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Ordered assemblies of proteins are found in the postmortem brains of sufferers of

several neurodegenerative diseases. The cytoplasmic microtubule associated protein

tau and alpha-synuclein (αS) are found in an assembled state in Alzheimer’s disease

and Parkinson’s disease, respectively. An accumulating body of evidence suggests

a “prion-like” mechanism of spread of these assemblies through the diseased brain.

Under this hypothesis, assembled variants of these proteins promote the conversion of

native proteins to the assembled state. This likely inflicts pathology on cells of the brain

through a toxic gain-of-function mechanism. Experiments in animal models of tau and αS

pathology have demonstrated that the passive transfer of anti-tau or anti-αS antibodies

induces a reduction in the levels of assembled proteins. This is further accompanied by

improvements in neurological function and preservation of brain volume. Immunotherapy

is therefore considered one of the brightest hopes as a therapeutic avenue in an

area currently without disease-modifying therapy. Following a series of disappointing

clinical trials targeting beta-amyloid, a peptide that accumulates in the extracellular

spaces of the AD brain, attention is turning to active and passive immunotherapies

that target tau and αS. However, there are several remaining uncertainties concerning

the mechanism by which antibodies afford protection against self-propagating protein

conformations. This review will discuss current understanding of how antibodies and

their receptors can be brought to bear on proteins involved in neurodegeneration.

Parallels will be made to antibody-mediated protection against classical viral infections.

Commonmechanisms that may contribute to protection against self-propagating protein

conformations include blocking the entry of protein “seeds” to cells, clearance of immune

complexes by microglia, and the intracellular protein degradation pathway initiated by

cytoplasmic antibodies via the Fc receptor TRIM21. As with anti-viral immunity, protective

mechanisms may be accompanied by the activation of immune signaling pathways and

we will discuss the suitability of such activation in the neurological setting.

Keywords: prion-like proteins, neurodegeneration, tau (MAPT), Fc receptor, microglia, antibody immunity, alpha-

synuclein, beta-amyloid
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PROTEOPATHY IN
NEURODEGENERATION

Following the death of his patient, Auguste Deter, in 1906,
Alois Alzheimer described the presence of abundant extracellular
plaques and intracellular neurofibrillary tangles in her brain (1).
These lesions were subsequently shown to be widely distributed
in the brains of sufferers of the disease that went on to take
Alzheimer’s name. The plaques and tangles are now known
to comprise of assemblies of the proteins amyloid-β (Aβ) and
hyperphosphorylated microtubule associated tau, respectively.
Alzheimer’s disease (AD) is themost common of a heterogeneous
family of age-related neurodegenerative disorders characterized
by the deposition of specific protein assemblies in the brain.
This includes progressive supranuclear palsy (PSP), corticobasal
degeneration and Pick’s disease, where tau deposition is
observed; dementia with Lewy bodies and Parkinson’s disease
(PD) where cytoplasmic protein α-synuclein (αS) deposits
are observed; sporadic Creutzfeldt-Jakob disease, where the
membrane-anchored prion protein, PrP, is deposited and, finally,
amyotrophic lateral sclerosis where TAR DNA binding protein
43 (TDP-43) is implicated. The common characteristics of the
protein assemblies among these pathological conditions is that
they exhibit an ordered fibrillar structure, known as amyloid,
as well as a range of smaller assemblies generally referred to as
oligomers. Together, the age-related neurodegenerative diseases
are one of the most pressing biomedical and societal problems.
Dementia, of which AD is the most common cause, affects
around 50 million people worldwide and numbers are expected
to double before the middle of the 21st century. Critically, there
are currently no treatments that slow or prevent the progression
of any of the age-related neurodegenerative diseases.

Findings over the past few decades place protein aggregation
as a central mediator of pathology. Human genetics has revealed
numerous mutations in the genes that encode the aggregating
proteins themselves. A suite of more than 40 mutations in
tau cause inherited dementias, with evidence of tau fibrils in
brain tissue (2). Mutations in αS lead to inherited forms of
Parkinson’s disease and, in certain cases, an acceleration of
in vitro αS fibrilization (3, 4). Mutations in the gene that
encodes amyloid precursor protein (APP), the protein from
which the Aβ peptide is derived, lead to increased levels of the
aggregation-prone Aβ42 and familial AD (5). Other mutations
in genes responsible for processing these proteins, such as the
proteases responsible for the generation of Aβ, or in clearing
misfolded proteins species, such as the AAA ATPase p97/VCP,
can also lead to inherited variants of neurodegenerative diseases
(6, 7). Collectively, these genetic associations suggest that the
accumulation of protein aggregates causes neurodegeneration.
For AD, the prevailing framework of disease progression is the
amyloid cascade hypothesis (8, 9). Under this hypothesis, the
accumulation of Aβ plaques drives pathological consequences
that include the formation of tau fibrils and neuronal cell
death. Therapeutic approaches in AD have therefore focused on
preventing the production of Aβ, or promoting its clearance.
A series of disappointing, high profile clinical trials have led
to the critical reappraisal and amendment of the amyloid

cascade hypothesis, or to propose earlier intervention, since
the downstream events unleashed by Aβ accumulation may
be irreversible (5, 10). Therapeutic approaches that target tau
in AD are therefore considered promising routes for future
intervention. Of the 20 therapeutic strategies that target tau
that have reached clinical, nine are based on passive transfer or
eliciting of antibodies (11). A further two therapies that target αS
have also reached the clinic. Immunotherapy therefore represents
one of the brightest hopes for modifying disease progression in
age-related dementias.

