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This study aims to understand what lupus nephritis is, its origin, clinical context, and

its pathogenesis. Truly, we encounter many conceptual and immanent tribulations in our

attempts to search for the pathogenesis of this disease—and how to explain its assumed

link to SLE. Central in the present landscape stay a short history of the early studies that

substantiated the structures of isolated or chromatin-assembledmammalian dsDNA, and

its assumed, highly controversial role in induction of anti-dsDNA antibodies. Arguments

discussed here may provoke the view that anti-dsDNA antibodies are not what we think

they are, as they may be antibodies operational in quite different biological contexts,

although they bind dsDNA by chance. This may not mean that these antibodies are not

pathogenic but they do not inform how they are so. This theoretical study centers the

content around the origin and impact of extra-cellular DNA, and if dsDNA has an effect

on the adaptive immune system. The pathogenic potential of chromatin-anti-dsDNA

antibody interactions is limited to incite lupus nephritis and dermatitis whichmay be linked

in a common pathogenic process. These are major criteria in SLE classification systems

but are not shared with other defined manifestations in SLE, which may mean that they

are their own disease entities, and not integrated in SLE. Today, the models thought

to explain lupus nephritis are divergent and inconsistent. We miss a comprehensive

perspective to try the different models against each other. To do this, we need to take all

elements of the syndrome SLE into account. This can only be achieved by concentrating

on the interactions between autoimmunity, immunopathology, deviant cell death and

necrotic chromatin in context of elements of system science. System science provides

a framework where data generated by experts can be compared, and tested against

each other. This approach open for consensus on central elements making up “lupus

nephritis” to separate what we agree on and how to understand the basis for conflicting

models. This has not been done yet in a systematic context.
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Rekvig Lupus Nephritis: A Controversial Disease

INTRODUCTION

In this critical review, different aspects of pathogenic processes
suspected or proven to be involved in lupus nephritis are
discussed; (i) The exposure of dsDNA, and the impact of
its surface structure and net charge exposed in pure dsDNA
vs. DNA in chromatin; (ii) Anti-dsDNA antibodies, whether
homologous or heterologous depending on whether instigated
by DNA or non-DNA structures, and what they recognize
in glomeruli; (iii) If lupus nephritis in a critical sense is an
intrinsic part of SLE; and as a direct consequence of the last
question; (iv) Whether SLE is an abstraction without a clear
definition, which may allow us to regard lupus nephritis as a
single disease entity; and (v)Whether production of anti-dsDNA
antibodies induce the same pathogenic processes in non-SLE
(like in cancer) patients as they do in SLE. In other words,
can lupus nephritis etiologically be regarded as an integrated
part of SLE—or can it stand alone? These dilemmas may
not center around a clinical diagnosis, but around processes
that may describe the molecular and cellular events that in
sum define lupus nephritis. In this context, it is important
to discuss factors that prime the inflammatory processes in
lupus nephritis, and not secondary inflammatory mediators like
complement activation, cytokines or their receptors, because
the initiators of lupus nephritis inherit the principle, while
inflammatory pathways are secondary responses instigated by
the principal inducers of lupus nephritis—like type II or
type III immune mediated tissue inflammation. In fact, if we
summarize data over the last decades, both type II and type
III have been claimed to account for lupus nephritis. One
tribulation is whether type II immune mediated nephritis is
more like Goodpasture syndrome (1, 2) than like lupus nephritis.
However, there are many more problems that need to be
solved before we can develop a true pathogenic model of lupus
nephritis (see below). These problems represent the focus of
this study.

THE dsDNA: STRUCTURE, AUTOIMMUNE
INDUCER, AND TARGET—STATUS AND A
SHORT SCIENTIFIC HISTORY

In two foregoing studies, an historical and contemporary
overview of anti-dsDNA antibodies (3) and a condensed history
of the evolution of our contemporary opinions on SLE (4)
have been published. These two studies aimed at a central
understanding of the role of dsDNA and how it is involved
in lupus nephritis. On the other hand, it is possible that
dsDNA plays a bystander role in the disease, if e.g., anti-dsDNA
antibodies recognize different obligate glomerular structures
(see below). In that sense it is essential to approach historical
and contemporary studies and hypotheses as backdrops to
understand how paradigms related to SLE and anti-dsDNA
antibodies have evolved over time. In other words, history is
also in this context important to consider in order to understand
contemporary paradigms. Ludvik Fleck once said: “For the
current state of knowledge remains vague when history is not

considered, just as history remains vague without substantive
knowledge of the current state” [(5), cited in (4)].

Whether the antibodies described in 1957 in SLE (6–9)
were specific for dsDNA and not for other DNA structures
like ssDNA can be discussed in terms of history of science
on dsDNA. The scientific history of DNA originates from
studies performed during the 19th century. DNA was first
identified as a unique substance in the late 1860s by the Swiss
chemist Friedrich Miescher [(10), see also the biographical
presentation of Miescher by (11)]. In the aftermath of Miescher’s
discovery, studies revealed fundamental details about the DNA
molecule. This resulted in important discoveries describing the
chemical composition of DNA, including its primary chemical
components and the ways in which chains joined with one each
other. Central scientists were Phoebus Levene, who provided
evidence that different forms of nucleic acids existed—DNA and
RNA, and he also determined that DNA contained adenine,
guanine, thymine, cytosine, deoxyribose, and a phosphate group
(12); and Erwin Chargaff, who was the first to present evidence
that the DNA structure exists as a double helix constituted by
two complementary single-strand DNA molecules (13, 14) (see
below). With these important and pioneering studies, the enigma
of inheritance started to be revealed.

A central researcher aiming to solve this scientific puzzle was
Rosalind Elsie Franklin, a British chemist [see the comprehensive
biography on Rosalind Franklin by Brenda Maddox, (15)].
Franklin contributed significantly to the discovery of the three-
dimensional structure of dsDNA by X-ray crystallography (16).
In these studies, she precisely described the double helix of
DNA, a discovery that placed her in the first row of those days
biochemical scientists aimed to describe the nature, structure and
function, basically of Miescher’s “nuclein” (11) and transformed
it into dsDNA! Watson and Crick and their studies that
were published in 1953 stated that the DNA molecule exists
in the form of a three-dimensional double helix (17). Their
conclusions were based particularly on Franklin’s analyses and
her interpretations, but also on results of the studies performed
by Levene and Chargaff. One may consider if Watson and Crick
at all should be in the first line of candidates to receive the
Nobel price. Levene, Chargaff and Franklin presented all the
elements to describe dsDNA as a double helix three-dimensional
DNA structure.

