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For a long time, the central nervous system (CNS) was believed to be an immune

privileged organ. In the last decades, it became apparent that the immune system

interacts with the CNS not only in pathological, but also in homeostatic situations. It is

now clear that immune cells infiltrate the healthy CNS as part of immune surveillance

and that immune cells communicate through cytokines with CNS resident cells. In

pathological conditions, an enhanced infiltration of immune cells takes place to fight the

pathogen. A well-known family of cytokines is the interleukin (IL)-6 cytokine family. All

members are important in cell communication and cell signaling in the immune system.

One of these members is oncostatin M (OSM), for which the receptor is expressed on

several cells of the CNS. However, the biological function of OSM in the CNS is not

studied in detail. Here, we briefly describe the general aspects related to OSM biology,

including signaling and receptor binding. Thereafter, the current understanding of OSM

during CNS homeostasis and pathology is summarized.
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INTRODUCTION

A well-orchestrated transmission of signals is crucial to maintain and restore homeostasis
in humans. A class of messenger molecules that play an important role in interaction and
communication of cells in the immune system, are cytokines. They are produced by immune
cells but also by other resident cells of the human body as a response to changes in their
microenvironment. The central nervous system (CNS) was long believed to be immune privileged.
However, in the last decades it has become clear that communication between the CNS and
the immune system is very important, even during homeostasis, and that it needs to be
strictly regulated.

Many cytokines are thoroughly characterized in the CNS, yet others remain less studied,
including oncostatin M (OSM). In 1991, OSM was categorized as a member of the interleukin
(IL)-6 cytokine family (1, 2). Next to OSM and IL-6, this family of cytokines includes IL-11, IL-
27, leukemia inhibitory factor (LIF) ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1),
cardiotrophin-like cytokine (CLC), neuropoietin (NP) and IL-31 (3, 4). These cytokines all signal
through a multi-unit receptor complex, containing the common glycoprotein 130 (gp130) subunit,
except for IL-31 which binds to the OSM receptor beta (OSMRβ)/IL-31 receptor alpha (IL-31Rα)
complex (5). Because of the related receptor complexes, signaling properties are shared by the
members of the IL-6 family. For more insights see (4, 6–9). Here, we briefly describe the biological
effects of OSM and summarize the current understanding of OSM activity in the CNS.
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OSM BIOLOGY

OSM binds to the heterodimeric OSM receptor (OSMR),
consisting of the gp130/OSMRβ complex, also referred to as
OSMR type II in humans. Moreover, in humans and rats,
OSM signaling is also possible through the LIF receptor (LIFR),
consisting of the heterodimer gp130 and LIF receptor beta
(LIFRβ), also known as OSMR type I in humans (4, 10). However,
in mice, murine OSM (mOSM) does not transmit signals
through the LIFR (11, 12). Only extremely high concentrations
of mOSM may lead to weak LIFR signaling (11). While there are
reports on mOSM signaling via the LIFR in mouse osteocytes
(13, 14), no literature hints to LIFR activation by mOSM in
neural cells. Cross-species activities of OSM in mice, rats and
humans are also possible (summarized in Table 1) (10, 15).
Understanding of the cross-species activities is crucial for proper
interpretation of results obtained in experimental studies. For
example, experiments in which OSM only signals via the LIFR
show receptor and cell signaling of LIF rather than that of OSM.

OSM contains BC loops which form a steric hindrance for
OSMRβ and LIFRβ. Therefore, OSM first binds with gp130
to subsequently recruit OSMRβ or LIFRβ (16). In both cases,
formation of the heterodimeric complex leads to activation of
different signaling cascades [extensively reviewed in (4, 6, 7, 17)].
First, receptor binding can activate Janus kinase (JAK)s, JAK1,
JAK2 and Tyk2, which recruit signal transducer and activation
transcription (STAT)s, STAT1, STAT3, STAT5, and STAT6. The
activated STATs translocate to the nucleus to induce transcription
of target genes. Second, activation of the LIFR andOSMR can also
induce the mitogen activated protein kinases (MAPK) cascade.
The different MAPKs involved are extracellular signal-regulated
kinases 1 and 2 (ERK1/2), p38 and c-jun N-terminal kinases
(JNK) (18). Finally, activation of the phosphatidylinositol-3-
kinase (PI3K)/Akt pathway and the protein kinase C delta
(PKCδ) have been described after OSMR activation (19, 20).
These different signaling pathways lead to the diverse nature of
OSM in various cell types and environmental conditions.