PROTEIN ASSEMBLIES AS PROPAGATING
ENDO-PATHOGENS

The occurrence of protein deposits was long considered a
cell-autonomous feature of neurodegeneration. Over the past
few decades, this view has been challenged by a body of
research demonstrating that pathological protein conformations
can provoke native protein to adopt the assembled form. By
consuming pools of native cellular proteins, the assembled
variants can sustain their propagation through time and space
within the affected brain. The prototypic example of this behavior
is the prion protein, PrP, wherein the normal cellular variant,
PrPC, is converted to a pathogenic variant, PrPSc. Most cases
of prion disease are sporadic or inherited though, in rare
cases, disease can be acquired from the environment by eating
diseased meat or human brain as occurred in now-abandoned
tribal rituals. The model of templated protein aggregation
was proposed as a common mechanism in neurodegeneration
when it was shown that Aβ could be induced to aggregate in
mice expressing APP (12, 13). As an extracellular peptide, the
seeded aggregation of Aβ likely relies on direct contact between
introduced seed and the available pools of peptide. For other
proteins such as tau and αS, which are expressed in the cytoplasm,
pools of native protein are maintained within cell-limiting
membranes, thereby limiting contact between seed and substrate.
Seeded aggregation of cytoplasmic proteins was nonetheless
demonstrated when AD brain homogenate was found to induce
tau pathology in mice expressing wild-type human tau (14). In
cultured cell systems, protein misfolding could be transmitted
from the extracellular environment to cytoplasmic tau pools
(15). Similar properties have been demonstrated for αS, TDP-43,
and huntingtin, the protein whose expanded polyglutamine tract
is implicated in Huntington’s disease (16–19). Thus, although
diverse in their clinical manifestations, it is possible that age-
related neurodegenerative diseases share a common “prion-
like” mechanism of dissemination though affected brains (20)
(Figure 1).

Understanding the molecular mechanisms governing the
transfer of pathology between cells is central to any mechanism-
based intervention. For immunotherapy against tau and αS,
the issue is key as it determines which pool of protein
should preferentially be targeted. In vitro studies in neurons
demonstrate that tau misfolding can be transferred across
synapses (21, 22). This is consistent with animal work, which
suggests that tau pathology is preferentially transmitted between
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FIGURE 1 | Protein aggregation and prion-like spread. (A) Native protein

undergoes a spontaneous conversion to an assembled state. Assemblies

above a critical size are able to extend via the addition of native protein

monomers to form a fibril. (B) Assembled protein species are able to transmit

between cells via routes that may include (1) free protein release and uptake,

(2) tunneling nanotubes and (3) extracellular vesicles. Once taken up to the

cytoplasm of a neighbouring cell, seeded aggregation occurs through the

templated addition of native protein. By fragmenting, fibrils can exponentially

amplify in number.

connected regions of the brain (23–25). Furthermore, imaging
of human brains using positron emission tomography (PET)
tracers reveals that network connectivity is correlated with tau
pathology, consistent with transfer of tau misfolding along
synaptically connected pathways in the brain (26). Extracellular
naked protein assemblies transiting between neurons thus
represent an attractive target for immunotherapy as they are
physically accessible to antibodies. However, other mechanisms
of intercellular transfer have been described. For instance,
exosomes and extracellular vesicles can contain tau and transmit
pathology (27, 28) and tunneling nanotubes, actin-containing
structures that bridge cells, can transmit pathology in culture
(29, 30). There also remains discussion around the contribution
of prion-like spread vs. cell-autonomous aggregation (31).
Assuming that protein seeds are not obtained from the
environment, then cell-autonomous aggregation must, at least,
be responsible for the generation of the original seed. In this way,
the extent to which pathology is governed by cell autonomous vs.
prion-like mechanisms, and the route of such spread, define the
limits of what any given therapeutic approach can achieve.

ANTIBODIES IN THE BRAIN

IgG levels are maintained in human serum at around 10 mg/ml.
The brain is isolated from serum by the blood-brain barrier
(BBB), which is impermeable to large macromolecules including

IgG (32). The brain, instead, is bathed in cerebrospinal fluid
(CSF), which is produced following the filtration of blood
and transport of ions across the choroid plexus. The resulting
concentration of IgG in CSF is around 500- to 1,000-fold lower
than in serum. At face value, this low concentration of antibody
in the brain makes CNS antigens unattractive as targets for
passive immunotherapy, which is normally administered to the
periphery. This is compounded by a poor understanding of
the mechanisms by which steady state levels of antibody are
maintained. CSF flows around the brain, before exiting the
CNS along spinal and cranial nerves and via drainage to the
lymphatic system (33, 34). Intrathecally administered IgG is
rapidly cleared from the brain, largely through this bulk flow
and with a possible contribution of selective transport out of the
brain. The neonatal Fc receptor, FcRn, is expressed in abundance
at the BBB (35). Given FcRn’s role in transcytosis of antibodies
across the placenta, it has been suggested that FcRn may perform
reverse transcytosis to help maintain the low IgG environment of
the CNS. There is some evidence that antibody clearance from
the brain is mediated in part by the antibody Fc domain (36, 37),
and export of an anti-Aβ monoclonal antibody was reduced in
an FcRn-deficient mouse (38). However, the brain concentration
of peripherally administered IgG was not significantly different
between wild-type mice and mice lacking FcRn (39). This speaks
to a need for further investigation of how antibody levels in the
CNS aremaintained, with a particular requirement to understand
the rate of transit across the BBB (Figure 2). Under a model
where antibodies are maintained at static, low levels in the
CNS, there is little scope for achieving meaningful binding
occupancy to intracerebral antigens. However, if there exists
a rapid cycling of antibodies in and out of the brain, total
exposure of antibodies to antigen will, over time, be substantially
greater. Evidence in support of a high flux dynamic equilibrium
comes from experiments that measured the rate of clearance of
intrathecally administered IgG, which demonstrated a half-life
of <1 h in a primate model (40). This compares to a half-life
of around 3 weeks in the periphery. Thus, peripherally produced
or administered antibodies, particularly if they have high affinity
for their antigens, may gain sufficient exposure to meaningfully
engage intracerebral antigens.