The central work of Chargaff, Levene, and Franklin were
remodeled into the paradigms now called The Chargaff ’s rules.
These paradigms state that any DNA from cells of any species
have a 1:1 ratio (base Pair Rule) of pyrimidine and purine bases.
They stated that the amount of guanine equals the amount of
cytosine, and that the amount of adenine equals the amount of
thymine. This double helix pattern of DNA is equal in DNA from
all species and provides evidence that we all evolve from the same
genetical principle (see Figure 1 and Table 1).

Chargaffs Rules (13, 14)
Chargaff demonstrated that the double helix was created
and stabilized by A–T and C–G interactions. The data
of his experiments were organized and summarized as
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FIGURE 1 | Structure of dsDNA and Chargaffs rules for a double-helix dsDNA.

In this figure Chargaff’s first rule demonstrates that DNA from any cell of all

organisms have a 1:1 ratio (base Pair Rule) of pyrimidine and purine bases

and, more specifically, that the amount of guanine is equal to cytosine and the

amount of adenine is equal to thymine. This pattern is found in both strands of

the DNA. The figure also demonstrates Chargaffs second rule saying that the

proportion of A/T and C/G holds true for both strands.

Chargaff ’s Two Rules (see Table 1 for examples including
human dsDNA):

1. The number of Adenine bases is equal to the number of
Thymine bases and the number of Cytosine is equal to
Guanine bases: (nA = nT; A/T = 1; nC = nG; C/G = 1), and
the sum of A, T, C, G, is always 100% in the DNA double helix
molecule isolated from a cell.

2. The proportion of A/T and C/G holds true for both strands.
In sum: A/T=G/C=1.

All antibodies that bind nucleic acids characterized by the ratio
in the formula 1 given above must consequently bee defined as
anti-dsDNA or anti-native dsDNA antibodies.

Considering the rough methods Chargaff, co-workers and
successors used to purify nuclein (DNA), the double helix must
have been very robust. We know that the DNA purified for
the purpose of detecting anti-dsDNA antibodies was in fact
dominantly dsDNA also without further active elimination of
ssDNA [(19, 20), Rekvig, unpublished observations]. Thus, the
dsDNA structure described above turned out to be the target for
anti-dsDNA antibodies in SLE, a statement that also may be valid
for the early 1938 detection of anti-DNA antibodies in context
of infections (21–23), and that complexes between them had the
potential to induce inflammation in SLE-related lupus nephritis
[for review see e.g., (4) and below].

TABLE 1 | This table is a representative sample of Chargaff’s et al. (13) data,

taken with slightly modified table published by Bansal (18), listing the base

composition of DNA from various organisms.

Organism Taxon %G %C G/C %A %T A/T %GC %AT

Maize Zea 22.8 23.2 0.98 26.8 27.2 0.99 46.1 54.0

Octopus Octopus 17.6 17.6 1.00 33.2 31.6 1.05 35.2 64.8

Chicken Gallus 22.0 21.6 1.02 28.0 28.4 0.99 43.7 56.4

Rat Rattus 21.4 20.5 1.00 28.6 28.4 1.01 42.9 57.0

Human Homo 20.7 20.0 1.04 29.3 30.0 0.98 40.7 59.3

Grasshopper Orthoptera 20.5 20.7 0.99 29.3 29.3 1.00 41.2 58.6

Sea Urchin Echinacea 17.7 17.3 1.02 32.8 32.1 1.02 35.0 64.9

Wheat Triticum 22.7 22.8 1.00 27.3 27.1 1.01 45.5 54.4

Yeast Saccharomyces 18.7 17.1 1.09 31.3 32.9 0.95 35.8 64.4

E. coli Escherichia 26.0 25.7 1.01 24.7 23.6 1.05 51.7 48.3

ϕX174 PhiX174 23.3 21.5 1.08 24.0 31.2 0.77 44.8 55.2

The data support both of Chargaff’s rules (13, 14). An organism such as ϕX174 with

significant variation from A/T and G/C equal to one, is indicative of single stranded DNA.

ANTI-dsDNA ANTIBODIES: HOW ARE
THEY FORMED—AND IN WHICH
PRINCIPAL CLINICAL CONTEXTS

To answer these questions, we have to rigorously define whether
an anti-dsDNA antibody represents a response to exposed
dsDNA or to a non-dsDNA/non-DNA structure by molecular
mimicry (see below).

Anti-dsDNA Antibodies: Is dsDNA a Stable
Structure That May Be Immunogenic
in vivo?
Interpretation of the structure originally called nuclein, as a
derivation from Chargaffs rules, the DNA was most probably
used in the first assays in the form of the canonical double helix
DNA. Since the A/T and G/C ratios were stable [Table 1, and
Figure 1 (13, 17)] and since they in sum did not deviate toward
an overrepresentation of any of the bases that could indicate
presence of ssDNA domains (Table 1), we can in retrospect
conclude that the autoantibodies observed in 1957 in SLE (6–9)
recognized dsDNA as a stable structure—and that they cross-
reacted with dsDNA from as different species as like viral,
bacteria, and mammals. DNA is present in all nucleated cells.
If exposed chromatin is potentially dangerous to the body, as
discussed by e.g., Darrah and Andrade (24) and by others (25–
29), this may illuminate how important it is to remove chromatin
from dying cells in an abrupt and silent way.

However, in individuals with anti-dsDNA antibodies and
impaired clearance of cell debris including necrotic chromatin,
like in SLE (30–37), this may change the situation from
a controlled removal of chromatin into a condition where
chromatin debris remains exposed and may be a contributor to
produce and or amplify anti-dsDNA antibodies by interaction
with TLR9 and to promote inflammation. This may be caused by
slow removal of extra-cellular dsDNA by e.g., silencing of DNase
I or blocking of DNase I activity since binding of anti-dsDNA
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antibodies to DNA may inhibit the effect of the endonucleases
[discussed in (29)]. In this situation, externalized DNA is further
targeted by anti-dsDNA/anti-chromatin antibodies, and immune
complexes may be formed both in situ and in circulation (3,
38–40) and, as a consequence, induce serious inflammation
(see below).

Furthermore, once anti-dsDNA antibody production is
initiated (irrespective mechanism), an anti-dsDNA antibody
may bind dsDNA in the extra-cellular compartment. In a
normal situation, in vivo autologous dsDNA is rapidly and
completely digested by DNases. On the other hand, anti-dsDNA
antibodies may be produced and form immune complexes with
the consequence that autologous DNA-containing fragments
are resistant to DNases, then they may bind the DNA-specific
B cell receptor and is transported into endosomes/lysosomes
where TLR9 is sensing unmethylated CpG dinucleotides (41).
Stimulated TLR9 acts via MYD88 and TRAF6, leading to NF-
kappa-B activation, cytokine secretion and the inflammatory
response (42, 43). TLR9 promote in this way increased
inflammation and amplification of anti-dsDNA antibodies [(44,
45), see a model in Figure 2].