OSM IN THE CNS

The role of OSM has already been specified in joint, skin, lung,
and vascular homeostasis and disease [reviewed in (4, 7, 19)].
Also in cancer, depending on the cancer type, various actions of
OSM are reported (4, 7, 19). Yet, less is known about the role of
OSM in the CNS. Here, we summarize the reports for whichOSM
is described in the healthy and pathological CNS (Figure 1).

Source of OSM and OSMRβ Expression in
the CNS
Many cells of the immune system, i.e. dendritic cells, neutrophils,
monocytes/macrophages, and T-cells, have been identified as a
source of OSM (21–23). Hematopoietic cells of the bone marrow
also produce OSM, regardless of inflammation (24). In the
CNS, OSM is expressed by different cell types, namely neurons,
astrocytes and microglia (25–27). In pathological conditions,
such as multiple sclerosis (MS), OSM expression in the CNS is
increased, in part by OSM production via infiltrating leukocytes

(25, 28). With regard to expression of OSMRβ in the CNS,
the first reports described expression of OSMRβ RNA in
most regions of the murine CNS (forebrain, cortex, midbrain,
hindbrain and spinal cord) (29, 30). Later reports investigated the
cellular specificity of OSMRβ expression, and indicated that the
OSMRβ protein is expressed on neurons (31), astrocytes (31–34),
endothelial cells (33), and oligodendrocytes (31). For microglia
conflicting reports are found and discussed later. In addition,
OSMRβ transcripts are also present in epithelial cells of the pia
mater and the choroid plexus (29, 35). The extensive expression
of the OSMRβ in the brain implies important CNS related effects
of OSM in different cell types both in health and disease.

Effects of OSM on Neural Cells
In physiological conditions, OSM has been implied in the
homeostasis of neural precursor cells (NPCs). NPCs are a pool
of cells for the continuous production of new neural cells,
located in the subventricular zone (SVZ) (36), hippocampus
(37), and olfactory bulb (38) in the adult mammalian brain.
In mice, the OSMR is expressed on a subpopulation of NPC
in the SVZ and in the subgranular zone of the dentate gyrus
within the hippocampus (39). Functionally, OSM induces in vitro
repression of neurosphere formation, indicating inhibition of
NPC proliferation isolated from the SVZ and olfactory bulb, (39)
while NPCs isolated from SVZ, olfactory bulb and hippocampus
of OSMRβ knock-out animals lead to enhanced formation of
neurospheres (39).

In pathological conditions, the vast majority of papers
report neuroprotective effects of OSM. To start, OSM inhibits
N-methyl-D-aspartate (NMDA)-induced excitotoxicity in a
dose-dependent way. This effect is even more pronounced after
pre-treatment with OSM (40). Neuroprotective effects against
excitotoxicity are among others mediated by inhibitory
adenosine A1 receptors (A1Rs), suppressing excitatory
transmission (41). Inhibition of glutamate-induced excitotoxicity
by OSM is completely abolished after A1Rs blockage and
knockout, indicating the requirement of adenosine A1R
function for neuroprotection (42). Also, a protective effect
of OSM is observed after amyloid beta-peptide (Aβ) induced
neurotoxicity (43), known to cause mitochondrial dysfunction
in Alzheimer’s disease (44). Furthermore, OSM protects against
3-nitropropionic acid induced mitochondrial dysfunction
in rat cortical neurons through induction of myeloid cell
leukemia-1 (Mcl-1). Mcl-1 enhances mitochondrial respiration
and ATP production (43) and is described as an anti-apoptotic
protein with neuroprotective functions (45, 46). Since rat
neuronal cells and rOSM are used in these experiments, both
the involvement of LIFR and OSMR signaling needs to be
considered. Moreover, we reported that OSM enhances neuronal
cell viability after withdrawal of B27, a vital supplement for
growth and differentiation of primary neurons and enhances
neurite outgrowth in vitro (47). Only one study reported a
potential neurotoxic effect of OSM. In this study, neuronal
cell growth was inhibited when cultured in the presence of the
secretome of peripheral blood mononuclear cells (PBMC) from
HIV-1-infected patients. Analysis of the secretome, identified
OSM as the key molecule involved in inhibition of neuronal
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TABLE 1 | Cross-species signaling of OSM via the LIFR and the OSMR in mice, rats and humans.

