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The immune system and cancer have a complex relationship with the immune system

playing a dual role in tumor development. The effector cells of the immune system can

recognize and kill malignant cells while immune system-mediated inflammation can also

promote tumor growth and regulatory cells suppress the anti-tumor responses. In the

center of all anti-tumor responses is the ability of the immune cells to migrate to the

tumor site and to interact with each other and with the malignant cells. Cell adhesion

molecules including receptors of the immunoglobulin superfamily and integrins are of

crucial importance in mediating these processes. Particularly integrins play a vital role

in regulating all aspects of immune cell function including immune cell trafficking into

tissues, effector cell activation and proliferation and the formation of the immunological

synapse between immune cells or between immune cell and the target cell both during

homeostasis and during inflammation and cancer. In this review we discuss the molecular

mechanisms regulating integrin function and the role of integrins and other cell adhesion

molecules in immune responses and in the tumor microenvironment. We also describe

how malignant cells can utilize cell adhesion molecules to promote tumor growth and

metastases and how these molecules could be targeted in cancer immunotherapy.
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INTRODUCTION

Cancer and the Immune System
The immune system and cancer cells share complex interactions during tumor development.
Indeed, all types of immune cells can be found in different tumors (1–3). These include
lymphocytes such as T and B cells and natural killer (NK) cells, myeloid cells such as dendritic
cells (DCs) and macrophages and granulocytes such as neutrophils, eosinophils, and mast cells.
The immune contexture, or the frequency, location and functional orientation of different
immune cell subsets, varies substantially between tumor types and also between individuals with
seemingly identical cancers (2). Interestingly, correlations between immune contexture in the
tumor microenvironment and clinical outcomes have been examined in various malignancies. In
general, a strong infiltration of memory CD8+ T cells and T helper 1 (Th1) cells correlates with
favorable prognosis while strong T helper 2 (Th2) or T helper 17 (Th17) orientation is associated
with poor prognosis in terms of overall survival (2, 3). In addition, high infiltration of regulatory
cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in tumors
often correlates with decreased survival (4–6). Understanding the role of the immune system for
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tumor development has been the central focus of tumor
immunology since its inception. It has become evident that
immune cells are able to recognize and kill malignant cells
and thus suppress tumor growth in a process known as
cancer immunosurveillance (7). In addition to directly targeting
the cancer cells, the immune system prevents viral infections
and thus the growth of virus-induced tumors and inhibits
tumor-promoting inflammation by eradicating pathogens and
by clearing existing inflammation. However, it is now known
that the immune system can also promote tumor growth
by maintaining chronic inflammation, by shaping tumor
immunogenicity and by suppressing anti-tumor immunity,
and thus a concept called cancer immunoediting is currently
preferred to cancer immunosurveillance (7).

Cancer immunoediting is a process in which both innate and
adaptive immune systems work together to suppress/control and
promote/shape tumor growth (8). In order for this process to
take place, the DCs need to take up tumor antigens, migrate to
lymph nodes, present tumor antigens to T cells in the lymph
nodes and then activated T cells need to expand and traffic
into the tumor site where they interact with the malignant cells.
These events can eventually lead to tumor cell killing or immune
cell exhaustion. Cell adhesion molecules such as integrins and
receptors of the immunoglobulin superfamily play a crucial role
in all these events.

Cell Adhesion Molecules (CAMs)
Adhesion molecules are generally divided into five groups:
integrins (discussed in greater detail below), selectins, cadherins,
members of the immunoglobulin superfamily (IgSF) including
nectins and others such as mucins (9). In addition to the
conventional adhesion molecules, certain enzymes such as
vascular adhesion protein 1 (VAP-1) also play a role in cell
adhesion (10).

Apart from structural differences, cell adhesion molecules
also bind to different ligands. Integrins typically bind to
the extracellular matrix, while selectins, cadherins, and IgSF
members are associated with cell-cell adhesion (9). However,
immune cell integrins also bind to soluble ligands and ligands
on other cells. The cell-cell adhesion mediating molecules
can further be divided by their ligands as selectins bind
carbohydrates in a calcium dependent manner (11), cadherins
mediate preferably homophilic bonds in a calcium-dependent
manner (12) and the IgSF subfamily nectins mediate homophilic
and heterophilic bonds (9).

Selectins are further divided into P-, E- and L-selectins
originally based on which cell types they were found in: platelets,
endothelial cells and leukocytes (however, P-selectin is also
expressed on endothelial cells) (13). Selectins differ in kinetics
of expression, as P-selectins are expressed within minutes and
E-selectins within hours (13). Selectins are especially important
for leukocyte trafficking, migration of lymphocytes to peripheral
lymph nodes and to the skin. Their most prominent function
is associated with the initial stage of the rolling cell adhesion
cascade in which selectin binding enables rolling (14). Selectin
binding also initiates the subsequent integrin dependent step
of slow rolling and cell arrest as selectin binding together

with chemokine receptor activation initiates inside out signaling
leading to integrin activation (see later sections) (13, 15). L-
selectins in particular display a force dependent binding e.g., L-
selectin forms catch bonds with its ligands (bonds that strengthen
under force). Catch bonds dominate until the applied force
reaches a force threshold upon which slip bonds are formed
(bonds that weaken under force) (13, 14). In other selectins this
occurs to a lesser extent (13, 14).

Proper functionality of selectins is carbohydrate-dependent
as is demonstrated in a disorder called leukocyte adhesion
deficiency II (LAD II). LAD II is caused by a mutation in a fucose
transporter protein leading to fucose not being incorporated
into selectin ligands, which ultimately leads to disruption of
selectin-mediated leukocyte adhesion (13).Many selectin ligands,
including P-selectin glycoprotein ligand 1 (PSGL-1) which is
the main ligand for all three selectins (13), mucosal addressin
cell adhesion molecule-1 (MAdCAM-1) and peripheral node
addressin (PNAd) belong to a glycoprotein family called mucins
which function as major components of the mucous protecting
epithelial cells lining the digestive, respiratory and urogenital
tracts (16). Interestingly, over-expression of mucins, MUC-1 in
particular, have been detected in many human malignancies and
seem to promote cancer cell growth and survival (17).

Cadherins are associated with cell-cell adhesive bonds in solid
tissues (12). Molecules of this family feature cadherin repeat
sequences which are stabilized by calcium ions. The essential
role of calcium for cadherin adhesive function is also reflected in
the protein family name which is an abbreviation of “calcium-
dependent adherent proteins” (12). Cadherins in turn can be
subdivided into classical cadherins (type I and II), protocadherins
and atypical cadherins (9, 12).

The IgSF is one of the largest and most diverse protein
families (18). All members of the IgSF contain at least one
immunoglobulin or immunoglobulin-like domain and most
members are type I transmembrane proteins with an extracellular
domain (containing the Ig domain[s]), transmembrane domain
and a cytoplasmic tail. The most well-known members include
major histocompatibility complex (MHC) class I and IImolecules
and proteins of the T cell receptor (TCR) complex (18).
Intercellular adhesion molecules (ICAMs), vascular cell adhesion
molecules (VCAMs), MAdCAM-1 and activated leukocyte cell
adhesion molecule (ALCAM), which are important in leukocyte
trafficking events, also belong to this family of adhesion receptors
(19–21). Of interest, MAdCAM-1 contains both Ig and mucin
domains placing it as a member of both IgSF and mucin
families (19).

Yet another subfamily of the IgSF is the nectin family which
members mediate cell-cell adhesion in various tissues including
endothelium, epithelium and neural tissue (9). The members can
form homophilic interactions with each other or heterophilic
interactions with other nectins or other ligands. They can
also co-operate with cadherins to establish adherens junctions
(9, 22). From an immunological point of view, interactions
between nectins and immune modulatory receptors such as
DNAM-1 (CD226) and TIGIT are of particular interest due
to their involvement in regulation of effector cell function and
their recently appreciated role in anti-tumor responses (23).
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Interestingly, the expression of nectins is also often up-regulated
in various tumors (9).

Integrins
Integrins are large heterodimers consisting of α- and β-
chains that together form the intact receptor in the plasma
membrane. Integrins bind to a wide variety of ligands in the
extracellular matrix, on the surface of other cells and also
soluble proteins. Leukocytes express various integrins while the
β1-integrins (α4β1), β2-integrins (αLβ2, αMβ2, αXβ2, αDβ2),
and β7-integrins [α4β7 and αE(CD103)β7] playing particularly
important roles in immune cells.