In sum, the pioneers that described nuclein (11) as dsDNA
(12, 13, 17), had a substantial influence on the discovery of anti-
dsDNA antibodies in an autoimmune context in 1957 (6–9) and
on the potential of dsDNA and anti-dsDNA antibody complexes
to drive inflammation, as we see in e.g., lupus nephritis.

SLE: A Disease With High Rates of
Infectivity and DNA-Specific
Autoimmunity—Is the Latter Depending on
the First?
Does the immune system need infection as a sine qua non-
contributor to incite anti-chromatin/anti-dsDNA antibodies
(see main hypothesis in Figure 3A)—and is this hypothesis a
factual substantiation of the hapten-carrier system in which T
cells recognize the infectious-derived chromatin-bound protein
(exemplified by polyomavirus T antigen in Figure 3A) while
B cells recognize hapten-like autologous chromatin structures
as dsDNA, histones, transcription factors and other chromatin-
associated proteins [Figure 3A (46–50), reviewed in (3, 51)].

Over so many years, we have not succeeded in understanding
what the immune system recognize and act upon in context
of spontaneous production of anti-dsDNA antibodies in vivo.
Since the 1980s, studies were concerned around the following
problems; what instigated anti-dsDNA antibodies, what were
their targets, dsDNA or non-DNA structures (52–54), why
did they correlate with disease (SLE) [(55), reviewed in (4)],
how to detect them in the most appropriate way, and what
make them pathogenic (56–58)? This is a concentrate of the
problems being in focus over the last 50 years—and still is.
Do cell death in context of infection, and consequent release
of hetero-complexes between host chromatin and infectious-
derived ligands explain the whole repertoire of chromatin
antibodies in SLE (see Figure 3A), known to be overrepresented
with respect to infections and to factual production of anti-
dsDNA antibodies [see e.g., references (59–72)]? For example,

the Epstein-Barr nuclear antigen 1 (EBNA1) (50); the C-terminal
DNA-binding domain of the human papillomavirus E2 protein
(46); the Fus 1 peptide derived from Trypanosoma cruzi (73); or
polyomavirus large T antigen (47, 48) have all the evident and
predictive potential to render dsDNA/chromatin immunogenic
in vivo upon complex formation. Infection and autoimmunity
may therefore be linked together in many situations where
infections tend to be chronic or recurrent, and cell death rates are
high (see Figure 3A as a model to explain linked production of
different chromatin antibodies when infectious-derived proteins
bind chromatin fragments). This model is not restricted to
chromatin autoimmunity, but also to other autologous proteins.
For example, Dong et al. demonstrated that complexes of
T antigen and the tumor suppressor protein p53 terminated
tolerance to p53 (74, 75).

In this sense, one idea is that infectious DNA-binding
proteins and DNA/chromatin fragments are walking hand in
hand in their successful promotion of chromatin autoimmunity.
In this picture B cells represent the autoimmune hand while
infectious protein-specific T cells represent the immune hand—
and upon contact they stimulate each other and transform the
B cells to be autoantibody-producing plasma cells. This has
been directly demonstrated in studies were T antigen-expressing
plasmids were injected in experimental animals under control
of eukaryotic transcription factors (47, 48). In this context,
exposed chromatin and its different molecular structures can
all be targeted by anti-dsDNA and anti-chromatin antibodies if
induced by chromatin fragment-viral DNA-binding proteins (See
Figures 3A,B for amodel thinking). Thismodel says that specters
of chromatin antibodies which are induced by chromatin-peptide
complexes all can target exposed chromatin in situ and provoke
serious inflammation.

Cancer: A Group of Malignant Diseases
With High Rates of Infectivity and
DNA-Specific Autoimmunity—Is the Latter
Depending on the First?
In this sense, cancer may represent a mirror image of
autoimmunity in SLE with respect to infectivity rates and
termination of tolerance for dsDNA and chromatin constituents.
In line with this, anti-dsDNA antibodies are frequently detected
in cancers [reviewed in (3, 4)]. In 1991, the Nobel prize
winner zur Hausen suggested that most of all of human cancers
worldwide are linked to viral infections, including human
papillomaviruses, human T-cell leukemia viruses, hepatitis B
virus, Epstein-Barr virus and polyomaviruses (76, 77). At the
same time, several virus-associated cancer forms are connected
with the production of autoantibodies against dsDNA [see e.g.,
(47, 48) reviewed in (3)]. The impact of viruses in different
cancer forms, and if or how viruses influence the malignancy
of tumor cells may, according to zur Hausen, need to be
revised in light of new viruses that has been discovered in
cancer forms since zur Hausen’s data were discussed in his
1991 Science paper (76). Since cancer and SLE are largely
segregated, the slight over-representation of cancer in SLE (78)
does not reduce the arguments for the view that anti-dsDNA
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FIGURE 2 | Amplification of anti-dsDNA antibody responses through activation of TLR9 by immune-complexes containing DNA-anti-DNA. In (A) anti-dsDNA

antibodies are induced by a classical hapten-carrier complex, in which dsDNA in form of small chromatin complexes represent the hapten and histone peptides

represent the carrier protein. These interactions transform B cells into anti-dsDNA antibody producing plasma cells and enter the extracellular space. Upon cell death,

chromatin is degraded and removed in a fast and silent way by DNases. Anti-dsDNA antibodies bind these small chromatin fragments, make them resistant to DNase.

Then they bind dsDNA through the dsDNA-specific B cell receptor and the dsDNA fragments enter into the endosomes, where TLR9 is sensing unmethylated CpG

dinucleotides (B). Stimulated TLR9 promotes cytokine secretion and the inflammatory response and amplification of anti-dsDNA antibodies. TLR9 promote in this way

increased inflammation and amplification of anti-dsDNA antibodies upon TLR9 sensing of CpG9.

antibodies are generated independently, although possibly by
similar molecular and cellular mechanisms (3) in the two
different types of conditions.

In SLE, the antibodies may crossreact with and bind
inherent renal antigens or chromatin fragments exposed in
kidneys [(79), present study] and initiate nephritis, although
the two binding profiles are principally different as one
is type II and the other is type III immune mediated
inflammation. On the other hand, inflammation in juxtaposition
to a tumor may indicate that autoantibodies may target
chromatin released from necrotic tumor cells and promote
local inflammation in analogy to kidney inflammation caused
by antibody-binding to chromatin exposed in glomeruli (80,
81). Implication of anti-dsDNA antibodies in tumor-associated
tissue has not been directly investigated. Also in cancers,
anti-dsDNA antibodies are from a principal concern not
clinical epiphenomenons, although their genesis is still poorly
understood (if not categorized as local infectious-driven
autoantibodies as principally outlined in Figures 3A,B). One
potent hypothesis may therefore be the impact in cancers
of infections and anti-dsDNA antibodies that are induced
by complexes of tumor-derived chromatin and DNA-binding
infectious-derived peptides.