Mouse Rat Human

mLIFR mOSMR rLIFR rOSMR hLIFR* hOSMR**

Mouse OSM (10–12, 15) – + – + – –

Rat OSM (10) – + + + + –

Human OSM (10, 12) + – + – + +

*OSMR type I; **OSMR type II.

FIGURE 1 | The role of OSM in CNS pathology, an overview. This figure depicts all reported activities of OSM on different CNS resident cells as investigated in in vitro

and in vivo studies. For further details see accompanying text.
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proliferation and viability (48). Another study reported an
indirect neurotoxic activity of OSM by inducing TNF-α secretion
by microglia (49). Altogether, we can conclude that OSM has
been widely reported to have a direct neuroprotective activity.
However, indirect neurotoxic effects are possible and need to be
kept under consideration.

Astrocytes usually prevent neuronal excitotoxicity via
sequestration of extracellular glutamate through the glutamate
aspartate transporter (GLAST/EAAT1) and glutamate
transporter-1 (GLT-1/EAAT2) (50). OSM downregulates
the expression of these receptors on astrocytes, leading to
reduced glutamate uptake and consequently, excitotoxic
injury (26). Astrocytes also secrete different molecules in
response to OSM. Plasminogen activator inhibitor-1 (PAI-1)
and α1-antichymotrypsin (ACT) (51) expression is induced by
OSM in astrocytes. Co-treatment of OSM and IL-1, leads to
matrix metalloproteinase (MMP)-1 and MMP-3 production by
astrocytes (52). Moreover, OSM works synergistically with the
pro-inflammatory cytokines, IL-1β and TNF-α, to induce IL-6
(53) and prostaglandin E2 (PGE2) (54) production in human
astrocytes. These OSM-induced astrocytic molecules are linked
to pro-inflammatory and tissue remodeling processes. However,
OSM also induces astrocytic secretion of tissue inhibitor of
matrix metalloproteinase-1 (TIMP-1) (55) and SOCS3 (32),
which quench inflammation. Therefore, the net outcome of OSM
signaling in astrocytes depends on the microenvironment and
other cytokines present herein.

For microglia/macrophages, contradictory reports are present
about OSMRβ expression and therefore the effect of OSM on
these cells. Different research groups do not observe OSMRβ

expression in primary mouse microglia (34, 42), nor in the C8-B4
microglia cell line (34). Moreover, no phosphorylation of STAT1
or STAT3 is observed in microglia after OSM treatment (34).
In contrast, tumor necrosis factor-α (TNF-α) and nitric oxide
(NO) production is reported after NF-κB pathway stimulation via
OSM treatment of primary microglia and the BV2 microglia cell
line (49). Yet, others did not see OSM-induced activation of the
NF-κB pathway nor OSM-induced NO production in microglia
(34). Moreover, our group found OSMRβ expression on Iba-1+

cells, a marker for both microglia and macrophages, in naive and
cuprizone treated animals (31). In naive animals, no infiltration
of macrophages is expected, yet perivascular, meningeal and
choroid plexus macrophages are present (56). In the cuprizone
challengedmice, macrophages infiltrate the brain (57). Therefore,
it is possible that the Iba-1+ cells are macrophages. However, Hsu
and colleagues did not detect OSMRβ in bone marrow-derived
macrophages and the RAW 264.7 macrophage cell line (34). Yet,
in other tissues, OSMRβ expression is seen on macrophages,
i.e. in adipose tissue and atherosclerotic lesions (58, 59). In
conclusion, more research is needed to address whether OSMR
signaling is active in microglia and macrophages.