The assertion that antibodies can bind antigens in the brain
and exert biological effects is supported by several strands
of clinical evidence. For instance, there is a growing set of
neuroimmune diseases associated with auto-antibodies that bind
to neuronal targets (41, 42). Antibodies against the membrane-
associated protein amphiphysin are causally linked to the
rare progressive disease stiff-person syndrome (43). Antibodies
against antigens such as Zic4 and Yo/PCA1 are associated with
cerebellar ataxia and antibodies against N-methyl-D-aspartate
receptor (NMDAR) are commonly associated with encephalitis
(44). From animal and clinical studies it has been shown
that peripherally administered antibodies that target Aβ can
engage their targets and induce reductions in brain amyloid
load (45–49). Though an unwanted side effect, the ability of
passive immunotherapy against Aβ to induce lesions (amyloid-
related imaging abnormalities or ARIAs, discussed further
below), stands as further testament to ability of antibodies
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FIGURE 2 | The maintenance of brain antibody levels. (A) Graphical representation of blood vessels in the brain and the cellular structure of the BBB. Endothelial cells

in blood vessels interact via tight junctions, restricting the passage of solutes to the CNS. Pericytes bind to the basal lamina and provide structural support to the

barrier. Astrocytic foot processes extend from the interstitial spaces to interact with the basal lamina and surrounding cells. (B) Two models of antibody cycling into the

CNS. Under a model of static, low concentration in the CNS, antigen binding is highly restricted. However, a model where antibodies rapidly cycle in and out of the

brain permits continuous bathing of brain antigens in dilute antibody solution. Over time, this model allows much higher levels of antigen binding. Evidence in support

of such a model includes the observation that antibody half-life in the brain is <1 h, compared to around 3 weeks in serum. AF, astrocyte foot; BL, basal lamina; EC,

endothelial cell; PC, pericyte; RBC, red blood cell; TJ, tight junction.

to engage targets in the brain parenchyma. Together, these
clinical observations stand as strong evidence that antibodies in
circulation can penetrate the brain and engage their targets at a
level sufficient to exert biologically relevant effects.

FC RECEPTORS AND THEIR EXPRESSION
IN THE BRAIN

FcγRs are expressed on the surface of a wide range of immune
effector cell types and bind to the Fc region of IgG. The canonical
FcγRs are divided into those that activate immune signaling
upon binding to antibody (in humans these are FcγRI, FcγRIIa,
FcγRIIc, and FcγRIIIa), one that exerts inhibitory function
(FcγRIIb), and one neutral glycosylphosphatidylinositol (GPI)-
linked receptor, FcγRIIIa, which lacks cytoplasmic domains and
is highly expressed on neutrophils (Table 1). There are four
subclasses of IgG (IgG1, IgG2, IgG3, and IgG4) with varying
affinity for the different receptors. The high-affinity interactions
are between FcγRI and all IgG subclasses except IgG2, and
between FcγRIIIa and IgG3 (50). The high-affinity interactions
permit binding to free IgG molecules, yet are not of such high
affinity that they preclude responses to IgG-labeled multivalent
complexes (50). There is a widespread, but erroneous, belief that
IgG4 is a neutral subclass of IgG. In fact, it binds all FcγRs,
albeit with slightly lower affinity than IgG1 (50, 51). However,
IgG4 does not fix complement and can inhibit IgG1-mediated
complement fixation (52, 53). Uniquely among the human
antibody subclasses, IgG4 undergoes arm exchange, resulting
in chimeric, bispecific antibodies (54). In mice, the FcR system
is broadly similar, with activating FcγRs (FcγRI, FcγRIII, and
FcγRIV) and one with inhibitory activity (FcγRII) (Table 2). Like

humans, there are four IgG subclasses, (IgG1, IgG2a, IgG2b, and
IgG3) though the nomenclature differs between the species: for
instance, IgG2a is most similar in its effector functions to human
IgG1. The atypical Fc receptor TRIM21 is broadly expressed in
the cytoplasm and possesses ubiquitin ligase activity. It can bind
all classes of IgG (55) as well as IgA and IgM (56, 57). Following
detection of intracellular immune complexes, TRIM21 stimulates
a co-ordinated series of ubiquitination steps culminating in the
degradation of immune complexes at the proteasome and an
antiviral transcriptional response (56, 58–60).

The major site of Fc receptor expression in the brain is
on the surface of microglia, the resident phagocytic immune
effector cells of the CNS. In humans this includes the cell
surface receptors FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa (62).
There are reports of FcγRs on other cell types in the mouse
brain, including on neurons (62, 63). However, other studies
that sought evidence of FcγR expression at the transcript and
protein level suggest that expression is minimal or absent in
cells other than microglia (64, 65). The discrepancies between
these findings may lie in the region of the brain analyzed as
staining has been reported to be specific to regional neuron
populations (66) or may reflect ex vivo vs. in vivo conditions.
Outside the brain, FcγRI expression has been detected on
sensory and motor neurons (67–69). TRIM21 is universally
expressed and we have confirmed its expression in mouse
primary neurons and human neuroblastoma cells (70). The
neurodegenerating brain is an inflamed state, with widespread
microglial activation and production of inflammatory cytokines
including TNF, IL-6, and IL-1β (71, 72). Levels of TRIM21
and cell surface FcγRs are both increased following immune
activation (58, 73). This is pertinent to the development of
immunotherapeutics, as the degenerating brain may exhibit an
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TABLE 1 | Human Fc receptors.

Name Activity High affinity

ligands

Low affinity ligands Peripheral expression Brain expression

FcγRI Activatory IgG1, IgG3, IgG4 Mφ, DC MG

FcγRIIa Activatory All IgG subclasses Mφ, DC, Neutrophil, Basophil, MC, Eo, Pl MG

FcγRIIb Inhibitory All IgG subclasses B cells, Basophil, DC, Mφ MG

FcγRIIc Activatory All IgG subclasses NK, Mφ, Neutrophils ?

FcγRIIIa Activatory IgG3 IgG1, IgG2, IgG4 NK, Mφ MG

FcγRIIIb Neutral IgG1, IgG3 Neutrophils, Basophils ?

FcRn Transcytosis,

recycling

All IgG subclasses Mφ, DC, Neutrophil BBB endothelium

TRIM21 Activatory/degradation All IgG subclasses IgA, IgM Universal, high in Mφ, DC, B cell MG, neurons

Summary of the localization of expression and binding characteristics of human cell surface FcγRs, the recycling Fc receptor, FcRn, and the cytoplasmic Fc receptor TRIM21. High-affinity

interactions are defined as those with an dissociation constant (Kd ) <10
-7 M. MΦ, monocyte/macrophage; DC, dendritic cell; Eo, eosinophil; NK, natural killer cell; MG, microglia; BBB,

blood-brain barrier. Information for this table adapted from Bruhns and Jönsson (50), Vidarsson et al. (51), and McEwan (61). ? denotes that CNS expression is not defined.