β2-integrins are the predominant integrins on leukocytes
(24). The different integrins in this family have different
expression in different leukocyte subpopulations (25, 26). LFA-
1 (αLβ2, CD11a/CD18) is expressed in all leukocytes and
is the predominant integrin in lymphocytes. Mac-1 (αMβ2,
CD11b/CD18, CR3) dominates on myeloid leukocytes, especially
neutrophils, but is also expressed in NK cells, B cells and some
T cells, whilst αXβ2 (CD11c/CD18, CR4) is most abundant
on myeloid dendritic cells (DCs). αDβ2 (CD11d/CD18) is
the most recently discovered β2-integrin and is expressed on
neutrophils, monocytes and NK cells. LFA-1-integrin is more
distantly related than the other β2-integrin family members and
has a more restricted ligand binding profile compared to the
other β2-integrins. It mainly binds members of the ICAM-1-
5 and JAM-1 families. In contrast, Mac-1-integrin has a very
broad ligand repertoire, with more than 40 reported ligands
including ICAM-1-4, iC3b, fibrinogen, fibronectin, factor X,
heparin, polysaccharides, and even denatured proteins (26).
αXβ2 and αDβ2 are more closely related to Mac-1 than to LFA-1
and have similar, but more restricted, ligand binding properties
than Mac-1.

The extracellular domains of integrins are large and consist
of several domains (27). In those integrins that contain it, the
αI (or A) domain is the most important ligand binding domain,
and mediates Mg2+-dependent ligand binding. The I-domain
consists of a central β-sheet surrounded by seven α-helices.
Ligand binding happens at the MIDAS-site which provides three
surface loops to co-ordinate the Mg2+ ion, whilst a glutamate
or aspartate from the ligand provides the fourth coordination
position. This is referred to as the I-domain open conformation.
In the closed conformation, the fourth coordination position is
replaced by a water molecule – this induces structural changes
in the I-domain e.g., rearrangement of the metal-co-ordinating
residues and a 10Å shift in the α7-helix. Ligand binding shifts the
equilibrium from the closed towards the open state (27).

The I-domain forms part of the ligand binding head domain
of the integrin extracellular domain, which also contains the βI-
domain (that has a similar structure as the αI domain) and the
propeller domain in the α-chain (27). The I-domain sits on top
of the propeller domain. Structural signals can be transduced
through the integrin β-chain to induce conformational changes
in the integrin head-domain or from the ligand-bound head into
the cell (27).

In addition to I-domain conformational changes in the
ligand-bound and unbound states, integrins can undergo much

larger scale structural changes (27–29) (Figure 1). When the
first integrin ectodomain was crystallized, it was a surprise
that the integrin was found in a bent state, with both the α-
chain and the β-chain being “bent at the knee” (genu), causing
the ligand-binding head to turn down towards the legs of
the integrin heterodimer. Indeed, integrins can be found in
bent conformation, extended/closed conformation (where the
integrin is extended but the I-domain is closed) as well as
extended/open conformation (extended integrin/I-domain is in
the open conformation) (28).

The transmembrane domains of integrins associate with each
other at two motifs, maintaining the integrin in an inactive state
(30). The intracellular domains are short and devoid of enzymatic
activity. However, they are nevertheless important for regulating
integrin function (see below). The cytoplasmic domains of the
integrin β-chain are structurally related to each other with several
important motifs that are essential for integrin regulation. In
contrast, the cytoplasmic domains of the integrin α-chain are
more diverse, presumably allowing different integrins to have
different functional characteristics.

Inside the cell, these receptors link to the actin cytoskeleton
through their cytoplasmic tails (31). In cells such as a fibroblast,
they form large multiprotein complexes with intracellular
molecules called focal adhesions, the composition of which have
been determined by proteomic methods in recent years (31, 32).
Integrins also participate in so called outside-in signaling, e.g.,
transmitting signals into cells through a variety of signaling
pathways to change cell behavior (actin reorganization, cell
migration, gene expression etc.) (33).

Integrin Regulation
Integrins are not constitutively active and able to bind ligands.
Instead, their activity is regulated from inside the cell, through a
process called inside-out signaling (24) (Figure 1). During this
process, cell signaling initiated by other cell surface receptors,
induce integrin activation. Receptors such as chemokine
receptors, TCR, Toll-like receptors (TLRs), selectins as well as
many other cell surface receptors, have been reported to induce
integrin activation in immune cells. Integrins can also influence
the activity status of other integrins, a process called integrin
transregulation (34).

Ultimately, integrin activation in response to inside-out
signaling is achieved by cytoplasmic factors that interact with the
integrin β-chain cytoplasmic portion (Figure 1). Talin is the most
well-known integrin activator. Talin binds to the membrane-
proximal NPXY motif in the β-chain and is of fundamental
importance for integrin activation. Talin binding to the integrin
β-chain cytoplasmic domain destabilizes the transmembrane
linkage between the α- and β-chain of the integrin, allowing
integrin activation (30).

Kindlin is a more recently discovered integrin interaction
partner which is nevertheless very important for integrin
regulation (35–37). Kindlin binds to the membrane-distal
NPXY-motif and a threonine-motif between the NPXY-motifs,
but exactly how kindlin regulates integrin function remains
incompletely understood. It has been suggested that talin is
required for the conformational change of the integrin to the
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FIGURE 1 | Integrin inside-out signaling. Shown is a simplified representation of the integrin inside-out process, which regulates integrin activation (i.e., integrin

conformation switch from bent-closed or extended-closed to extended-open conformation). Cell signaling initiated by receptors such as chemokine receptors, T cell

receptor (TCR), Toll-like receptors (TLR), and selectins, among others, trigger the switch from Rap1-GDP to Rap1-GTP which, either dependently of RIAM or not,

activate Talin and enable its binding to the β-cytoplasmic tail of the integrin. Finally, Kindlin binds to the β-cytoplasmic tail of the integrin, and together with talin induces

the separation of the cytoplasmic tails, and triggers the activation of the ligand-binding domain. The extended-open conformation of the integrin remains stable with

Talin and Kindlin bound.

extended, intermediate affinity conformation, but that both talin
and kindlin-3 are required for the induction of the high-affinity
conformation (38, 39) (Figure 1). However, kindlin has also
been reported to play a role in integrin clustering, stabilizing
the integrin-ligand contact and strengthening cell adhesion (40),
by recruiting downstream components such as actin, ILK, and
paxillin (41–44).

The small GTPase Rap1 also plays a critical role in integrin
activation (45, 46). The effects of Rap1 on integrin activation
are at least in part dependent on the Rap1 interacting protein,
RIAM (47). RIAM is a Rap1 effector molecule that is important
for at least β2-integrin lymphocyte trafficking from blood into
peripheral lymph nodes (pLNs) (45), but not for the regulation
of all integrins (β3-integrin activation in platelets is independent
of RIAM). However, for β2-integrins, the pathway seems to
consist of Rap1/RIAM/Talin (45, 48). Very late antigen-4 (VLA-
4) (α4β1, CD49d/CD29) -mediated adhesion is dependent on
talin but only partly dependent on RIAM (45, 48) suggesting
that also RIAM-independent Rap1/talin pathways exist. Recent
studies seem to indicate that a RIAM-independent Rap1/talin
pathway is of particular importance in cells that rely on quick
integrin activation to function efficiently, such as neutrophils and
platelets (49).

In addition to talin and kindlin, integrins interact with a
multitude of cytoplasmic proteins, for example filamin A, Dok1
and 14-3-3 proteins (50) (Figure 2). Filamin A was previously
thought to be a negative regulator of integrins, either by
inhibiting talin binding (51) and/or by crosslinking integrin
cytoplasmic domains (52). However, recent results indicate that
it may instead be important for integrin-mediated shear flow
adhesion and trafficking of immune cells in vivo (53). Integrin
cytoplasmic domain phosphorylation has been reported for

many integrins and plays a role in regulating interactions with
cytoplasmic molecules and therefore further regulates integrin
function (24).