Genesis of the Anti-dsDNA Antibody in
vivo: Closely Linked to Infections
The role of light chain editing to abolish and control anti-dsDNA
reactivity is recently discussed in SLE [see reference (4) for a
brief discussion]. This type of regulation can be impaired by SLE
susceptibility factors, thereby allowing DNA-specific B cells to
expand in SLE [see (4) and references herein].

Till now, no clear evidence have been presented that
convincingly state that anti-dsDNA antibodies are initiated by
sole exposed autologous DNA/chromatin [(3, 51, 73), discussed
in a highly relevant way back in 1994 by (82)], irrespective
whether they are exposed as native or cell death-associated
modified chromatin structures [discussed in (3, 29, 51)].
However, infectious-derived DNA/chromatin-binding proteins
in complex with chromatin fragments can provide strong T
helper cell stimuli and promote transformation of autoimmune
B cells into autoantibody-producing plasma cells (3). This brings
to light that the infectivity state characteristic of SLE or of
cancers is in intimate context with (auto-)immune competent
cells both physically and functionally (47, 48). This was directly
hinted on already at the time of the first discovery of anti-
dsDNA antibodies in 1938–1939 in patients suffering from
bacterial infections (21–23, 83). Other up today examples of the
link between polyomavirus infection and anti-dsDNA antibodies
was shown in small children with primary polyomavirus BK
infections (84). These infected children produced antibodies to
polyomavirus T antigen and transiently to mammalian dsDNA.
T antigen is the BK virus’ transcription factor and is therefore
a DNA-binding protein that in a native situation binds both
viral and host cell DNA [see above, reviewed in (85)]. In this
situation T antigen was assumed to serve as a T helper cell-
stimulating protein presented by DNA-specific B cells, once the
T cells had been primed by dendritic cells presenting T antigen-
derived peptides [discussed in Figure 3, reviewed in (3)]. Thus,
both along the spontaneous BK virus infection (48, 84) and
as a consequence of experimental expression of T antigen in
vivo or other infectious agents, appearance of anti-dsDNA and
other anti-chromatin antibodies is a predictive outcome [(46, 47),
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FIGURE 3 | Experimental induction of anti-dsDNA antibodies and other

chromatin autoantibodies by in vivo expression of a single viral dsDNA-binding

protein. In (A), Injection of normal mice with plasmids encoding wild type

polyomavirus DNA-binding T antigen in context of eukaryotic promoters

predictively induced production of antibodies to T antigen and significant

production of antibodies to mammalian dsDNA, histones, and to certain

transcription factors like TATA-binding protein (TBP) and cAMP- responsive

element-binding protein (CREB). All autologous chromatin-derived ligands

physically linked to T antigen can therefore be rendered immunogenic to

autoimmune B cells that present peptides derived from T antigen. Therefore,

concerted production of autoantibodies specific for chromatin antigens,

including dsDNA and histones, is not depending on a systemic lupus

erythematosus background, but may appear also in quite healthy individuals.

In (B) the group of chromatin autoantibodies notably including anti-dsDNA

antibodies target exposed chromatin in kidneys. As demonstrated by immune

electron microscopy, it is evident that the autoantibodies target electron dense

structure (EDS), convincingly demonstrated to constitute chromatin fragments

(the left immune electron microscopy in (B). These autoantibodies did not bind

GBM structures or in the mesangial matrix (seen as clean membranes).

However, anti-laminin antibodies added to the sections in vitro bound GBM

(sees as 10 nm gold particle-labeled antibodies), and they did not co-localize

with in vivo-bound anti-chromatin antibodies (seen as 5 nm gold particles) (C).

These data argue for the fact that anti-dsDNA/anti-chromatin antibodies

bound chromatin fragments, and they did not bind inherent, regular membrane

components. (A) Is copied from Rekvig (4).

reviewed in (51)]. Then, why do children with primary BKV that
produce anti-dsDNA antibodies not develop lupus-like nephritis
or dermatitis? This may be explained by absence of exposed
chromatin in glomeruli and in the dermal basement membrane
zone of the skin due to the transient nature of the infection. This
will be further discussed below.

Deviant Cell Death Events Promote
Exposure of DNA/Chromatin—Immunogen
or Target?
If exposed dsDNA in form of chromatin has the potential

to induce anti-dsDNA antibodies remain as an attractive,
although yet an unproven model (29). Chromatin released by

cell death may be linked to aseptic inflammation, and to the
role of disordered cell death processes like exposure of DNA-

containing neutrophil extracellular traps (NETs), secondary
necrotic chromatin, microparticles, andmay be linked to reduced

elimination of dead cell debris (whether of apoptotic or necrotic
origin) (27, 33, 86). NETs were first observed by Brinkmann et al.

(87). Still, however, their function as an assumed complex defense

structure (88) is not fully resolved [see a thoughtful discussion
by (89)]. On the other hand, NETS and secondary necrotic

chromatin have in several studies been suspected to be involved
in inflammatory processes (28, 35, 90–92), and is assumed to

account for increased levels of anti-chromatin antibodies. The
latter association does not, according to my understanding of

the relevant literature, mean that NETS or apoptotic chromatin
induce anti-dsDNA antibodies. This is thoroughly discussed

by Gupta and Kaplan in their review (25) who reached
the conclusion that “. . . .many of the molecules externalized
through NET formation are considered to be key autoantigens
and might be involved in the generation or enhancement of
autoimmune responses in predisposed individuals. . . ..” However,
they did not state that NETS had the potential to induce
anti-dsDNA antibodies. Similarly, Pieterse and van der Vlag
conclude in their study “. . . it can be concluded that increased
apoptosis or NETosis on its own is not sufficient to break
immunological tolerance to nuclear autoantigens in SLE, and
additional factors are required to turn apoptotic material or NETs
into danger triggers of autoimmunity.” (29). Still, we do not
understand whether NETs, necrotic chromatin or microparticles
have the potential to induce antibodies to dsDNA or to
native histones, although it has been demonstrated that they
may initiate antibodies against cell death-modified histones
[discussed in (25)].

