ones.
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