The Function of Integrins and Other Cell
Adhesion Molecules in Immune Responses
Patients suffering from leukocyte adhesion deficiency type
I (LAD-I) have lost or reduced expression of β2-integrins
on their leukocytes, and these patients suffer from recurrent
bacterial infections (54). Symptoms also include leukocytosis,
periodontitis and delayed wound healing. In leukocyte adhesion
deficiency type III (LAD-III), integrins are expressed but
dysfunctional because kindlin-3 is mutated or absent, and these
patients have similar symptoms as LAD-I patients (54). However,
they also suffer from a Glanzmann-type bleeding disorder as
kindlin-3 is required not only for β2-integrin-mediated leukocyte
adhesion but also for β3-integrin-mediated platelet adhesion.
These findings show that β2-integrins and their cytoplasmic
regulators play fundamentally important roles in immunity
(55). Studies with mice deficient for different β2-integrins have
further revealed individual contributions to various leukocyte
processes (56, 57).

Leukocytes traffic out of the blood stream into the lymph
nodes, tissues or tumors by using the leukocyte adhesion
cascade, which is regulated by sequential function of adhesion
molecules (selectins, integrins, receptors of the IgSF) (58, 59).
In brief, selectin-selectin ligand interactions lead to rolling of
the leukocyte on endothelial cells, allowing activation of the
cell by chemokines present on the endothelium. This leads to
activation of integrins on the surface of the immune cell (15).
LFA-1 and VLA-4 integrin activation by talin and kindlin allows
firm interaction between the immune cell such as a T cell or a
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FIGURE 2 | β2-integrin binding sites. Amino acid sequence of the β2-cytoplasmic tail where most of the main integrin binding proteins bind, and the sequences to

which they bind. The amino acids highlighted in bold are of particular importance. 14-3-3 proteins only bind to Th758-phosphorylated integrin, whilst phosphorylation

of this site inhibits Filamin A binding.

neutrophil and endothelial cells, which express integrin ligands
such as ICAMs, VCAM-1, and MAdCAM (37, 38, 58, 60, 61).
This is followed by cell spreading, Mac-1-mediated crawling (62),
paracellular or transcellular extravasation, and migration into
lymph nodes or tissues. In effector T cells, LFA-1 is up-regulated
and constitutively activated, which contributes to the trafficking
properties of these cells to peripheral tissues (63, 64). In tumors,
several steps of the leukocyte trafficking process can be severely
disrupted (discussed below).

Adhesion is important also in other immune cell interactions.
LFA-1-ICAM-1 interaction, in particular, plays an essential role
in the formation of the immunological synapse (IS) between
a DC and a T cell (65–67). The structure of an IS is highly
organized with key interacting molecules organized in distinct
areas called supra-molecular activation complexes (SMACs) (68).
The central region of the SMAC (cSMAC) is enriched in TCRs
and associated molecules while LFA-1 and ICAM-1 are localized
in the peripheral region of the SMAC (pSMAC) and large
molecules such as CD45 and CD43 in the distal area of the
SMAC (dSMAC). Also VLA-4 is localized at the pSMAC (69).
Due to the crucial role for the stabilization of the immunological
synapse, LFA-1 is important for T cell activation and proliferation
(70, 71). In addition, talin and kindlin-3-mediated activation of
LFA-1 has been shown to be important in T cell activation in vivo
(71, 72). LFA-1 also provides a necessary co-stimulatory signal
for T cells lowering the threshold for activation and proliferation
following TCR engagement and promotes their IL-2 production
(71, 73–75) In addition, LFA-1 has been reported to play a role
in Th1/Th2 polarization, development and/or maintenance of
Tregs and follicular T cells, and for generation of memory T cells
(61, 76–79). Further, LFA-1-aided IS formation is important in
the contact between cytotoxic CD8+ T cell/NK cell and the target
cell such as a tumor cell and for the release of cytotoxic granules
and target cell killing by CD8+ T cells and NK cells (61, 80, 81).
Together, these studies show that LFA-1-ICAM-1 pathway plays a
crucial role in T cell trafficking, activation and function and thus
in the protection of the host from infections and cancer.

Mac-1 and αXβ2 are important receptors for complement
iC3b thus mediating phagocytosis of complement-coated
particles (82). Also neutrophil degranulation is dependent
on Mac-1 integrin (56, 83). Therefore, Mac-1 is vital for the
functionality of myeloid cells. However, interestingly, Mac-1

in myeloid cells can also function as a suppressor of immune
responses (26) by e.g., inhibiting TLR-signaling in macrophages
(84, 85). β2-integrins and the β2-integrin ligand ICAM-1
can also repress DC-mediated T cell activation (86–89) and
Th17 differentiation (90, 91) and restrict DC trafficking from
peripheral sites to lymph nodes (89, 92).

ICAM-1 is the main ligand for β2-integrins (24). It is
expressed at basal levels on several cell types including fibroblasts,
keratinocytes, endothelial cells, and leukocytes and its expression
increases during inflammation due to inflammatory cytokines
such as IFNγ, IL-1β, and TNFα (93, 94). In inflamed tissues,
ICAM-1 expressed on endothelial cells binds to β2-integrins LFA-
1 and Mac-1 on leukocytes and facilitates their transendothelial
migration to the inflammation site. Given the role in mediating
leukocyte migration, ICAM-1 up-regulation has been associated
to various inflammatory, autoimmune and allergic diseases
(94–96). Interestingly, ICAM-1 is also expressed in many
types of tumors where it plays a dual role in tumor growth
(discussed below).

VCAM-1 is predominantly expressed on endothelial cells and,
similar to ICAM-1, its expression increases during inflammation
due to inflammatory cytokines such as TNFα (97, 98). VCAM-
1 is an important mediator of immune cell mediated rolling,
adhesion and extravasation into inflamed tissues by binding
to VLA-4 on leukocytes. Thus, VCAM-1 expression has
been associated with several autoimmune disorders including
rheumatoid arthritis and asthma. In addition, again similar to
ICAM-1, VCAM-1 has been shown to play a dual role in cancer
development (discussed below).

Integrins and integrin ligands therefore play crucial roles in
several immune system functions relevant for tumor rejection,
especially in immune cell migration and activation. Indeed, cell
adhesion molecules have been shown to play both positive and
negative roles in anti-tumor immunity.

Cold Tumors Often Display Dysregulated
Expression of Cell Adhesion Molecules on
the Tumor-Associated Vessels
Based on the immune landscape, tumors can be divided into
inflamed or “hot” and non-inflamed or “cold” tumors. Hot
tumors are characterized by transcripts encoding for various T
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cell-lineage markers, innate immune cell molecules, chemokines
that regulate effector T cell recruitment and also for molecules
mediating immune suppression such as PD-L1, Foxp3 and
indoleamine-2,3-dioxygenase (IDO) (59, 99, 100). These tumors
are highly infiltrated by tumor-infiltrating lymphocytes (TILs)
but their function is inhibited due to immune suppressive
tumor microenvironment. By contrast, cold tumors have low
expression of the before-mentioned transcripts but instead
express high levels of factors associated with angiogenesis,
molecules involved in Notch and/or β-catenin pathway and
serine protease inhibitors. Cold tumors are generally poorly
infiltrated by TILs and effective T cell homing into the tumor
remains a major obstacle for endogenous anti-tumor immunity
and for the success of cancer immunotherapies. Migration of
immune cells into tumors can be hampered by many factors,
such as impaired chemokine expression at tumor sites, mismatch
between chemokines expressed at the tumor site and the set of
chemokine receptors being expressed on immune cells, fibrosis
around the tumors, and abnormal tumor vasculature (101).
Aberrant adhesionmolecule expression on leukocytes and cancer
cells enables immunoediting and evasion of immune system
surveillance while aberrant expression of adhesion molecules on
tumor-associated blood vessels can render the whole tumor mass
inaccessible for the immune system.