In support of these considerations, Radic and Dwivedi have
recently published a comprehensive and critical review on
controversies related to NETs, cell death and autoimmunity
(93). They came to the same conclusion as presented here
as they hesitate to accept that NETs promote humoral
autoimmunity against native chromatin components, inclusive
dsDNA. The autoimmune consequence of perturbed order
of cell death and the impact on adaptive immunity is
hard to comprehend. It is probably an abstraction and not
proven by evidence that these processes have the potential
to promote production of anti-dsDNA antibodies, although
the same structures may drive innate immune-dependent
inflammation in SLE (36, 90, 94). However, diminished removal
of nuclear debris has been demonstrated to correlate with
production of antibodies to cell death-induced structural changes
of proteins in chromatin. This is in harmony with earlier
observations that while histone H4 is non-immunogenic,
triacetylated histone H4 is (95). Recently, Dieker et al.
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observed that autoantibodies against modified histone peptides
in SLE patients were associated with disease activity and
lupus nephritis (91).

Similarly, T cell responses to analogous modified structures
do not allow us to interprete such (helper) T cells as
activator of B cells and thus induce true, anti-native dsDNA
autoantibodies [(26, 91, 94, 96–104), reviewed by Pieterse
and van der Vlag (29)]. Data that demonstrate that deranged
cell death debris can activate T and B cells specific for
altered self chromatin are settled by solid experiments (26,
35, 91, 91, 92, 105). Whether antibodies or T cells against
death-associated chromatin modifications have the potential
to induce inflammation has not been thoroughly studied,
but their recognition and binding to modified (homologous)
chromatin structures exposed as NETs might well promote in
situ formed immunocomplexes, and consequently inflammation.
In harmony with these critical comments, Gordon et al. (96)
demonstrated that NETs inhibition by different approaches,
like genetically manipulated Nox-deficient mice, or by deletion
of PADi4 or pharmacological inhibition of PAD4 activity
hardly had any influence on nephritis, and NETs inhibition
did not affect any aspects of nephritis, did not lead to loss
of tolerance, nor to immune activation (96). Pharmacological
inhibition of PAD activity did not affect the progression
of nephritis into end-organ disease in inducible models of
glomerulonephritis. The authors conclude that the data oppose
the concept that NETs promote autoimmunity and target organ
injury in SLE (96) in agreement with earlier observations by
Campbell et al. (97).

Nevertheless, NETs may serve as in situ targets for
the autoimmune responses and participate in evolution of
organ injury in SLE. Thus, true anti-dsDNA antibodies may
have the ability to sensitize NETs by forming immune
complexes and to initiate inflammation since dsDNA in NETs
may remain in their native state, and not modified during
deviant cell death, as opposed to immunity to chromatin
in secondary necrotic cells in which apoptotically modified
autoantigens (dsDNA, high mobility group box 1 protein,
apoptosis-associated chromatin modifications, e.g., histones
H3-K27-me3; H2A/H4 AcK8,12, 16; and H2B-AcK12) are
present (106).

Autoimmunity to dsDNA and native chromatin exists, but
till now, their spontaneous appearance in a native context
is still enigmatic. There is no solid evidence to say that
native chromatin has immunogenic potential. However, native
chromatin in complex with a DNA-binding viral protein (see
above) is immunogenic because T cell tolerance, as is operative
for native chromatin, is circumvented by the immunogenic
infectious-derived carrier protein. There are yet no firm evidence
stating that antibodies to native dsDNA are induced by
perturbed cell death, although disorganized cell death may
induce and enhance production of antibodies to chromatin-
associated proteins modified in context of cell death (29, 93).
Thus, although anti-dsDNA antibodies are easily detected in SLE,
it is hard to explain why the antibodies materialize themselves
and how they harm organs like the kidneys and skin in context of
SLE (see below).

PATHOGENIC POTENTIAL OF ANTI-dsDNA
ANTIBODIES

Isolated dsDNA is negatively charged due to solvent phase
exposed phosphate groups that makes up every nucleotide that
consists of pentose, nitrogenous bases, and phosphate groups
(see above). This makes it unlikely that isolated dsDNA binds
directly to glomerulus basement membranes (GBM) in context
of lupus nephritis because GBM is overall anionic and would
therefore repel dsDNA. Rather, since mammalian dsDNA is part
of chromatin, consisting of histone octamers, histone H1, and a
large array of other non-histone proteins with various charges,
dsDNA may indirectly bind to GBM through interaction of
solvent phase cationic protein tails with anionic GBM structures.
This forms the basis for formation of immune complexes
between anti-dsDNA antibodies and dsDNA, and deposition of
the complexes in situ along the GBM, and in the mesangial
matrix of circulating dsDNA-containing immune complexes
[reviewed in (3) and (81)]. By using surface plasmon resonance,
we demonstrated that isolated dsDNA did not bind collagen or
laminin, while chromatin fragments bound with relatively high
avidity, irrespective presence or absence of complex-bound anti-
dsDNA antibodies (107, 108). These data harmonize nicely with
experiments performed in the Berden laboratory, where they
demonstrated that immune complexes of anti-dsDNA antibodies
and nucleosomes bound in glomeruli of perfused kidneys, while
highly pure anti-dsDNA antibodies did not bind (109–111).
Nevertheless, these data open for two ways how chromatin
may promote inflammation; either by binding anti-dsDNA
antibodies to chromatin exposed in situ, or by binding preformed
chromatin-IgG complexes to GBM.

Anti-dsDNA Antibodies: Are They Induced
by dsDNA or Non-dsDNA Structures
in vivo?
On the other hand, anti-dsDNA antibodies have in many studies
been proven to be instigated by non-DNA structures [discussed
in e.g., (3, 112–114), see Table 2 for examples]. Therefore,
anti-dsDNA antibodies may represent two principally different
antibody populations; real anti-dsDNA antibodies induced by
dsDNA, or (quasi) antibodies with potential to bind dsDNA
although instigated by non-dsDNA structures. We are today
not able to distinguish which is which. In context of the
question if anti-dsDNA antibodies are induced by dsDNA
or non-dsDNA structures in vivo, a logic issue would be if
anti-dsDNA antibodies are pathogenic because they recognize
dsDNA (homologous interaction) or non-dsDNA (heterologous
interaction) in the kidneys.

Thus, anti-dsDNA antibodies may exert a pathogenic
process by direct binding to inherent cross-reactive renal
structures. This demonstrates that anti-dsDNA antibodies
may promote two principally opposite pathogenic processes;
They either bind chromatin fragments that are exposed and
associated with GBM structures [denoted in this context
“the chromatin model” see models in Figures 3, 4 (80)]
or, they bind directly to glomerular antigens like laminin,
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TABLE 2 | Examples of anti-dsDNA antibodies that cross-react with non-DNA

structures.