The blood brain-barrier (BBB) is very important to protect the
brain from unwanted intruders. On human cerebral endothelial
cells (HCECs), expression of OSMRβ, but not LIFRβ, is seen,
despite low RNA levels of LIFRβ (25). The latter implies
that OSM only signals through the OSMR type II in HCECs.
OSM treatment increases the percentage of HCECs expressing

intracellular adhesion molecule-1 (ICAM-1), yet no effect on
vascular cell adhesion molecule-1 (VCAM-1) expression is
detectable (25). Next to adhesion molecules, OSM augments the
secretion of IL-6 and monocyte chemotactic protein-1 (MCP-1)
in HCECs (25). This effect is further enhanced after co-treatment
of HCECs with OSM and TNF-α (25). Also, a decreased BBB
permeability is attributed to persistently high activation of the
JAK/STAT3 signaling pathway (60). Here, rat brain capillary
endothelial cells (RBECs) were treated with mOSM, implying
OSMR and not LIFR signaling as indicated in Table 1 (10). Both
increased permeability for sodium fluorescein and decreased
transendothelial electrical resistance (TEER) are seen in mOSM
treated RBECs (60, 61). Moreover, delocalization of the tight
junction molecules, claudin-5 and zonula occludens-1 (ZO-1) is
apparent after OSM treatment (60). Together, these studies imply
a pro-inflammatory state of BBB-ECs when treated with OSM.

Finally, for oligodendrocytes and myelination, protective
effects of LIF have been described [reviewed in (62, 63)] and
tested preclinically via therapeutic delivery through nanoparticles
or lentiviral vectors (64, 65). However, only a few in vivo studies
reported on the role of OSM on oligodendrocytes and its repair
mechanisms after myelin damage. These results are described in
the next section. Overall, both protective and detrimental effects
on cells of the CNS are described for OSM. Even though, the
described in vitro experiments investigated the effect of OSM on
distinctive cell types, the interplay between different cells is more
complex and needs to be studied using in vivomodels.

OSM in Murine Models of CNS Pathology
Murine neurological disease models are used to investigate the
biological role of OSM in a more complex in vivo setting and
to further allow development of OSM based treatment strategies
based on these insights. Inducing disease in these models can
influence the level of OSM and OSMRβ expression. Indeed,
upregulation of OSM and OSMRβ in whole spinal cord is
observed in the mouse spinal cord hemisection model (47).
During cuprizone-induced demyelination increased OSMRβ

expression is seen mainly on astrocytes and Iba-1+ cells
(microglia/macrophages) (31). In contrast, middle cerebral artery
occlusion (MCAO)/reperfusion reduces expression of OSMRβ

on neurons in brain areas of disturbed perfusion, i.e. ipsilateral
cortex and striatum (66).

To test the effect of OSM signaling, both OSM treatment
and transgenic mice [OSMRβ overexpressing animals or OSMRβ

knock-out (KO) mice] can be used. While OSM KO and OSMRβ

KO mice are healthy and fertile, phenotypical changes observed
are a disturbed hematopoiesis in both KO strains (67, 68) and
severe obesity upon a high-fat diet in OSMRβ KO animals (69).
It is unknown whether there is a phenotype in the CNS, since
no neurological deficits are reported to date. For the OSMRβ KO
mice, the IL-31 receptor consisting of OSMRβ/IL-31Rα is also
affected. However, to date there are no reports of IL-31 signaling
in the CNS, only the presence of the IL-31 receptor is described in
dorsal root ganglia (70–73).Therefore, it is difficult to evaluate the
effect of disturbed IL-31 signaling in CNS studies using OSMRβ