Indeed, down-regulation of adhesion molecules on tumor-
associated endothelial cells, a process termed as endothelial
anergy, is an effective mechanism utilized by tumors to
prevent immune cell trafficking into the tumor site (102,
103). Down-regulation of several adhesion molecules such as
ICAM-1/2, VCAM-1, E-selectin, P-selectin, and MAdCAM-
1 has been reported in tumor-associated vessels in various
human malignancies (104–109) which is at least partly due
to high levels of angiogenic factors such as basic fibroblast
growth factor (bFGF) and vascular endothelial growth factor
(VEGF) in the tumor microenvironment (105, 110). It has
been demonstrated both in vitro (111) and in vivo (112) that
low adhesion molecule expression on the endothelial cells due
to angiogenic factors leads to diminished leukocyte-vessel wall
interactions. Further, diminished leukocyte interactions with
tumor endothelium is caused by down-regulation of adhesion
molecules on the endothelium and not by decreased expression
of LFA-1, VLA-4, or L-selectin on leukocytes (110). From a
clinical perspective, up-regulation of ICAM-1 in the tumor
microenvironment have been shown to be related to favorable
prognosis among patients with various cancers, suggesting an
enhancement in cancer immunosurveillance (113–115). Indeed,
an increase in TILs was observed in ICAM-1 positive gastric
and colorectal cancers compared to ICAM-1 negative tumors
(114–116). In addition, Tachimoro et al. showed that more
human peripheral blood mononuclear cells (PBMCs) adhered
to colon carcinoma (LM-H3) cells in vitro that were transfected
with ICAM-1 compared to cells with an empty vector (117).
PBMC-mediated cytotoxicity was also enhanced towards ICAM-
1 expressing LM-H3 cells. Further, when injected into nude
mice, a significant reduction was observed in subcutaneous
tumor growth and ability to metastases liver with ICAM-1+

LM-H3 cells compared to ICAM-1 negative cells. In summary,

expression levels of integrin ligands on tumor endothelium
clearly influences anti-tumor immune responses by affecting
immune cell infiltration into tumors.

Expression of Integrins and Other Cell
Adhesion Molecules Affect T Cell
Infiltration Into Tumors
T cells are important for the recognition of tumor-specific
antigens and for the killing of malignant cells (118, 119). Thus
T cells, particularly CD8+ T cells, have been demonstrated to be
crucial in protecting the host frommalignant tumor growth (120,
121). Indeed, CD8+ T cell infiltration and high CD8+ T cell/Treg
ratio in the tumor microenvironment has been associated with
favorable prognosis in different human malignancies (4, 122,
123). In order for CD8+ T cells to mediate tumor cell killing, they
must first become into contact with the malignant cells. However,
T cells often fail to infiltrate the tumor tissue, thereby causing a
major obstacle for successful treatment of cancer patients with
immunotherapy (99, 124). The mechanism of T cell homing to
healthy and infected tissues is well-understood but this process
may be significantly altered during cancer.

Murine studies have demonstrated that expression levels of
both integrin ligands on endothelial cells and integrins on T
cells influence T cell tumor infiltration. Fisher et al. showed
that ICAM-1 deficiency or blockade decreased CD8+ T cell
infiltration into melanoma (B16-OVA) or colon carcinoma
tumors (CT26), respectively, demonstrating ICAM-1 expression
affecting T cell infiltration into tumors at least in certain
tumor models (125). Sartor et al. observed a suppression
in tumor growth rate in mice inoculated with fibrosarcoma
tumor cells expressing ICAM-1 compared to mice with
ICAM-1 negative tumors suggesting an increase in T cell-
mediated immunosurveillance in the presence of ICAM-1 (126).
Interestingly, also the expression of αE (CD103) on tumor-
infiltrating CD8+ T cells has been shown to increase CD8+ T cell
trafficking into tumors and thus promoting anti-tumor immunity
(127). αE+ CD8+ T cells had superior capacity to accumulate in
tumors in humanized mouse models of breast cancer due to the
specific binding of αE on CD8+ T cells to E-cadherin expressed
on epithelial cancer cells.

In human patients, high expression of ICAM-1, VCAM-
1, and MAdCAM-1 has been shown to correlate with higher
density of CD8+ T cells in colorectal cancer (CRC) tumors
and also with prolonged disease-free survival (128). Further,
human hepatocellular carcinomas (HCC) are more heavily
infiltrated with T cells compared to colorectal hepatic metastases
(CHM) and that the T cell infiltration was associated with
higher expression of ICAM-1 and VAP-1 on tumor-associated
endothelial cells in HCC (106). Additionally, a higher proportion
of tumor-infiltrating T cells in both tumor types expressed LFA-
1 and VLA-4 compared to peripheral blood T cells. In addition,
mainly anti-ICAM-1 and anti-VAP-1 and to a lesser extent anti-
VCAM-1 mAbs inhibited HCC-derived T cell binding to tumor
vascular endothelium in vitro suggesting that LFA-1/ICAM-
1 and VAP-1 receptor/VAP-1 are crucial pathways mediating
T cell recruitment into the tumor site in HCC. Correlation

Frontiers in Immunology | www.frontiersin.org 6 May 2019 | Volume 10 | Article 1078

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Harjunpää et al. CAMs in Immunity and Cancer

between levels of cell adhesion molecules (ICAM-1, E-selectin,
P-selectin) and T cell infiltration levels has also been shown in
melanoma, glioblastoma, Merkel cell carcinoma and squamous
cell carcinoma (SCC) (108, 109, 129, 130). Interestingly, when
SCC samples were treated with a TLR-7 agonist, imiquimod,
tumor vessels up-regulated E-selectin expression causing an
increase in CLA+ CD8+ T cell influx into the tumor, a decrease
in Treg frequency and tumor regression. Together, both human
and murine studies indicate that integrins and VAP-1 on T cells
and integrin ligands on endothelial cells are of crucial importance
for T cell infiltration into tumors.

Pre-clinical mouse studies indicate that integrins and integrin
ligands may also have other effects on anti-tumor responses
besides T cell recruitment into tumors, by influencing T cell
priming and effector functions. Schmits et al. showed that LFA-
1 deficient mice had defects in CD8+ T cell priming against
tumor-specific antigens and thus, failed to reject immunogenic
fibrosarcoma tumors (57). Mukai et al. further demonstrated
that administration of anti-LFA-1 mAbs abrogated the efficacy
of adoptive T cell therapy in mouse models of pulmonary and
intracranial fibrosarcomas (131). By contrast, ICAM-1 deficiency
or mAbs targeting ICAM-1, VCAM-1, or VLA-4, showed no
inhibition on the efficacy of transferred T cells in the same mouse
models. Interestingly, LFA-1 blockade and to a lesser extent
ICAM-1 blockade caused a decrease in T cell IFNγ production
in mixed tumor/T cell cultures but did not affect the level of
T cell infiltration into the tumor. These results suggested that
the LFA-1 pathway mainly affects T cell effector function but
not migration to the tumor site. In addition, given that LFA-1
blockade but not ICAM-1 deficiency/blockade affected the anti-
tumor efficacy of adoptive T cell therapy, LFA-1 interactions with
other ligands such as ICAM-2 seem to be sufficient to preserve
T cell effector function. Accordingly, adoptive T cell studies
conducted by Blank et al. further demonstrated that CD8+ T cell
infiltration into tumor site is not inhibited in ICAM-1 deficient
mice (132). Rather, host ICAM-1 expression affected the priming
of adoptively transferred tumor-antigen-specific CD8+ T cells
leading to delayed tumor rejection in ICAM-1 deficient mice. In
addition to priming, LFA-1 and integrin αE(CD103)β7 expressed
onCD8+ T cells play important roles for CD8+ T cell cytotoxicity
towards tumor cells expressing ICAM-1 and E-cadherin (133).

In addition to T cell migration into tumors, T cells must also
be able to recirculate from the tumor site to draining lymph
nodes in order to mount distant responses (134). Interestingly,
Yanguas et al. showed that in a mouse model of melanoma,
increased number of intra-tumorally injected tumor-specific T
cells migrated into the draining lymph nodes in mice treated
with anti-ICAM-1 or anti-LFA-1 mAbs compared to mice treated
with control IgG (134). Further, activated T cells formed intra-
tumoral clusters mediated by LFA-1/ICAM-1 interactions in
mouse models of melanoma and breast cancer and similar T cell
clusters were also visible in primary human melanoma. These
results suggested that LFA-1/ICAM-1 pathway also mediates a
mechanism to trap activated CD8+ T cells in the tumor tissue.

In summary, integrins, integrin ligands and other cell
adhesion molecules expressed on T cells and endothelial cells
mediate CD8+ T cell trafficking into tumors at least in some

tumor models, but may also play crucial roles in T cell priming
and effector functions, thereby affecting anti-tumor immunity in
a multitude of ways.