Anti-dsDNA antibody crossreact with References

α-actinin (113)

α-actinin

Laminin

(115, 116)

(117)

C1q (118)

Laminin (119)

Nucleosomes/laminin* (120)

Platelet integrin GPIIIa 49–66 (121)

Toll like receptor 4 (122)

NR2 glutamate receptor (123)

Cell surface proteins (124)

Ribosomal P protein (125)

Cross-reactive anti-dsDNA antibodies (2002) (126)

Phosphorylcholine/phospholipids (127)

EBNA 1 (128)

Entactin

Entactin**

(114)

(129)

*Renal eluates in this study contained several antibodies, notably with nucleosome

antigens and laminin. Definitive prove for cross-reaction between laminin and

nucleosomes-dsDNA was not provided.
**Mono-specific anti-Entactin antibodies is included to be suggested as a control of

non-cross-reactive, non-dsDNA antibodies to determine if they still have nephritogenic

potential (see reference (43) for details).

collagen, entactin, and others by cross-reaction (denoted
“the cross-reaction model,” see relevant data in Table 2, and
Figure 4). Two variants of the chromatin model exist. In
one; chromatin fragments are exposed in membranes and
matrices due to the fact that chromatin fragments bind
membranes and matrices at high affinity. If anti-dsDNA
antibodies bind this form of chromatin, the immune complexes
are formed in situ (107). In the other variant, formation
of IgG-chromatin immune complexes occurs in circulation.
Such pre-formed IgG- chromatin fragment immune complexes
may bind primarily in the mesangial matrix and in GBM
[reviewed in (3) and (4)]. The second variant is experimentally
demonstrated. Injection of immunologically normal mice
with highly pure anti-dsDNA monoclonal antibodies (mAbs)
resulted in deposition of chromatin-fragment–IgG complexes
in the mesangium and GBM (131, 132). Concentration of
circulating chromatin fragments was significantly reduced after
infusion of the antibodies. Similarly, if (NZB × NZW)
nephritic mice were injected with pure biotinylated mAbs,
these antibodies were observed in immune complex deposits
observed as electron dense structures (EDS) in the mesangial
matrix and in GBM (132). These data demonstrate that
the experimental mAbs bound chromatin fragments in vivo.
However, these experiments did not allow us to conclude
whether they formed immune complexes in situ or in circulation.
In line with this, circulating DNA–anti-dsDNA antibody
complexes have been described (133) and discussed (134)
in the context of SLE. Whether circulating complexes were
associated to a certain stage of nephritis was not determined in
those studies.

Combining data discussed above, mesangial nephritis,
representing the early phase of lupus nephritis, may be instigated
by circulating immune complexes (132), while progression
of lupus nephritis into end stage organ disease is associated
with silencing of the major renal endonuclease DNase I (see
below). Loss of renal DNase I leaves chromatin from apoptotic
cells undigested, and being retained in GBM. In situ formation
of immune complexes by binding of circulating anti-dsDNA
antibodies to the exposed chromatin fragments forms the basis
for severe lupus nephritis (135). Thus, the chromatin model
is in clear opposition to the cross-reactive model, and reflects
the real pathogenic process of lupus nephritis (see below). It
seems that we are far from reaching consensus on pathogenesis
of lupus nephritis. Importantly, a proven cross-reactivity of an
anti-dsDNA antibody will not provide information about which
of the target antigens that binds the antibody in vivo.

Why Are Anti-dsDNA Antibodies
Pathogenic—and Are They All Pathogenic?
A central question is if the pure existence of anti-dsDNA
antibodies is pathogenic through binding cross-reactive, obligate
renal structures in SLE, or if they are epiphenomenons in absence
of exposed chromatin structures (3, 4, 114, 136, 137). Thus,
we have to evaluate how and why they are harmful, and in
which contexts (36, 90, 94, 114, 138). This dilemma relates to
the pathogenic effect irrespective whether in SLE or in other
diseases like different cancer forms (see above). There is no
reason to assume that an anti-dsDNA antibody produced in
context of SLE differ in pathogenic impact from those produced
in context of infection or cancer. There aremany reasons to argue
for and against these paradigms. However, these antibodies are
pathogenic, but only in presence of relevant target structures. In
other words; all have pathogenic potential, but they do not always
transform potentiality into activity—i.e., transformation depends
on whether the targets are exposed and accessible in vivo.

LUPUS NEPHRITIS: CONTEXTS AND
PATHOGENESES

While in end 1930s, DNA without further structural distinction
or knowledge was determined to be an acceptor for anti-dsDNA
antibodies (21–23, 83, 139). Shortly after the presence of anti-
dsDNA antibodies were confirmed, they were in 1957 described
in SLE (6–9, 140). In the following text, exposed dsDNA, like in
NETs, chromatin or microparticles will not be further discussed.
Rather, specificity of nephritogenic antibodies will be the focus.

In context of the discovery of SLE-related anti-dsDNA
antibodies, it was soon clear that these antibodies were associated
with SLE and with lupus nephritis. This perception represented
a conceptual advantage in our understanding of pathogenic
processes in SLE, although Fu et al. (136) proposed that anti-
dsDNA antibodies are not crucial nor necessary to cause lupus
nephritis. Nevertheless, this concept derives from 5 facts: (1)
DNA has been reported to bind collagen, a component of
GBM (141); (2) chromatin fragments bind laminin and collagen
(107); (3) the nephritogenic antibodies bind DNA (chromatin

Frontiers in Immunology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 1104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Lupus Nephritis: A Controversial Disease

FIGURE 4 | Non-cross-reacting and crossreacting IgG immune responses induced by homologous or cross-reacting antigens. In (A) the B cells are specific for DNA

as presented in chromatin. In the left side, B cells recognize and produce antibodies that bind (dsDNA) chromatin, i.e., homologous recognition. These may target

exposed chromatin and initiate lupus nephritis by a Type III immune mediated tissue inflammation. In (B) the B cells are specific for dsDNA, but may, however secrete

cross-reacting antibodies not targeting solely dsDNA. Instead they bind non-dsDNA cross-reacting inherent glomerular basement membranes, like entactin, laminin or

collagen (see text). This has not been entirely investigated, but these cross-reactive antibodies might well initiate Goodpasture analog kidney, skin or lung diseases.

This has not been considered in the literature (see text). In (C), the B cells are specific for a (membrane)-component and cross-react with nucleosomes. Since the IgG

antibodies may recognize membrane components in e.g., lung and other organs, they inherit the nature of collagen IV-like antibodies in Goodpasture syndrome.