TABLE 2 | Mouse Fc receptors.

Name Activity High affinity

ligands

Low affinity ligands Peripheral expression Brain expression

FcγRI Activatory IgG2a IgG2b Mφ, DC MG

FcγRII Inhibitory IgG1, IgG2a, IgG2b, IgE B cell, Mφ, Neutrophil, DC MG

FcγRIII Activatory IgG1, IgG2a, IgG2b, IgE NK, Mφ, Neutrophil, DC MG

FcγRIV Activatory IgG2a, IgG2b IgE Mφ, Neutrophil MG

FcRn Transcytosis, recycling All IgG subclasses Placenta, Mφ, Neutrophil, DC BBB endothelium

Trim21 Activatory /

degradation

All IgG subclasses IgA?, IgM? Universal, high in Mφ, DC, B cell Neurons, MG

Summary of themurine Fc receptors, their binding partners and pattern of expression. As in Table 1, high-affinity interactions are defined as those with an dissociation constant (Kd )<10
-7

M. MΦ, monocyte/macrophage; DC, dendritic cell; Eo, eosinophil; NK, natural killer cell; MG, microglia; BBB, blood-brain barrier; ? denotes possible interaction not yet demonstrated.

exaggerated response to immune complexes. FcR upregulation
may enhance the effectiveness of any Fc-mediated clearance
mechanism, but has the potential to drive inappropriate immune
stimulation. Trials of passively-transferred antibodies against
Aβ have reported ARIAs, which are caused by intracerebral
oedemas or microhaemorrhages (74). This represents a clear
safety issue for immunotherapies and limits the range of doses
available to clinicians. These adverse events are potentially driven
by microglial activation following engagement of antibody-
bound Aβ assemblies by FcγRs. Of note, studies on tau,
αS and Aβ have reported mechanisms of protection that do
not rely on engagement of cell surface FcγRs (65, 70, 75–
79). Current clinical trials are therefore testing monoclonal
antibodies with modified effector functions as a means to
preserve activity whilst diminishing adverse events (80, 81).
The nature of these immunotherapies will be discussed
further below, before a discussion on their likely mechanisms
of action.

CLINICAL IMMUNOTHERAPY

Several immunotherapies that target proteins implicated
in neurodegeneration have entered human clinical
trials. They fall into two categories: those that attempt
to induce protective immunity in the patient through

vaccination (active immunotherapy) or the infusion of
monoclonal antibodies (passive immunotherapy). Active
immunotherapy has as its benefit the sustained production
of antibody from few vaccine doses. However, there
remain issues of variable or incomplete protection between
individuals and a risk that side effects may be long-
lasting or irreversible. Passive transfer of monoclonal
antibodies permits precise control of dosing and the epitope
targeted, avoids stimulating a potentially damaging T-cell
response and can be withdrawn in the event of adverse
effects. However, the large quantities of recombinantly
produced antibody that need to be periodically infused in
passive immunotherapy approches come with considerable
cost implications.

Aβ Immunotherapies
The most advanced of the neurodegeneration immunotherapies
are those that target Aβ (82), where 11 different approaches
have reached clinical trials, seven of which are passively
transferred monoclonal antibodies and four of which are
active vaccination approaches (82) (Table 3). The first of these,
AN1792, an active vaccine against full-length Aβ42, was halted
following the occurrence of meningoencephalitis in 6% of the
study population, all of whom had mild to moderate AD
(83). Post-mortem analysis of two patients who developed
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TABLE 3 | Clinical immunotherapies in neurodegeneration.

Name Immunotherapy type Target Company Most advanced

clinical trial ID

Phase of trial

IMMUNOTHERAPIES TARGETING αS and TAU

AADvac1 Active Tau 294–305 Axon Neuroscience NCT02579252 (mild

AD)

Phase II

ACI-35 Active Tau pS396, pS404 AC Immune & Janssen ISRCTN13033912

(mild to moderate AD)

Phase Ib

BIIB054 Passive α-synuclein Biogen, Neurimmune NCT03318523 (PD) Phase II

BIIB076 Passive, huIgG1 Tau Biogen, Neurimmune NCT03056729 Phase I

BIIB092 Passive, huIgG4 Tau N-terminus Biogen & Bristol-Myers

Squibb

NCT03068468 (PSP) Phase II

NCT03352557 (early

AD)

Phase II

C2N-8E12 Passive, huIgG4 Tau 25-30 AbbVie & C2N

Diagnostics

NCT02985879 (PSP) Phase II

NCT02880956 (early

AD)

Phase II

PRX002 Passive, huIgG1 α-synuclein 118-126 Hoffmann La Roche,

Prothena

NCT03100149 (early

PD)

Phase II

RG7345 Passive Tau pS422 Hoffmann La Roche NCT02281786 Phase I (discontinued)

RO7105705 Passive, huIgG4 Tau AC Immune SA,

Genentech & Hoffmann

La Roche

NCT03289143

(prodromal to mild AD)

Phase II

NCT03828747

(moderate AD)

Phase II

LY3303560 Passive Tau conformational epitope Eli Lilly NCT03518073 (early

AD)

Phase II

JNJ-63733657 Passive Tau mid-region Janssen NCT03375697 Phase I

UCB0107 Passive Tau 235–246 UCB NCT03464227 Phase I

SELECTED IMMUNOTHERAPIES TARGETING Aβ

Solanezumab Passive IgG1 Aβ (monomeric) Eli Lilly NCT02008357 (at risk

of AD / mild AD)

Phase III

NCT01760005 (fAD) Phase III

Gantenerumab Passive IgG1 Aβ (assembled) Chugai

Pharmaceutical,

Hoffmann La Roche

NCT01760005 (fAD) Phase III

NCT03444870 (early

AD)

Phase III

AN1792 Active Aβ42 Pfizer, Janssen NCT00021723 Phase II (terminated)

Aducanumab Passive IgG1 Aβ (assembled) Biogen, Neurimmune NCT02484547 (early

AD)

Phase III

Bapineuzumab Passive IgG1 Aβ (assembled and soluble) Pfizer, Janssen NCT00998764 Phase III (terminated)