Integrins and Other Cell Adhesion
Molecules Affect DC Function During
Anti-Tumor Immunity
DCs orchestrate immune responses and it is now widely
appreciated that DCs also play a crucial role in regulating the host
immune responses to cancer. Indeed, DCs have been found in
various types of tumors both in humans and mice (2, 135–140).
In the tumor microenvironment, many tumor cells die naturally
or as a result of anti-cancer therapies such as chemotherapy and
thus DCs often interact with dying tumor cells enabling them
to acquire tumor antigens (141). In addition, immature DCs
can also interact with live cells, including other immature or
mature DCs and acquire tumor antigens by transferring parts
of plasma membrane and intracellular proteins in a process
termed “nibbling” (142). Further, immature DCs can also directly
interact with live tumor cells and acquire tumor antigens by
nibbling (143). Following antigen capture, DCs will ultimately
become activated and migrate to the draining lymph node via the
lymphatic vessels to present tumor-antigens to T and B cells (141)
(Figure 3).

Adhesion receptors on DCs are involved in many of
the processes involved in DC-mediated anti-tumor responses.
Several receptors such as αVβ5-integrin expressed on immature
DCs are involved in the interaction with and phagocytosis
of dying cells (144, 145). In addition, given that dying cells
often become opsonized by complement component iC3b, DCs
can also interact with dying tumor cells via the β2-integrins
Mac-1 and αXβ2 (146, 147). However, as described above, β2-
integrins often have anti-inflammatory effects in myeloid cells
such as DCs, and these interactions lead to suppression of DC
activation and, thus, tolerance. Further, since inflammation of
various levels has often been associated with tumor development
(148), and ICAM-1 expression is up-regulated in lymphatic
vessels during inflammation (94), interaction betweenMac-1 and
ICAM-1 expressed onDCs and inflamed lymphatic endothelium,
respectively, may lead to decreased ability of DCs to activate
T cells (87). Therefore, integrins on DCs may be involved in
the uptake of dying tumor cells via adhesion receptors such as
αVβ5-integrin, and in the subsequent initiation of DC-mediated
anti-tumor responses. However, β2-integrins expressed on DCs
may instead be involved in suppressing DC function. How these
processes influence the anti-tumor responses mediated by DCs in
vivo is currently unclear.

Following tumor-antigen capture, DCs need to enter the
lymphatic vessels in order to migrate to the draining lymph
node to prime tumor-specific T cells. The role of integrins and
other adhesion molecules in the migration of DCs to lymphatic
vessels is currently under debate. Ma et al. elaborated anti-ICAM-
1 or anti-LFA-1 mAbs effectively inhibiting antigen-bearing
epidermal DCs from migrating to regional lymph nodes in vivo
(149). Studies conducted by Xu et al. further demonstrated the
importance of ICAM-1 expression on lymphatic endothelium
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FIGURE 3 | Integrins play a vital role in anti-tumor immunity. Dendritic cells (DCs) take up tumor antigens in the tumor microenvironment by phagocytosing dying

tumor cells in a process mediated by adhesion molecules such as αvβ5 integrins (Step 1). DCs then enter the lymphatic vessels partly in an LFA-1/ICAM-1-dependent

manner and migrate to the draining lymph node (Step 2). In the lymph node, DCs form an immunological synapse with CD8+ T cells in order to present the tumor

antigen. LFA-1-ICAM interactions mediate adhesion in the immunological synapse and also provide an additional co-stimulatory signal to the T cells (Step 3). Once

activated, T cells travel via the blood stream and enter the tumor site by interacting with adhesion molecules including E-selectin, ICAMs and VCAM-1 on endothelial

cells in a process termed leukocyte adhesion cascade. This process is regulated by sequential expression of selectins (L-selectin) and integrins (LFA-1, VLA-4) on the

migrating T cell (Step 4). Finally, after reaching the tumor microenvironment, CD8+ T cells form an immunological synapse with tumor cells and kill the malignant cells

via the release of cytotoxic granules (Step 5).

for the migration of hapten-bearing Langerhans cells into
the draining lymph node (150). In addition, Johnson et al.
demonstrated the up-regulation of ICAM-1 and VCAM-1
on dermal lymphatic endothelial cells at the presence of
inflammatory cytokines which then mediated DC trafficking into
the lymph nodes via afferent lymphatic vessels (151). However,
according to Grabbe et al., hapten-bearing DC migration from
the blood to inflamed skin or from skin into the regional
lymph node is similar in β2 (CD18) deficient mice compared
to WT mice suggesting that β2-integrins are not required for
DCmigration into the regional lymph nodes (152). Furthermore,
Morrison et al. reported that a mutation in β2 which disrupts
the integrin/kindlin interaction and thereby renders the integrin
inactive, resulted in increased rather than decreased DC
migration to peripheral lymphoid organs through an effect on
gene transcription in these cells (37). Accordingly, Podgrabinska
et al. further showed that the rate of antigen-bearing DC
migration into the lymph nodes was similar between ICAM-
1 deficient mice and WT mice (87). Interestingly, according
to Thompson et al. naïve tumor-specific CD8+ T cells can
also become activated and gain effector cell phenotype directly
at the tumor site, suggesting that cross-presenting DCs are
also able to prime CD8+ T cells in the tumor. These results
indicate that DC migration into lymph nodes may not even
be completely necessary for DC-mediated anti-tumor responses
(153). In conclusion, as the role of β2-integrins in DC migration
into lymph nodes is currently unclear, whether β2-integrins
on DCs influence DC migration and anti-tumor responses in
humans is currently not known and requires further study.

In contrast to the unclear role of β2-integrins in DC biology
and DC-mediated anti-tumor responses, the αE-integrins may
promote DC anti-tumor responses. Several studies have shown
that mouse DCs expressing the integrin αE (CD103) are superior
in promoting anti-tumor T cell responses (154–157). Indeed,
αE+ DCs are the main cell population carrying tumor-antigens
into the draining lymph node and critical for effective anti-
tumor CD8+ T cell priming both in vitro and in vivo. Further,
increased tumor growth is observed in the absence of αE+ DCs
in mouse models of cancer (154). In humans, high αE+/αE−

ratio has been significantly associated with increased overall
survival in various malignancies including breast cancer, head-
neck squamous cell carcinoma and lung adenocarcinoma (154).
However, the expression of CD141 (BDCA-3, thrombomodulin),
rather than αE, has been thought to mark human DC population
functionally equivalent to mouse αE+ DCs (158). Indeed,
Jongbloed et al. and Bachem et al. demonstrated that CD141+

DCs were superior in their capacity to cross-present various
antigens to CD8+ T cells compared to other DC populations
(159, 160). Accordingly, a study assessing gene-signatures also
associated high intra-tumoral levels of CD141+ DCs with better
overall survival in melanoma patients (155). Increased disease-
free survival among patients with aggressive triple-negative
breast cancer was also associated with gene signature specific for
CD141+ DCs (161).

In conclusion, although integrins play a key role
in DC biology, the role of cell adhesion molecules in
DC-mediated anti-tumor responses is still unclear and clearly
requires further study, especially in human patients.
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Integrins and Other Adhesion Molecules
Affect the Development and
Tumor-Infiltration of Regulatory Cells
Tregs, defined as CD4+CD25hiCD127lo or CD4+CD25+Foxp3+

in humans and mice, respectively, are critical in maintaining
peripheral tolerance (162). Tregs are able to suppress the effector
function and proliferation of various cell populations including
T cells, B cells, NK cells, DCs and macrophages by secreting
inhibitory molecules such as TGFβ and IL-10, by direct cell-cell
contact or by indirect mechanism via antigen presenting cells
(APCs) (162–167). For their suppressive function, it is crucial
that Tregs are able to migrate to the site of inflammation and thus
Tregs express high levels of cell adhesion molecules including
ICAM-1, L-selectin, P-selectin, and VLA-4 (168). Interestingly,
some adhesion molecules, particularly β2-integrins, also play
an important role in Treg development and function (77, 169–
171). Wang et al. showed that reduced CD18 (β2) expression in
mouse Tregs disrupted the interactions between Tregs and DCs
which led to poor Treg proliferation and decreased ability to
produce TGFβ1 and thus decreased suppressive function in vitro
compared to WT Tregs (169). In concordance with CD18−/−

mice, also LFA-1−/− mice showed reduced Treg numbers in
secondary lymphoid organs and decreased conversion rate of
conventional CD4+ T cells into Tregs in the periphery (170).
In addition, LFA-1 deficient Tregs failed to suppress CD4+

T effector cells in vitro and were unable to prevent disease
development in experimental colitis model in vivo. However, on
the contrary to CD18−/− mice, LFA-1−/− mice showed increase
in Treg numbers in the thymus suggesting that in addition
to LFA-1, other β2-integrin(s) also affects Treg development.
Besides β2-integrins, also L-selectin and integrin αE (CD103)
have been associated with Treg function. High expression of L-
selectin has been shown to mark Tregs with more potent ability
to inhibit graft-versus-host disease (GVHD) and bone marrow
(BM) graft rejection in mice compared to L-selectinlo Tregs
(172) and αE+ Tregs have been shown to be more effective in
suppressing acute inflammatory reactions in the induced SCID
colitis model and antigen-induced arthritis model compared to
αE negative Tregs (173, 174).