Although many such cross-reactions have been described, they have not drawn much attention in pathophysiological contexts. More studies are needed to explore

these contexts. This figure is reprinted from Rekvig (130).

fragments) (38, 142); (4) anti-dsDNA antibodies can be purified
from nephritic kidneys (38, 143, 144); (5) infusion of anti-dsDNA
antibodies promote nephritis by binding glomerular structures
(either GBM or exposed chromatin) in non-autoimmune mice
(114, 122, 131, 132, 145, 146).

In a strict context, these facts involve recognition of
DNA by antibodies linked to autoimmune inflammation
in SLE, but do not necessarily provide information about
which of the structures represent glomerular targets for the
SLE-associated antibodies [chromatin or inherent glomerular

structures, see e.g., the divergent interpretations by (130)
and (40)]. The data only demonstrate that the pathogenic
antibodies recognize at least dsDNA. As we will see, anti-dsDNA
antibodies may even not by definition be denoted anti-dsDNA
antibodies due to the vast number of cross-reactions/cross-
stimulations with non-DNA/non-chromatin ligands or complex
structures—like those in matrices and membranes (see the
following discussion of this problem). Traditionally, we call
this antibody family “anti-dsDNA” and/or “cross-reacting anti-
dsDNA” antibodies. But these are merely biological abstractions
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as long as we are not able to explain their real initiators and
targets in vivo.

LUPUS NEPHRITIS PATHOGENESIS: THE
NEED TO DISTINGUISH AND VALIDATE
PATHOGENIC MODELS

From what we know today, we may be forced to define a
hierarchy of antibody specificities that are involved in the
genesis of lupus nephritis. This may, surprisingly, not be a
concise distinction: Maybe monospecific anti-dsDNA antibody is
a fiction—indicating that all antibodies are oligospecific (multiple
specificities)—or at least cross-reactive (dual specificity)? We
have simply not yet sufficient information about this problem
[see e.g., (147, 148)]. These somewhat naïve statements
cannot rule out other non-DNA lupus nephritis-associated
inflammatory factors, like antibodies that are dominantly
specific for glomerular structures, as collagen (2, 149), laminin
(115, 150), entactin (114), or the role of T cells [see
e.g., discussions in (151, 152, 152–156)]. These may be
relevant candidates to understand the inflammatory genesis of
lupus nephritis.

A Hierarchy of Disparate Anti-dsDNA
Antibodies Are Pathogenic in Lupus
Nephritis
In this context, there is an imperative need to understand the
biological and pathogenic meaning of these factual observations.
Therefore, we have to dissect in vivo-bound antibodies and
antibodies with potential to bind in vivo, into four categories:

• Antibodies specifically binding chromatin and DNA (51), and
anti-dsDNA antibodies that may be formed as a consequence
of somatic mutation, even though the reverted germ-line V
regions did not show any measurable autoreactivity in the
elegant study of Wellman et al. (157). Their results indicate
that anti-dsDNA autoantibodies may even develop from non-
autoreactive B-cells by somatic hypermutation (157);

• Antibodies that cross-react with DNA and non-DNA
glomerular structures (see Table 2, for examples and
corresponding references);

• Antibodies that bind native chromatin fragments but
not dsDNA;

• Antibodies bound in vivo but have no specificity for chromatin
structures, but for glomerular non-DNA structures exposed
in the membranes, like entactin, laminin, and collagen [see
Table 2 with relevant references, and the extensive review
by (158)].

One Pathogenic Model Implies That
Anti-dsDNA Antibodies Bind Glomerulus
Membrane-Associated Chromatin
Fragments
Co-localization immune electron microscopy (IEM) analyses
demonstrated that the electron-dense structures in mesangial
matrix and in GBM were targeted in vitro by antibodies

to dsDNA, histones and transcription factors, whereas co-
localization terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) IEM demonstrated that these structures
contained high concentrations of in vivo-bound IgG and
TUNEL-positive DNA in both murine (159) and human
(159, 160) lupus nephritis. These and similar data (135) indicate
that anti-dsDNA antibodies exert their nephritogenic effect
by binding to exposed chromatin fragments in glomerular
membranes and the mesangial matrices (143, 160, 161),
which is consistent with the fact that antibodies eluted from
nephritic kidneys show specificity for chromatin fragments,
histones and DNA as common denominators, although
several other specificities have been detected in such eluates
[see above (38, 143, 144)]. The early phase of mesangial
nephritis might indeed be initiated by circulating immune
complexes consisting of chromatin fragments complexed
with IgG (132). Notably, by high resolution IEM we never
observed antibodies bound in vivo to native GBM itself, nor
to the mesangial matrix surrounding EDS (see Figure 3B

as example, where antibodies are confined to EDS leaving
GBM unstained).

The Role of Renal DNase I in Progressive Lupus

Nephritis
Wehave demonstrated that progressive lupus nephritis correlates
with loss of the central renal Dnase I endonuclease mRNA,
and DNase I endonuclease activity. This event coincided with
significantly reduced fragmentation of chromatin, leaving large
chromatin fragments that accumulate in situ in glomeruli. If
this happens in glomeruli of a person that produce anti-
dsDNA antibodies, complexes of these partners (IgG anti-dsDNA
antibodies and retained chromatin fragments) exert deleterious
inflammatory effects on the integrity and function of the kidneys.
Although not proven by solid evidence, chromatin fragments in
kidneys with selectively silenced DNase I gene expression may
derive from kidneys themselves, at least in progressive disease
(86, 135, 162, 163).

Chromatin Metabolism in Kidneys in the Course of

Lupus Nephritis
From both theoretical considerations and the comprehensive
sets of coherent data discussed above, it is fair to conclude
that glomerular extracellular chromatin fragments play a direct
role in lupus nephritis, where they serve as homologous targets
for anti-dsDNA/anti-chromatin antibodies. This conclusion also
implies that the antibodies do not have an a priori nephritogenic
potential in absence of chromatin. However, when chromatin
is exposed in glomeruli, the antibodies are rendered nephritic
(132). That is, isolated presence of either of the factors—
the antibody or chromatin—remain in the body as clinical
epiphenomenons! Therefore, the core nature of both murine
and human lupus nephritis is pointing at an acquired error
of renal chromatin metabolism due to silenced DNase I gene
expression as a key event in disease progression [reviewed
in (3, 4)].

Frontiers in Immunology | www.frontiersin.org 10 May 2019 | Volume 10 | Article 1104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rekvig Lupus Nephritis: A Controversial Disease

Another Pathogenic Model to Describe
Lupus Nephritis Implies That
Cross-Reactive Anti-dsDNA Antibodies
Interact Directly With Glomerular Non-DNA
Structures
The cross-reactive model inherits several problems that need to
be described by experiments and analyses in lupus-prone mice
and patients. The following questions need considerations.