A summary of immunotherapies against tau and αS that have entered, or are soon to enter, clinical trials and selected immunotherapies against Aβ. PSP, progressive supranuclear

palsy; AD, Alzheimer’s disease; PD, Parkinson’s disease; fAD, familial Alzheimer’s disease.

meningoencephalitis indicated a T-cell mediated response was
probably responsible for the inflammatory pathology. A second
generation of active immunotherapies aims to target the N-
terminus of the Aβ peptide, thereby avoiding a C-terminal
T-cell epitope that may have been responsible for T-cell
activation following vaccination with full-length Aβ (83). For
the passive immunotherapies against Aβ, a reduction in Aβ PET
biomarkers has been observed for gantenerumab, aducanumab,

and bapineuzumab (46–48, 84). Safety issues mainly concern
ARIAs, especially in carriers of the APOE4 allele (85). ARIAs
are likely due to the antibody decoration of Aβ plaques and the
use of antibodies that preferentially bind Aβ monomers over
fibrils (e.g., solanezumab) may therefore represent a mechanism
to avoid them. Despite the evidence of target engagement, there
is no evidence of clinical benefits for any of the drugs that
have been tested in Phase III trails, which are powered to
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test efficacy. As the Phase III trials conducted to date have
been conducted in patient groups with established AD, their
failure suggest earlier treatment may be critical for cognitive
benefits. Future trials will test this hypothesis in populations with
dominantly inherited dementias, or at risk of developing sporadic
AD based on PET Aβ accumulation, using gantenerumab and
solanezumab (86, 87). There therefore remains cause for hope
in the targeting of Aβ in AD, but, if it is to be successful, it
will likely require early intervention, a pre-requisite of which is
predictive diagnostics.

Immunotherapy Against Cytoplasmic
Proteins
Over the past decade, it has been repeatedly shown that active
vaccination against tau or αS can alleviate the burden of
pathology in the mouse brain (88–94). The mechanism of this
immune protection is likely mediated by humoral immunity, as
passive transfer of anti-tau antibodies is sufficient to confer a
protective effect (95–100). This situation is reminiscent of viral
infections, where the passive transfer of antibodies often confers
sterile protection against infection (101, 102). Encouraged by the
reductions in protein pathology, preservation of brain volume
and ameliorations of behavioral metrics in mouse studies, clinical
trials of tau and αS immunotherapies have commenced, or are
planned (Table 3) (103, 104). We here summarize the therapies,
and the rationale behind them, using the available pre-clinical
and clinical data.

AADVac1
Following screening of antibodies that inhibited in vitro
aggregation of recombinant tau, a monoclonal antibody, DC8E8,
was identified with potent inhibitory activity (105). The epitope
of this antibody is HXPGGG, a motif present in each of the four
repeat domains of full-length tau. Passive transfer of DC8E8 was
protective in a transgenic mouse expressing truncated human
tau. This data was used to select an epitope for active vaccination
(tau 294-305 KDNIKHVPGGGS), conjugated to keyhole limpet
hemocyanin (KLH). In transgenic rats expressing truncated
human tau, the vaccine was alum-adjuvanted and was found to
confer a reduction in total and hyperphosphorylated tau species
(106). Following these findings, human trials of the vaccine
were commenced. A Phase I trial demonstrated that vaccination
successfully induced an anti-tau immune response in 29/30
patients, which was biased toward an IgG1 response (107, 108).
Phase II trials are underway in mild AD and primary progressive
aphasia patients (109).

ACI-35
ACI-35 is a 16mer peptide comprising tau residues 393–408
with phosphorylation at S396 and S404 (91). This overlaps
with the epitope of PHF1, an antibody widely used to detect
pathological tau species (110). In the ACI-35 vaccine, the
doubly-phosphorylated tau peptide is delivered in liposomes.
Vaccination conferred a reduction in levels of soluble and
insoluble tau phosphorylated at S396 in mice transgenic for
human P301L tau (91). Protection against other phosphorylation
sites of tau were not observed. Levels of insoluble tau were

reduced but were not statistically significant by conventional
criteria. The vaccine promoted the rescue of a clasping defect in
the P301L tau transgenic mice but had no effect in the Rotarod
test, a more demanding agility task. From a safety perspective,
there was no observed influx of lymphocytes and no induction of
astrogliosis. A Phase Ib clinical trial is currently taking place in
AD patients with mild to moderate symptoms.

BIIB076
BIIB076 is a fully human IgG1, derived from Neurimmune’s
reverse translational approach, which mines antibody sequences
isolated from humans. Little pre-clinical work has been published
for BIIB076, though it was found to bind with subnanomolar
affinity to human and cynomolgus macaque tau (111). When
given to macaques it was found to reduce total and unbound CSF
tau at the highest doses. A Phase I trial is under way.

BIIB092
Induced pluripotent stem cell-derived neurons prepared from
familial AD patients secrete a series of truncated tau products that
were termed eTau (112). eTau species consist of the N-terminal
region of tau and run between 20 and 35 kDa by SDS-PAGE
western blot. When added to primary cortical neurons, eTau
caused neuronal hyperactivity and upregulated the expression of
Aβ. The authors propose a model wherein secreted tau creates
a destructive feed forward loop: Aβ drives tau pathology and
secreted tau in turn upregulates Aβ. The antibody IPN002 binds
the N-terminus of tau and neutralizes the effect of eTau. In vivo,
it reduced levels of tau in CSF in P301L tau transgenic mice.
IPN007, the humanized IgG4 version of the antibody, now
renamed BIIB092, is being evaluated in Phase II trials in PSP and
early AD patient populations.

C2N-8E12
C2N-8E12 is a humanized IgG4 version of the antibody HJ8.5
that binds with picomolar affinity to the N-terminal region
of tau at residues 25–30 (95). In a seeding assay in human
embryonic kidney cells (113), HJ8.5 exerted potent protection
against tau seeds isolated from aged mice expressing human
P301S tau (95). When chronically perfused into the ventricles,
or delivered intraperitoneally to the same mouse model, HJ8.5
substantially reduced the extent of staining with antibodies
specific for pathological tau and improved cognition (95, 96).
Two Phase II clinical trials of C2N-8E12 are currently in progress
in PSP and early AD cohorts.