Given that Tregs suppress the effector function of various
immune cells, they can also inhibit immune responses against
cancer cells and thus promote tumor growth (6). Further, the
presence of Tregs in the tumor microenvironment can present
a major obstacle for successful immunotherapy. Indeed, high
number of tumor-infiltrating Tregs has been associated with
poor prognosis in several malignancies (4, 175). Conditional
depletion of Tregs has been shown to increase anti-tumor
immunity in mouse models of cancer suggesting that targeting
Tregs could be beneficial approach for cancer patients (176–178).
However, the lack of Treg-specific cell surface markers presents a
major challenge for this task. Further, targeting Tregs specifically
in the tumor microenvironment in order to prevent harmful
systemic immune reactions present even a greater challenge.
Interestingly, Anz et al. discovered that integrin αE (CD103) is
expressed at significantly higher levels in tumor-infiltrating Tregs
in several mouse cancer models compared to other peripheral

Tregs (90% in CT26-infiltrating Tregs vs. 20% in splenic Tregs)
due to increased levels of TGFβ in the tumor microenvironment
(179). In addition, αE+ Tregs displayed significantly more
suppressive phenotype in vitro compared to αE negative Tregs.
However, given the high expression also on anti-tumorigenic
DCs and CD8+ T cells, αE seems to be an unsuitable target for
cancer immunotherapy.

MDSCs and tumor-associated macrophages (TAMs) also
represent cell populations capable of efficient suppression of
natural anti-tumor immunity. MDSCs are a heterogeneous
population of cells consisting of immature myeloid cells and
myeloid progenitor cells (180). As other leukocytes, they are
generated in the BM but during pathological conditions such
infection or cancer they fail to differentiate into mature DCs,
macrophages or granulocytes which leads to accumulation
of immature myeloid cells with highly immunosuppressive
phenotype (180, 181). MDSCs can be divided into different
sub-populations in humans (CD11b+CD14−CD15+,
CD11b+CD14−CD66b+ and CD11b+CD14+HLA-
DR−/loCD15) and mice (CD11b+Ly6G+Ly6Clo and
CD11b+Ly6G−Ly6Chi) based on their phenotypic differences
but they all share myeloid origin and the ability to strongly
suppress T and NK cell activity (180–182). MDSCs are recruited
into the tumor site by the malignant cells by increasing the
level of various soluble factors including IL-6, GM-CSF, TGFβ,
VEGF and chemokines such as CCL2 and CCL5, in the tumor
microenvironment (180, 183). After reaching the tumor site,
MDSCs efficiently suppress the anti-tumor immunity by various
mechanisms such as by depleting T cell nutrients such as L-
arginine, by producing reactive oxygen species (ROS) and nitric
oxide (NO) and by promoting the development of Tregs. Indeed,
several studies have reported an increase in anti-tumor immunity
following depletion or suppression of MDSCs in mouse models
of cancer (184–186). Among human patients, an increase in
MDSCs has been observed in the tumor tissue and peripheral
blood in many cancer types (187–191). Further, an increase
in MDSCs in the peripheral blood has been associated with
poor prognosis in patients with various solid tumors (5, 192).
Interestingly, Jin et al. reported VLA-4 being responsible for
recruitment of circulating monocytes and macrophages into
the tumor site (193). Later it was found that tumor growth was
significantly suppressed in mice lacking activated form of VLA-4
and in WT mice treated with mAbs targeting VLA-4 (194).
In addition, tumors derived from these mice had significantly
reduced frequencies of total CD11b+Gr1+ myeloid cells but
increased numbers of CD8+ T cells and mature (CD80+) DCs.
In vitro IL-4 stimulated macrophages derived from mice lacking
activated form of VLA-4 also showed decreased levels of Il10,
Tgfb1, andArg1mRNAs but increased levels of mRNAs encoding
for IFNγ and IL-12 compared to WTmacrophages. These results
suggested that VLA-4 regulates MDSC trafficking into the tumor
site and also promotes myeloid cell polarization toward immune
suppressive phenotype, inhibits anti-tumor immunity and thus
promotes tumor growth.

Mac-1 is highly expressed in myeloid cells and plays a
key role in various myeloid cell functions including migration,
phagocytosis, and chemotaxis (195). In addition, given that
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mAbs targeting Mac-1 have been shown to decrease myeloid
cell tissue infiltration and inflammation (196), targeting Mac-
1 could also reduce the recruitment of suppressive myeloid
cells into the tumor site. Indeed, Zhang et al. demonstrated
that CD11b (αM-chain of Mac-1) deficiency reduced intestinal
tumor growth in mice by reducing myeloid cell trafficking to
the tumor microenvironment (197). Further, CD11b blockade
also decreased myeloid cell recruitment into tumors in
immune deficient mice bearing human squamous cell carcinoma
xenografts and thus improved the anti-tumor responses to
radiotherapy (198). However, as Mac-1 has been shown to
play other roles in immunity than simply affecting cell
recruitment, e.g., in immune suppression, it is possible that
CD11b blockade also has other, as yet unrecognized effects on
anti-tumor immunity.

Integrins and Other Cell Adhesion
Molecules Also Have Cell Intrinsic Effects
on Tumor Cells
Integrin expression on tumor cells themselves has been
associated with tumor progression and metastasis by increasing
the proliferation, survival, migration and invasion of the
malignant cells (199). Integrin ligation can promote tumor cell
survival by several mechanisms such as by inhibiting p53 and
caspase-9 via αV (200) and by increasing anti-apoptotic proteins
Bcl-2 and Bcl-XL via αVβ5 and αVβ3 (201). Particularly integrin
αVβ3 has been associated with tumor progression in various
human malignancies (202–204) and it co-operates with SRC
oncogene to enhance anchorage-independent tumor growth and
promotes lymph node metastases (205, 206). Other integrins
have also been shown to co-operate with oncogenes including
β4 which amplifies the signaling of ErbB2 to promote mammary
tumorigenesis (207). In addition, integrins such as β3 may
also function as markers for highly tumorigenic cancer stem
cells (208).

Besides on tumor-associated vasculature, aberrant VCAM-
1 expression has also been described on many types of tumor
cells such as breast, renal and gastric carcinoma cells (97, 209).
Up-regulation of VCAM-1 on malignant cells is associated with
increased ability to metastasize and recruit tumor-associated
monocytes and macrophages. Also ICAM-1 expression has been
associated with the malignant potential of tumor cells and has
thus been associated with metastases and poor prognosis in
several cancers including melanoma, breast, lung and oral cancer
(210–213). Given that MUC-1 which is often expressed on tumor
cells (214) can also interact with ICAM-1, circulating cancer cells
can adhere to endothelial cells which may represent the first
step in metastases formation (215). MUC-1-ICAM-1 interaction
can then induce cytokine secretion and ICAM-1 up-regulation
in the malignant cells thus recruiting macrophages. Indeed,
macrophage infiltration has been demonstrated to correlate with
ICAM-1 expressing tumor cells in oral squamous cell carcinoma
(213). Macrophage-derived cytokines can then further attract
neutrophils which secrete proteases promoting extraluminal
migration of the malignant cells (215). Further strengthening
the role of ICAM-1 in tumor metastasis, tumor cell lines

transfected with ICAM-1 showed enhanced invasive capacity
and proliferation in vitro (211, 213) and ICAM-1 blockade have
been shown to decrease tumor cell invasion in vitro (211, 216).
In addition, an increase in serum levels of soluble ICAM-1
(sICAM-1) has been associated with disease progression, tumor
aggressiveness and decreased survival in several malignancies
such as melanoma, chronic B-lymphocytic leukemia, lymphoma,
and CRC (217–220).