deficient mice.
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OSM was studied in the experimental autoimmune
encephalomyelitis (EAE) mouse model, a MOG autoreactive
T-cell mediated model for MS. Mice receiving intraperitoneal
injections with OSM did not develop any sign of paralysis,
the clinical outcome of EAE induction (74). The absence
of symptoms was in agreement with limited immune cell
infiltration in the brain of these animals (74). However, it
needs to be mentioned that human OSM was used to treat the
animals. Therefore, LIFR signaling and not OSMR signaling
is studied here as indicated in Table 1. Indeed, systemic LIF
treatment of EAE mice reduces the disease symptoms (75).
We have shown that local overexpression of OSM through
lentiviral vectors reduces cell-death of oligodendrocytes in the
cuprizone model and therefore limits subsequent demyelination.
The latter is linked to a reduced microglial response, increased
IL-4 expression and M2 polarization (31). OSM-induced M2
polarization is also seen in other organ/tissue models, i.e. lung,
adipose tissue (58, 76–78) and cancer models (79, 80). In line
with the cuprizone model, OSM treatment in the ethidium
bromide (EtBr) toxin-induced demyelination model counteracts
a reduction in mRNA expression of oligodendrocyte precursor
marker (Pdgfra), oligodendrocyte lineage transcription factors
(Olig1 and Olig2) and myelin genes (Plp and Mog) indicative
for oligodendrocyte and myelin sparing (33). Moreover,
neuroprotective effects are reported in vivo. Local OSM
treatment in a spinal cord injury (SCI) mouse model improves
functional recovery, and histological analysis reveals a reduced
lesion size with less astrogliosis, less CD4+ T cell infiltration
and an increased nerve fiber sprouting (47). Also, stereotaxic
injection of NMDA together with OSM reduces the NMDA-
induced lesion volume in a model of neurotoxic injury. This
could be attributed to a reduced expression of the NR2C
subunit of the NMDA-receptor and attenuated increase of
intracellular calcium, preceding NMDA-induced cell death
(40). Correspondingly, OSMRβ overexpression in neurons
improves stroke outcome following ischemia/reperfusion (I/R)-
induced cerebral injury (66). The latter is due to a protective
role of OSMRβ against neuronal apoptosis via JAK2/STAT3
signal activation, leading to transcription of genes involved
in neuronal survival (66). When mice lack OSMRβ, opposite
effects on neurons and oligodendrocytes are described. OSMRβ

deficiency leads to an increased infarct volume and more severe
neurological deficits after I/R damage (66) and an aggravation

of demyelination in the cuprizone model (31). Taken together,
these studies indicate protective effects of OSM signaling in
different mouse models for neurodegenerative diseases, with
both oligodendrocytes and neurons being directly or indirectly
protected by OSM. The most important intermediate players in
these processes are astrocytes and microglia/macrophages.

CONCLUSION

Within the CNS, themajor cellular sources of OSM are astrocytes,
neurons, microglia and infiltrating immune cells. OSM can
signal though both the LIFR (OSMR type I in humans) and
OSMR (OSMR type II in humans) in humans and rats, while
in mice, only signaling via the OSMR is possible. Since OSM
can signal via two receptors, caution should be taken when
interpreting research findings, because OSM-mediated effects
can be attributed to LIFR and/or OSMR signaling, depending on
the model and species used. With regard to the effect of OSM
on neurons, the majority of papers report protective effects of
OSM. For oligodendrocytes, astrocytes, and the BBB a limited
amount of studies is available. OSM has protective effects at the
level of myelination, which is very important for good signal
transduction and protection of axons. For astrocytes, there is a
role in excitotoxicity and secretion of inflammatory molecules.
Finally, at the level of the BBB a pro-inflammatory readout
is observed. To conclude, OSM can exhibit different functions
depending on the variety of cell types that express the receptor
and the cellular and molecular microenvironment. While in vivo
models demonstrated that OSM has beneficial effects in the
diseased CNS, more research is warranted to reveal the true role
of OSM in the CNS.
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