RG7345
RG7345 is a humanized rabbit monoclonal that targets a
C-terminal epitope of tau phosphorylated at S422 (100).
The antibody was found to specifically enter neurons that
contained hyperphosphorylated tau, suggestive of a target-
dependent uptake mechanism.When injected to the periphery of
TauPS2APP mice, which express human P301L tau and mutant
forms of APP and PSEN2, the antibody reduced levels of tau
phosphorylated at S422. The drug entered a Phase I clinical
trial that was completed in 2015. However, no results have been
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posted for the trial and Roche discontinued development for
unknown reasons.

RO7105705
Genentech and AC Immune published work demonstrating that
a mouse IgG2b antibody that targets tau phosphorylated at S409
reduced pathological tau staining in P301L tau transgenic mice
(65). Mutation of the D265A and N297G (DANG) residues of
the antibody, which prevents binding of cell surface FcγRs but
not to murine complement (114), did not substantially reduce
protection but prevented release of inflammatory cytokines by
microglia (65). This work likely informed the selection of the
IgG4 backbone for RO7105705, which has reduced capacity to
engage microglia when compared to other subclasses (115). The
precise epitope of RO7105705 has not been disclosed though
it was reported to target the N-terminus (116). Two Phase II
trials in prodromal to mild AD and moderate AD cohorts are
in progress.

JNJ-63733657 and UCB0107
Based on the rationale that antibodies targeting the termini of
taumay ineffectively bind proteolytically-digested tau assemblies,
Janssen and UCB have selected antibodies that target the mid-
domain of tau. The antibodies both reportedly block seeded
aggregation of tau in cell-based seeding assays (117). These
antibodies both recently entered Phase I clinical trials.

LY3303560
Eli Lilly have humanized a well-characterized conformation-
specific antibody, MC-1 (118), which binds a discontinuous
epitope of tau comprised of the N-terminal EFE motif (residues
7–9) and the core region (residues 313–322). From cryo-
electron microscopy structures, the EFE motif is hypothesized
to interact with the core structure in the AD paired-helical
and straight filaments (119). Accordingly, LY3303560 displays
a preference for binding aggregated over monomeric tau (120).
Little preclinical data have been published and the antibody
subclass has not been disclosed. A Phase II clinical trial is
currently under way in sufferers of early symptomatic AD.

PRX002
PRX002 is being developed by Roche and Prothena as an αS-
targeting immunotherapy. The mouse monoclonal, 9E4, from
which PRX002 derives, belongs to the IgG1 subclass (121). 9E4
targets a C-terminal epitope of αS (residues 118–126), with a
preference of monomeric over assembled versions of αS (122).
When repetitively delivered intraperitoneally to a mouse model
that over-expresses wildtype human αS, 9E4 protected against
neuronal cell loss and improved behavioral parameters including
Rotarod (121). Levels of a C-terminal fragment of αS, and higher-
order assemblies of αS, were reduced by passive vaccination.
9E4 was found to accumulate in neurons and co-localize with
αS and with lysosomal (cathepsin D) and autophagosomal
(LC3) markers. Consistent with induction of αS degradation via
autophagy as 9E4’s mechanism of action, the intensity of LC3
staining was increased following 9E4 treatment, and clearance
of αS by 9E4 was prevented by inhibition of autophagy in

neuronal cultures. Phase I trials reported favorable safety and
pharmacokinetics with evidence of target engagement in serum
(123). A Phase II trial is currently in progress in early PD patients.

MECHANISMS OF
ANTIBODY-MEDIATED PROTECTION

Numerous mechanisms have been posited for how antibodies
may deplete aggregated proteins in the brain. As with protection
against viral infection, particular mechanisms likely dominate the
activities of individual monoclonal antibodies. The selection of
individual monoclonal antibodies for passive immunotherapy,
and modulating antibody effector function, is therefore a means
by which specific effector functions may be selected. We will
here delineate the mechanisms that are likely to operate against
protein aggregates and, where possible, relate them to pre-clinical
and therapeutic studies.

Peripheral Sink
The peripheral sink hypothesis posits that antibodies binding
to targets in the periphery will shift equilibrium dynamics
across the BBB, thereby reducing the concentration of cerebral
antigens (124). This provides a mechanism that would enable
the depletion of cerebral antigens by administering antibodies
that promote clearance in the periphery. If biologically valid,
it would enable the problem of antibody penetrance to the
brain to be bypassed, as maintaining peripheral pools would be
sufficient to promote CNS antigen depletion. The application
of the peripheral sink hypothesis has been mostly applied
to Aβ, which can be readily detected in both CSF and
serum and therefore potentially susceptible to this process.
Solanezumab and ponezumab both selectively target monomeric
Aβ, and have been proposed to operate via the peripheral sink
mechanism (125, 126). Consistent with a transfer to periphery,
both antibodies, as well as a monomer-binding monoclonal
antibody, m266 which was given to mice, increased the serum
concentration of Aβ (125, 127, 128). However, this may be an
effect of prolonging the half-life of Aβ in serum by complexing
with antibody, as concentrations of free Aβ were not diminished.
In a non-human primatemodel, the enzymatic degradation of Aβ

in the periphery, although efficient, did not reduce CNS Aβ load
(129). This experiment implies that degradation of CNS antigens
in the periphery is not sufficient to substantially reduce CNS load.
However, it must be noted that anti-Aβ IgG may itself alter the
rate of efflux of antigen from the brain by promoting export
of antibody:antigen complexes and the enzymatic degradation
experiment would not capture this effect. Local production
of antibodies against proteopathic agents within the brain, or
administration of antibodies directly to the CNS, is associated
with high levels of protection (95, 130–133). This demonstrates
that mechanisms that rely on direct CNS exposure to antibodies
can dominate protective effects. It is therefore likely that in
order to target CNS antigens effectively, the problem of low
antibody concentration in the brain must be confronted head-
on by ensuring sufficient intracerebral target engagement for
therapeutic efficacy.
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Neutralization
It has been known since the 1930s that the incubation of virus
particles with antibodies often results in a reduction in infectious
titer, a phenomenon termed neutralization (134). Given the
mechanistic similarities between viruses and cytoplasmically
replicating proteopathies such as tau and αS, there is value in
comparing the effects of antibody on both types of pathogen.
Neutralization can only effectively be studied in cell-based
models, outside a living organism, as the professional immune
system confounds observations. We will here extend established
definitions of virus neutralization (135) to cytoplasmic seeded
protein misfolding as:

the reduction in seeding potency observed following the binding

of antibodies to proteinaceous assemblies in cell-based seeding or

propagation assays in the absence of complement or cells of the

professional immune system.