Given the specific expression on hematopoietic cells, LFA-1
plays a role in the development of hematological malignancies
such as leukemias and lymphomas. Chronic lymphocytic
leukemia (CLL) is the most common leukemia in the Western
countries (221). It is characterized by clonal mature B cell
accumulation in the BM, blood and other lymphoid tissues and
advanced disease often manifests itself as lymphadenopathy,
hepatomegaly, splenomegaly, BM failure, and recurrent
infections. The malignant CLL cells are highly dependent on
lymphoid microenvironment where they interact with and
receive survival and proliferation signals from the accessory
cells (222). In addition to chemokines, malignant cells require
the expression of leukocyte adhesion molecules, particularly
LFA-1 and VLA-4, in order to migrate into the lymphoid tissues.
Interestingly, Montresor et al. reported differences in integrin
signaling in human CLL cells compared to healthy B cells
(223). Signaling molecules such as PIP5KC, RAC1, and CDC42
regulating integrin conformational change into the active form
in normal lymphocytes showed either none or severely decreased
regulatory role in CLL cells. By using live cell imaging, Till et al.
further showed that in contrast to LFA-1 expressed on normal
human B cells, LFA-1 expressed on CLL cells can be in its active
conformation without chemokine induced clustering (224). In
addition to aberrant integrin signaling, the expression levels of
adhesion molecules on CLL cells usually differ from healthy B
cells. Generally, the expression of various adhesion molecules
including β2- and β1-integrins, CD54, CD62L, and CD44 is very
low on peripheral blood and BM CLL cells compared to cells
derived from healthy donors (225). Interestingly, Hartmann et al.
demonstrated that CLL cells require the same integrins as healthy
B cells in trafficking through the BM, spleen, and lymph nodes
(226). On the contrary to normal human B cells, CLL cells were
unable to arrest in ICAM-1 expressing endothelium in vitro and
to migrate to lymph nodes of NOD/SCIDmice in vivo due to low
expression of LFA-1. In addition to low LFA-1 expression, VLA-4
expression was variable on CLL cells but yet significantly reduced
compared to healthy B cells. Therefore, the ability of human
CLL cells to migrate to the BM of NOD/SCID mice in vivo was
significantly reduced compared to normal B cells. These results
suggested that CLL cell migration to the BM and lymph nodes
is decreased due to low expression of LFA-1 and VLA-4 thus
causing an accumulation in the blood and spleen. Interestingly,
the same study also reported that significantly higher expression
of LFA-1 and VLA-4 was detected on CLL cells derived from
high-risk patients with unfavorable cytogenetic abnormalities
such as trisomy 12, deletion 17p or deletion 11q (226). Increased
expression of integrins including LFA-1 and VLA-4 on CLL
cells among patients with trisomy 12 has also been reported by
others and the increase has been associated with up-regulation
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of molecules regulating integrin inside-out signaling such
as RAP1B and RAPL and with enhanced ligand (ICAM-1,
VCAM-1) binding and migration in vitro (227, 228). These
results suggest that up-regulation of cell adhesion molecules,
particularly LFA-1 and VLA-4, could increase CLL cell migration
to lymphoid tissues where they would receive more proliferation
and survival signals thus leading to more aggressive disease
(226, 227). Indeed, higher expression of CD11a (LFA-1 α-chain)
on CLL cells has been associated with increase in tumor burden
(225) and higher expression of CD49d (VLA-4 α-chain) with
disease progression and decreased overall survival (229–231).

Multiple myeloma (MM) is a cancer of the BM caused by
malignant, terminally differentiated plasma cells (PCs) (232,
233). It is the second most common hematological malignancy
in the world and its symptoms include increased calcium levels,
renal insufficiency, anemia, and/or bone lesions. Inmost cases the
malignant plasma cells also secrete monoclonal immunoglobulin
proteins (M-proteins) that can be detected in blood and/or urine.
Despite the recent improvements in MM therapies, MM is still
largely considered to be an incurable disease. As in CLL (222),
adhesion molecules play an important role in the interactions
between MM cells and accessory cells in the BM thus promoting
the proliferation and survival of the malignant cells (234).
Indeed, high proportion of human myeloma cells have been
shown to express various adhesion molecules including LFA-
1, VLA-4, CD44, and ICAM-1 (235–237). LFA-1 expression on
myeloma cells in particular has been associated with aggressive
disease (236, 237) and to correlate with disease activity (235).
Interestingly, by using a mouse MM cell line (5T33MMvt),
Asosingh et al. demonstrated LFA-1 playing a role in homotypic
cell-cell adhesion and cell proliferation of myeloma cells in vitro
(238). Further, in contrast to LFA-1 negative cells, only LFA-
1 expressing 5T33MMvt cells were able to cause disease in
vivo. Finally, various adhesion molecules including LFA-1 and
VLA-4 have also been associated with drug resistance in MM
patients (239).

Anti-Tumor Therapy Targeting Cell
Adhesion Molecules
Given that integrin function has been associated with tumor
progression, there has been great interest in targeting integrins
in the treatment of cancer. However, since integrins also play
diverse roles in immunity and anti-tumor responses, blocking
or enhancing the function of these molecules in vivo may
be difficult.

The majority of drugs targeting integrins in the aim
to treat cancer inhibit the function of αV- or β1-integrins
(240, 241). Both integrin classes have been shown to be
highly expressed in many human malignancies and antagonists
targeting αV or β1 indeed suppressed tumor growth in
preclinical mouse models (199, 202, 242–248). As a result,
there have been multiple clinical trials targeting integrins
either as a single therapy or in combination with conventional
therapies in treating various human cancers (249–289) (Table 1).
However, in contrast to the pre-clinical studies, the results
from clinical trials were rather disappointing with αV or β1

antagonists generally showing either no or only week anti-
tumor efficacy (Table 1). In one phase II clinical trial with
advanced prostate cancer patients, intetumumab (CNTO 95), a
mAb targetingmultiple αV integrins, in fact resulted in decreased
progression-free and overall survival compared to placebo
(276). However, it could be possible to improve therapeutic
responses of integrin targeting by combining it with other
immunotherapies. Indeed, mouse studies conducted by Kwan
et al. demonstrated that by combining a fusion protein, consisting
of a mouse Fc domain and RGD-binding integrin targeting
peptide, with albumin/IL-2 or anti-PD-1 immunotherapy it
was possible to enhance anti-tumor immunity and tumor
suppression (290).

Due to the specific expression on hematopoietic cells, β2-
integrins have mainly been aimed to target to treat inflammatory
diseases including liver fibrosis (291) and autoimmune diseases,
including arthritis (292), and psoriasis (293). In pre-clinical
studies, LFA-1 small-molecule antagonist (BMS-587101)
inhibited LFA-1-mediated T cell adhesion to endothelial cells,
Th1 cytokine production, and T cell proliferation in vitro and
also inhibited inflammation in vivo (292). In the context of
cancer, β2-integrins, mainly LFA-1, would be an attractive
target to treat hematological cancers such as leukemias and
lymphomas (294, 295). In addition, LFA-1 small molecule
antagonists have also demonstrated anti-tumor efficacy against
solid tumors in mice (296). However, given that LFA-1 promotes
T cell activation and migration, blocking the function of LFA-1
may in fact increase the risk of malignancies and infections
(297). Indeed, anti-LFA-1 therapy has been associated with rare
but severe systemic adverse events such as immune-mediated
thrombocytopenia and hemolytic anemia (298). Further, in
2009, after more than 45,000 psoriasis patients had been treated
with efalizumab (humanized anti-CD11a mAb), the drug was
withdrawn from the market due to three confirmed cases of fatal
viral-based multifocal leukoencephalopathy (PML) (297, 299).
One possibility to harness the anti-tumor efficacy of LFA-1
blockade without inducing severe adverse events would be
to target LFA-1 specifically on tumor cells. Indeed, Cohen
et al. demonstrated that by using bispecific antibody which
simultaneously targets LFA-1 and a tumor specific antigen it
was possible to specifically block LFA-1-mediated tumor cell
adhesion without affecting immune responses in mice (294). In
addition, it is also noteworthy that since activation of LFA-1 has
been shown to regulate the activity of VLA-4, drugs targeting
LFA-1 may also affect the function of other integrins (300).