Is the Cross-Reacting Immune Response Sustained

Over Time—The Problem of Affinity Maturation?
This is a central problem in this model. Sustained immune B
cell stimulation may open for a successive loss of the cross-
reactive specificity while the homologous response may remain
with increased avidity and titer. Considering a sustained stimulus
of the dsDNA-specific B cells by dsDNA, they will increase avidity
for dsDNA as a consequence of affinitymutations, and since these
mutations are random, they will/may by chance mutate away
from the cross-reactive specificity. Thus, over time the cross-
reactive specificity may slowly die out due to sense mutations
for the immunogen (dsDNA), and non-sense mutation for the
crossreacting specificity that inevitably will die out (see model
thinking as presented in Figure 5).

Is the Avidity for a Cross-Reactive Antibody Similar

for Both Ligands or Will the Highest Avidity Direct the

Antibody to That Antigen?
When we started our studies on the pathogenesis on lupus
nephritis, we foresaw this problem. Therefore, we developed
highly sensitive electron microscopy (EM) variants that with
relatively high precision could determine the nature of the
glomerular targets for nephritogenic antibodies. This included
transmission EM and IEM to trace binding of antibodies in
vivo, co-localization IEM, where we added different experimental
antibodies to the renal sections, like antibodies to dsDNA,
histones, transcription factors and GBM ligands like laminin,
in order to analyze which of the added antibodies co-localized
with in vivo-bound IgG. In addition, we analyzed loci of in
vivo bound antibodies by TUNEL-colocalized IEM where we
observed that TUNEL-positive DNA co-localized with in vivo-
bound IgG. All our results were consistent and demonstrated
that IgGs that bound in vivo were exclusively seen in EM as
part of electron dense structures (see details in Figure 3B). No
binding to podocytes or to regular GBM structures were observed
(79). The same was true when we translated these experimental
analyses to human lupus nephritis (79, 159).

Will Antibodies Mono-Specific for a Non-DNA

Cross-Reacting Antigen Bind in Glomeruli?
This question—and obvious deviating experiments—is in fact
neglected in the literature in this context. We know that many
anti-dsDNA antibodies cross-react with a large panel of non-
dsDNA structures [See Table 2, and e.g., (112)]. By injecting
cross-reacting (dsDNA-X) and non-cross-reacting non-dsDNA
(X) antibodies into mice, may solve if one—or both specificities
contribute to lupus nephritis.

Similarly, If Crossreaction of Anti-dsDNA Antibodies

With Renal Antigens Is Instrumental in Initiating

Lupus Nephritis, Then Why Does the Disease Start in

the Mesangial Matrix?
This is exactly what we observe in the BW mouse after injection
of purified anti-dsDNA antibodies (135), and linked to loss of
renal DNaseI endonuclease, the disease expanded frommesangial
nephritis to membranoproliferative nephritis with deposits of
the antibodies in GBM where they co-localize with chromatin
fragments. If the antibodies bound in vivo crossreacted with e.g.,
laminin or entactin, we expected they should bind simultaneously
in the mesangium and GBM.

Are Cross-Reactive Antibodies Eluted From Nephritic

Kidneys?
In search of the biological meaning of cross-reacting antibodies
as essential in lupus nephritis, there are so far too few systematic
analyses addressed to solve this problem. One clear exemption
is the study of Deocharan et al. They analyzed anti-dsDNA
antibodies that crossreacted with α-actinin and observed strong
antibody activity in renal eluates (113). However, it is difficult
from such observations to determine if the antibodies bound
exposed chromatin or exposed α-actinin. More important, it
would have been of strong interest if control injection with a non-
cross-reacting (non-dsDNA) counterpart was performed. If they
could be rescued from kidneys by elution, it would have been
easier to make stronger conclusion on the impact of assumed
pathogenic cross-reactive antibodies.

CONCLUDING REMARKS

This study discusses two central problems: Are antibodies
binding dsDNA really anti-dsDNA antibodies, or do they
recognize dsDNA after being instigated by a non-dsDNA (cross-
reacting) antigen. Secondly, and in line with the first problem, are
these antibodies nephritic because they bind chromatin exposed
on glomerular membranes or are they nephritic because they
recognize inherent glomerular membrane structures. These two
models—the chromatin model and the cross-reactive model—
are still not fully understood, have not been agreed on, and
are still promoting controversies. Yet, the discussions and
contradictions aimed to describe the pathogenesis of lupus
nephritis characterize the contemporary situation. Thus, we still
lack a coordinated and open minded approach to obtain a
general and evidence-based perspective by not taking all aspects
of the syndrome SLE into account. This can only be achieved
by concentrating on the biological and pathophysiological
interactions between its different disease-promoting elements.
We need a framework in which dissection of published data
generated by experts in different fields like immunology,
pathology, immunopathology, and experimental animal research
can be combined and confronted with each other simply in
order to determine what we agree on (is the anti-dsDNA
antibody important?), what must be done (study the impact
of the other side of the cross-reacting anti-dsDNA antibody),
and what the best strategy forward must be (to collaborate
between the different schools of hypotheses). Whatever its nature
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FIGURE 5 | Affinity maturation may transform a cross-reacting antibody into a monospecific antibody. In (A) a B cell bind nucleosomes by its antigen receptor,

process them and present nucleosomes-derived peptides in context of HLA class II to peptide-specific T helper cells. In this example, the B cell transform into

antibody-secreting plasma cells, and the emerging cross-reacting IgG antibody recognize nucleosomes, and they cross-react with an inherent glomerular membrane

antigen like e.g., laminin. Since laminin is part of membranes in different organs, the cross-reactive antibody may bind in glomeruli, lungs and in other organs, similar to

the anti-collagen IV in Goodpasture Syndrome. In (B) a strong and possibly sustained stimulus recruits more somatically mutated IgG molecules. In (C) mutations are

selected that promote increased affinity for the B cell antigen, while mutations diminish affinity for the cross-reacting antigen, since these antigens are not selected by

nucleosomes. This is a mechanism that may transform oligospecific into mono-specific IgG antibodies. This model therefore indicates that the effect of the

cross-reactive specificity may over time faint or die out.

and origin might be, anti-dsDNA antibodies are a strange and
challenging phenomenon—so is lupus nephritis and SLE also.
And do not forget the role of T cells in lupus nephritis! As
a conclusion for now, we are producing increasing numbers
of puzzle pieces connected to the eponym SLE. We are not,

however, halting and concentrating on organizing the picture
that may tell us why the puzzle pieces belong to each other.
New phenomenons are not needed if we do not put them into
a context leading to our understanding of SLE and how to
treat it.
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