This definition therefore excludes the effects of microglial
clearance and other effector mechanisms that are likely to
operate in vivo. The cellular substrate used for examining
the effect of antibodies on seeding ability is typically mouse
primary neurons, human cell lines, or, more recently, human
neurons derived from induced pluripotent stem cells (136,
137). It remains to be determined whether the choice of
cellular model influences the extent, and mechanism, of
observed neutralization.

Antibodies that exert potent neutralizing responses against
viruses in cell based systems frequently exert strong in vivo
protection (135, 138, 139). Indeed, a neutralizing antibody
response is considered a surrogate marker of protective
immunity in many circumstances. Until recently neutralization
was thought to be synonymous with preventing entry of viruses,
or, more specifically, their genomes, to the interior of the cell
(135). A post-entry mechanism of neutralization that relies
on engagement of the intracellular Fc receptor TRIM21 has
recently been characterized, and is discussed further below. For
entry-blocking antibodies, though the end result is identical
(viruses fail to enter the cell), there are numerous mechanisms
by which this may be achieved. For example, antibodies may
effect a block to entry by preventing engagement of cell surface
receptors, agglutinating virus particles or blocking escape from
endosomes, each of which ultimately results in a block to
virus entry.

In proteopathic seeding experiments, antibodies have been
documented to reduce or slow the uptake of tau to cells.
Examples of these are the anti-tau monoclonal antibody
HJ9.3 (79) and a polyclonal preparation against the tau C-
terminus, which slowed the uptake of tau to iPSC-derived
neurons (136). Likewise, the anti-αS antibodies Syn211 and
Syn303 reduced the uptake of αS fibrils to mouse hippocampal
neurons (78). Together, these findings demonstrate that entry
blocking neutralization can operate against protein assemblies
(Figure 3A). However, entry-blocking is by no means a universal
mechanism, since the antibody HJ8.5, which potently neutralizes
seeding (94), fails to block tau uptake to neurons (79).

The N-terminal monoclonal antibody 5A6 (140) and a C-
terminal polyclonal, BR134 (141), similarly exert neutralization
activity without substantially preventing uptake (70). For
these latter two antibodies, neutralization activity relies on
intracellular neutralization via TRIM21. Further, without a firm
understanding of the mechanisms of seed entry to the cell, it is
not clear exactly how antibodies elicit a block to cellular uptake.
For αS fibrils, interactions with the putative entry receptor
LAG3 facilitate binding and uptake to cells (142). Inhibition of
this interaction with anti-LAG3 antibodies C9B7W and 410C9
reduced αS uptake. For both αS and tau, interactions with
sulfated proteoglycans promote aggregate uptake (143–145) and
inhibition of this interaction is the proposed mechanism for
HJ9.3 (79).

By analogy with viruses, it is conceptually possible that
antibodies block entry to the cytosol at a post-uptake stage,
for instance by blocking endosomal escape, or by promoting
endolysosomal degradation. There has been little study on
the ability of antibodies to act at a post-uptake, pre-cytosolic
entry stage. Implementation of the necessary methods is
technically challenging, and, as with approaches for viral
infection, particles that have escaped to the cytoplasm must be
reliably differentiated from the endosomal population, which
is likely to be overwhelmingly greater. Surrogate markers of
tau and αS entry to the cytoplasm, such as Galectin 3-GFP,
which binds carbohydrates on disrupted endosomes, have been
developed (146, 147) and could be usefully applied to the field of
antibody neutralization.

For certain non-enveloped viruses, neutralization can occur
entirely independently of entry blocking. Antibodies against
adenovirus do not prevent entry to the cell but remain
associated with viral particles in the cytoplasm. Once in the
cell, antibodies are bound by the cytoplasmic, high-affinity Fc
receptor TRIM21, which mounts a rapid degradation response
against the immune complex (Figure 3A). This substantially
reduces viral infectivity and genetic deletion of TRIM21 renders
certain antibodies non-neutralizing (56, 60). Mice that lack
TRIM21 are highly susceptible to viral infection and, unlike
their wild-type counterparts, cannot be fully protected by passive
transfer of neutralizing antibodies (148). The distinguishing
feature of viruses that are susceptible to TRIM21 is that
their capsids are naked (i.e., without lipid bilayer) and lack
fusogenic or membrane pore-forming mechanisms that permit
the separation of genomic material and antibody-bound antigens
during entry. Rather, these TRIM21-sensitive viruses, which
include adenoviruses and minor group rhinovirus (149), enter
the cell through lysis of the endosome, leaving the antibody-
bound virus particle exposed (150, 151). The uptake of naked
protein assemblies and entry to the cytosol though spontaneous
or aggregate-induced lysis of vesicles (146, 147), is, similarly, a
route that allows access of antibodies to the cytoplasm. Indeed,
several studies have found that antibodies are taken up with
exogenously added tau seed, and that antibodies do not prevent
tau uptake to neurons (70, 79, 96, 136). Antibody-coated tau
assemblies that escape to the cytoplasm become associated with
TRIM21, and are prevented from inducing seeded aggregation by
its activity (70). The extent to which intracellular neutralization
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FIGURE 3 | Mechanisms of antibody-mediated protection against prion-like proteins. (A) The process of seeding for tau and αS may be neutralized by antibodies at

several stages. Protein seeds attach to cells via interactions with (1) heparan sulfate proteoglycan (HSPGs) or (2) cell surface receptors such as LAG3 for αS. (3) Seeds

must escape vesicular compartments in order to induce seeding, a step that by analogy with viral infection could be inhibited by antibodies. (4) Seeds that escape to

the cytoplasm with antibodies attached may be prevented from undergoing seeded aggregation or (5) become targets for proteasomal destruction by the cytoplasmic

Fc receptor and ubiquitin ligase, TRIM21. (6) Antibodies may be directly taken up into cells in a target-specific manner and mediate degradation of target proteins in

the cytoplasm via TRIM21, or in the lysosome/autophagy pathways. (B) Antibody-decorated aggregates can be ligated by cell surface FcγRs on microglia. This

induces their uptake and degradation and may play an important role in overall in vivo protection.

by TRIM21 contributes to the overall in vivo protection afforded
by an antibody remains to be determined.