Given the lack of anti-tumor efficacy and in the case of LFA-
1 blockers, the severity of adverse events, it could be more
feasible to target the integrin ligands on tumor vessels than the
integrins themselves in order to enhance T cell infiltration to the
tumor site. As discussed before, previously E-selectin negative
tumor-associated vessels in human SCC samples up-regulated
E-selectin following treatment with imiquimod (TLR-7 agonist)
which resulted in CD8+ T cell influx into the tumor and
tumor regression (129). Also systemic thermal therapy (STT)
induced the activation of IL-6 trans-signaling causing up-
regulation of ICAM-1 on tumor vascular endothelium and thus
increased the homing of adoptively transferred CD8+ T cells
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into tumors in mouse models of cancer (125). Further, CpG-
ODN (oligodeoxynucleotides (ODN) with cytocine-guanine-
rich (CpG) motifs) vaccination caused up-regulation of ICAM-
1 and VCAM-1 on tumor-associated blood vessel endothelia
leading to strong tumor-infiltration of adoptively transferred
tumor-specific T cells and tumor suppression in mouse
model of pancreatic islet cell carcinoma (301). These results
demonstrated that by increasing inflammatory signals in the
tumor microenvironment it could be possible to enhance T cell
infiltration into tumors and thus T-cell mediated tumor cell
killing. The most straight forward way to increase inflammatory
signals would be to administer inflammatory cytokines such
as TNFα or IFNγ systemically (302). However, this could lead
to severe adverse events as has been demonstrated with the
systemic administration of TNFα which was associated with
risk of septic shock syndrome leading to multi-organ failure
(303). Delivery of inflammatory cytokines or other inflammatory
stimuli directly to the tumor site could reduce the risk of side
effects (302). Further, systemic administration of TNFα coupled
to ACDCRGDCFCG-peptide, a ligand for αVβ3-integrin, has
enabled targeting the tumor vasculature and inducing anti-
tumor effects in tumor-bearingmice (304). Given that angiogenic
factors have been shown to cause decrease in ICAM-1 and
VCAM-1 expression on tumor associated vessels (105, 110),
targeting angiogenesis could also increase T cell infiltration
into tumors. Indeed, treatment with angiogenesis inhibitor
anginex significantly up-regulated the expression of VCAM-1
and E-selectin on tumor blood vessel endothelial cells resulting
in increase in tumor-infiltrating leukocytes and suppression
of tumor growth in mouse models of cancer (305). Further,
VEGF blockade significantly increased tumor infiltration of

adoptively transferred T cells thus promoting tumor suppression
in mice (306).

Among therapies involving adoptively transferred cells,
chimeric antigen receptor (CAR) T cell therapy has shown
promise in cancer treatment due to measurable responses in
several clinical trials across various malignancies (307–310).
Given that CAR T cells are usually constructed by joining an
antigen-recognition moiety such as single chain antibody (scFv)
to TCR/CD3 complex and by adding costimulatory domain such
as CD28 or CD137 to improve cell survival and proliferation,
CAR T cell therapy has several advantages to conventional
T cell therapy such as higher antigen binding affinity and
independency ofMHC expression on tumor cells (311). However,
the major obstacle for CAR T cell therapy is often the inability
of the transferred cells to migrate and extravasate into the
tumor (312). One way to overcome this obstacle could be
to generate a CAR T cell with specificity to tumor-associated
vasculature instead of the tumor cells themselves (313). Fu et al.
constructed a CAR T cell containing a peptide sequence for
echistatin (T-eCAR) which has a high affinity to the integrin
highly expressed on tumor vasculature endothelium, αVβ3
(313). Indeed, T-eCAR cells efficiently lysed αVβ3 expressing
human umbilical vein endothelial cells and tumor cells in vitro.
Further, these cells led to extensive bleeding in the tumor
tissue and thus tumor growth suppression while sparing normal
tissues in mice. In addition to CAR T cells, integrins expressed
on the tumor vasculature could also be utilized in order to
target drug-delivering nanoparticles to the tumor tissue more
efficiently (199). Murphy et al. demonstrated that doxorubicin
containing, αVβ3-targeted lipid nanoparticles effectively targeted
tumor vessels leading to their apoptosis in mouse models of

TABLE 2 | Adhesion molecule-mediated events promoting tumor growth.

Event Type of tumor Adhesion molecule-mediated mechanisms

operating in the tumor microenvironment

Consequence for tumor progression References

1 Solid Increased secretion of angiogenic factors by the

tumor cells reduces the expression of various

adhesion molecules including ICAM-1/2, VCAM-1

and E-selectin in tumor-associated endothelial cells

Leukocytes in blood are unable to extravasate to

the tumor site (endothelial anergy)

(102, 103, 105,

110–112)

2 Solid Dying tumor cells become opsonized with iC3b DCs interact with dying tumor cells via β2-integrins

Mac-1 and CD11c/CD18 leading to suppression of

DC activation and tolerance

(146, 147)

3 Solid High expression of adhesion molecules including

ICAM-1, VLA-4 and L-selectin on Tregs

Affects Treg trafficking possibly enabling them to

reach the tumor site where they suppress effector T

cells leading to tumor evasion of the immune system

(168)

4 Solid High expression of VLA-4 and CD11b on myeloid

cells

Myeloid cells are able to reach the tumor site and

promote angiogenesis and tumor growth

(193, 195–197)

5 Solid Expression of various integrins including αVβ3,

ICAM-1 and VCAM-1 on tumor cells

Increase in tumor cell proliferation, survival and

invasion, recruitment of Tumor Associated

Macrophages (TAMs) which allows evasion of the

immune system

(97, 201–206,

209–213)

6 Solid Expression of MUC-1 on tumor cells, which is able

to bind to ICAM-1 in endothelial cells

Tumor cells are able to cross the endothelial barrier,

which promotes metastasis

(214, 215)

7 Hematological Upregulation of LFA-1/VLA-4 expression on tumor

cells which are able to bind to ICAM-1/VCAM-1 in

endothelial cells

Tumor cells are able to cross the endothelial barrier

and migrate to lymphoid tissues to receive more

proliferation and survival signals promoting tumor

progression

(222, 225–

227, 229–231,

235–237)
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cancer (314). Moreover, αVβ3-targeted nanoparticles showed
anti-metastatic effects in spontaneous metastases models without
causing adverse events associated with systemic administration of
free doxorubicin.

It may also be possible to enhance the anti-tumor response
of adoptively transferred cells by increasing LFA-1 function in
the cells. Simply “locking” LFA-1 in an active state (through
mutation) is unlikely to be successful, as T cells expressing
such mutated integrins are actually deficient in T cell migration,
which requires dynamic modulation of integrin activity (315).
Instead, indirect approaches may be required. Indeed, mutation
of a phosphorylation site in VLA-4 leads to increased LFA-
1 activity (through integrin transregulation) and enhanced
tumor immunity (316). Also, modulating LFA-1 activation status
through engineering of ALCAM increases tumor rejection of
brain tumors (317).

Conclusions and Future Perspectives
Taken together, adhesion molecules play vital roles in the
function of the immune system both in health and disease.
During cancer development, adhesion molecules, particularly
integrins, mediate crucial functions in nearly every step of
the anti-tumor response including in tumor antigen uptake,
activation of tumor-specific T cells, leukocyte trafficking into the
tumor site and tumor cell killing. However, malignant cells can
also utilize cell adhesion molecule pathways to promote tumor
growth. Expression of various integrins on tumor cells promotes
tumor cell proliferation, survival and metastases while increased
secretion of angiogenic molecules causes down-regulation of
adhesion molecules on tumor-associated blood vessels and thus
prevents immune effector cell infiltration into the tumor. Tumor
cells also recruit regulatory cells such as Tregs and MDSCs
which express high levels of integrins enabling them to reach

the tumor site. The main cell adhesion molecule-mediated events
promoting tumor growth are listed in Table 2.

Immunotherapy including immune checkpoint blockade and
CAR T cells has revolutionized the field of cancer therapy
during the last decades. Given the various roles in tumor
development, integrins also seem like promising targets for
cancer therapy. However, clinical trials targeting integrins
directly on malignant cells have shown disappointing results
with low therapeutic efficacy. Rather, increasing the expression
or function of β2-integrins on immune cells or their ligands
on tumor-associated blood vessels and enhancing anti-tumor
responses may represent a more efficient approach. In addition,
considering that still a considerable number of patients do not
benefit from current forms of immunotherapy due to the inability
of T cells to access the tumor microenvironment, enhancing
β2-integrin function could open a possibility to overcome this
impediment. For this and also to prevent harmful treatment-
related adverse events, it is vital to fully understand the various
functions of β2-integrins and how their expression and function
are regulated.
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