Clearance by Microglia
Microglia display an ability to take up naked assemblies of
tau and αS and induce their degradation (152, 153). When
in complex with antibodies, cellular uptake and degradation
of both tau and αS is enhanced (79, 154, 155). This activity
is Fc-dependent, as use of F(ab’)2 fragments, which lack the
Fc domain, or FcγR blocking antibodies, prevent clearance.
This represents a mechanism that can be exploited for the
therapeutic clearance of protein deposits (Figure 3B). However,
FcγR-mediated clearance of protein deposits comes with a risk
of activating a damaging immune response, as likely occurred
during immunotherapy that targeted Aβ plaques (74, 85). Several
immunotherapies have selected IgG4 as a scaffold with a rationale
that it may minimize damaging pro-inflammatory responses
(Table 3). However, as noted above, IgG4 binds FcγRs (50) and
any reduction in inflammatory induction by IgG4 may owe
more to its inability to fix complement (52, 53). Nonetheless
a side-by-side comparison of an anti-Aβ antibody, MABT,
with human IgG1 vs. IgG4 constant regions demonstrated a
reduced ability of IgG4 to promote microglial inflammation
by Aβ:antibody immune complexes (115). Two recent clinical
trials with anti-Aβ IgG4 antibodies with reportedly low ability to
engage FcγRs have commenced (80, 81). Uncertainty therefore

persists in the selection of antibody isotypes for immunotherapy
for maximal therapeutic effect and the extent to which isotype
selection influences effector function in the brain. Passive
immunotherapies on human IgG1 (BIIB076, PRX002) and IgG4
(BIIB092, C2N-8E12, RO7105705) scaffolds have been selected
for clinical trials. Though an imperfect experiment, results of
Phase II and III clinical trials, when considered together, will
hopefully provide insight regarding the effect of isotype selection
on therapeutic outcomes.

As noted above, an anti-pS409 tau antibody that possesses the
DANG point mutations that prevent FcγR engagement retains
the ability to prevent tau spread and neurotoxicity (65). Thus
for antibodies that confer protection via alternative mechanisms,
dispensing with FcγR engagement altogether provides a potential
safety advantage. Other studies have reported that an antibody
against pS404 of the mouse IgG2a isotype, which preferentially
binds to activatory FcγRs (50), was more potent at clearing tau
pathology than a mouse IgG1, which possess enhanced binding
to the inhibitory FcγRII, despite targeting the same epitope with
similar affinity (97). This would suggest that activatory microglial
engagement, at least for these antibodies, has a net protective
effect. Indeed, it has been argued that microglial engagement
is both well-tolerated and therapeutically desirable (108). To
satisfactorily address these issues, future work should determine
the effect of antibody subclass on levels of in vivo protection by
isotype switching monoclonal antibodies.
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Intracellular Sequestration or Clearance
Free antibodies against tau have been found to enter neurons
in cell based systems and in passive transfer experiments in
mice (89, 99, 100, 156). Antibodies were found in complex with
tau in the endolysosomal/macroautophagy pathways, suggesting
that degradation is stimulated by antibody uptake. Antibody
uptake could be blocked with antibodies against FcγRII/III
in mouse neurons (99). The extent of this phenomenon is
not clear, especially given the ambiguity concerning FcγR
expression on the surface of neurons. The humanized antibody,
MAb86/RG7345, was reported to enter neurons and was
found associated with lipid rafts and intracellular or vesicular
tau deposits (100). However, clinical trials for this antibody
were discontinued for reasons that have not been disclosed.
Intracellular sequestration is therefore a mechanism of action
that is not explicitly represented in current clinical trials that
target tau. It remains to be determined whether the phenomenon
of intracellular antibodies involves the wholesale transfer of
antibodies to the cytoplasm, or whether vesicles containing tau
and antibody meet without cytoplasmic access. In the case of
the former, it is expected that intracellular antibodies would
be rapidly bound by TRIM21. It is therefore interesting that
a monoclonal antibody, cis-113, specific to a soluble cis-tau
conformer, was taken up by neurons and found to induce
intracellular degradation of tau that was dependent on TRIM21
(157). Thus, both import of antibody in complex with tau seeds
and uptake of free antibody by neurons may enable intracellular
degradation of pathological protein species via the TRIM21
pathway (70, 157). Recent work demonstrates that TRIM21 can
rapidly degrade diverse cellular proteins in experimental systems
(158). It may therefore be possible to use antibodies and TRIM21
to specifically target disease-relevant protein conformations for
degradation in the cytoplasm.

CONCLUDING REMARKS

The evidence that protein aggregation spreads in a prion-like
manner is accumulating and compelling. The immune system
is tasked with the detection and destruction of pathogens. In
the case of tau, αS and other protein agents, these tasks are

evidently not performed to a sufficient degree to resolve or limit
aggregation. Notably, the detection of aggregated proteins as
a threat is hindered by a lack of classical pathogen-associated
molecular patterns, arising from their status as self proteins
in an altered conformation. Destruction is hindered due to
their physically robust and highly compacted nature, which
is refractory to proteasomal degradation (159). Antibodies,
either induced following active immunization or passively
transferred, represent a means by which protein assemblies can
be labeled as threats and then inactivated by neutralization,
sequestration, or FcR-mediated effector functions. A deeper
understanding of these mechanisms may provide a route
to novel therapies in age-related neurodegenerative disease.
Finally, the expense of long-term passive immunotherapy may
ultimately prove prohibitive to its widespread clinical uptake.
However, evidence of improvement in cognitive outcomes

following immunotherapy would serve as a critical indicator that
pathologically important processes have been targeted. In this
way, passive immunotherapy may serve as proof-of-principle
for future therapies, targeting the same processes, that are more
suited to scaled production at affordable cost.
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