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Paraneoplastic pemphigus (PNP) is a rare but life-threatening mucocutaneous disease

mediated by paraneoplastic autoimmunity. Various neoplasms are associated with

PNP. Intractable stomatitis and polymorphous cutaneous eruptions, including blisters

and lichenoid dermatitis, are characteristic clinical features caused by humoral and

cell-mediated autoimmune reactions. Autoreactive T cells and IgG autoantibodies against

heterogeneous antigens, including plakin family proteins and desmosomal cadherins,

contribute to the pathogenesis of PNP. Several mechanisms of autoimmunity may

be at play in this disease on the type of neoplasm present. Diagnosis can be

made based on clinical and histopathological features, the presence of anti-plakin

autoantibodies, and underlying neoplasms. Immunosuppressive agents and biologics

including rituximab have been used for the treatment of PNP; however, the prognosis

is poor due to underlying malignancies, severe infections during immunosuppressive

treatment, and bronchiolitis obliterans mediated by autoimmunity. In this review, we

overview the characteristics of PNP and focus on the immunopathology and the potential

pathomechanisms of this disease.

Keywords: paraneoplastic pemphigus, neoplasms, tolerance, humoral immunity, cell-mediated immunity

INTRODUCTION

Paraneoplastic pemphigus (PNP) is a rare mucocutaneous autoimmune disease associated with
neoplasm (1). Since Anhalt et al. (1) first proposed diagnostic criteria for PNP in 1990, revised
criteria have been proposed by several research groups (2–5). Although consensus guidelines have
not been reached, four features are consistently found in the majority of PNP patients and are
generally accepted with a high degree of confidence as the minimal criteria for diagnosis. These
features include (1) clinical features of severe and persistent stomatitis with or without polymorphic
cutaneous eruptions, (2) histologic features of acantholysis and/or interface dermatitis, (3)
demonstration of anti-plakin autoantibodies, and (4) presence of an underlying neoplasm. PNP
manifests as polymorphic mucocutaneous eruptions mediated by humoral and cellular immunity.
Moreover, the autoimmune reaction can appear in internal organs, such as the lung. Considering
this potential lung involvement, the more inclusive term, “paraneoplastic autoimmune multi-
organ syndrome,” has been proposed for this disease (6). Less than 500 cases of PNP have been
reported worldwide in patients with various clinical features and autoantibody profiles (7). PNP
is genetically associated with the human leukocyte antigen (HLA)-Cw∗14 and HLA-DRB1∗03
(8, 9). Tumors associated with PNP are mostly hematologic malignancies, including lymphoma,
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leukemia, and Castleman disease (10, 11). The mortality rate is
high because of severe infections (e.g., sepsis and pneumonia),
underlying malignancy, or bronchiolitis obliterans which is
related to the autoimmune response.

DISEASE MANIFESTATIONS

Clinical Features
The most characteristic feature of PNP is stomatitis, which
usually is the first presenting sign and persists over the course of
the disease (2, 12). Stomatitis presents as erosions and ulcerations
affecting the oropharynx and extending to the vermilion border
of the lips (Figure 1A). In addition to stomatitis, mucositis
involving the pharynx, larynx, and esophagus can occur (2).
Moreover, conjunctivitis is also common in these patients,
sometimes causing visual impairment (13), and anogenital
involvement is also observed in PNP (14). In several cases,
mucosal involvement is the only sign of PNP (15–17).

Skin lesions of PNP are polymorphic and may appear with
different features in the same patient. Blisters and erosions are
commonly observed and mimic those of pemphigus vulgaris,
pemphigus foliaceus, or bullous pemphigoid, affecting any area
of the body (Figure 1B). The blisters may be confluent, similar
to that in toxic epidermal necrolysis, or may be erythema
multiforme-like targetoid lesions. Another type of characteristic
cutaneous lesions are lichenoid eruptions, which manifest as
erythematous papules and plaques, similar to that in lichen
planus and graft-vs.-host disease (Figure 1C). In some cases
of PNP, cutaneous lesions may present as onychodystrophy
and alopecia (14). As for extracutaneous lesions, bronchiolitis
obliterans, one of the major causes of death in PNP, is found in
∼30% of PNP patients and frequently develops in patients with
Castleman disease (18, 19). The initial symptom of bronchiolitis
obliterans is dyspnea, and pulmonary function tests show
obstructive lung disease (2).

Associated Neoplasms
PNP is associated with underlying neoplasms, the most frequent
of which are hematologic malignancies. Previous studies revealed
that non-Hodgkin lymphoma (about 40%) is the most frequent
neoplasm, followed by Castleman disease (15∼37%) and chronic
lymphocytic leukemia (CLL) (7∼18%) (10, 11, 20). Castleman
disease has been reported as the most frequent neoplasm
in Korea and China (21, 22), suggesting that the incidence
of associated neoplasms vary by ethnicity. Castleman disease
is the most commonly associated neoplasm in children with
PNP (23). Given the fact that Castleman disease has an
extremely low incidence in the general population, cases of
PNP with Castleman disease are highly frequent. A minor
fraction of neoplasms associated with PNP represents non-
hematologic neoplasms, including neoplasms originating from
the thymus (e.g., thymoma), sarcoma, malignant melanoma,
and various epithelial-origin carcinomas (e.g., adenocarcinoma
and squamous cell carcinoma) (10, 14, 20, 24, 25). Some cases
of PNP were diagnosed before an underlying malignancy was
detected (26–28). Accordingly, PNP might be a marker for
occult malignancy.

Autoantibodies
PNP is characterized by the production of autoantibodies against
various target antigens, mainly plakin family proteins (Figure 2).
The plakin family is defined by the presence of a plakin and/or
plakin repeat domain and function as linker proteins that link
cytoskeletal networks to each other and to membrane-associated
adhesive junctions, such as desmosomes and hemidesmosomes.
The seven plakin family members include desmoplakins (Dpks:
Dpk1 andDpk2), plectin, BP230,microtubule-actin cross-linking
factor 1, envoplakin, periplakin, and epiplakin (29). The most
characteristic and consistently recognized plakin antigens in
PNP are envoplakin (30) and periplakin (31). BP230, Dpks,
epiplakin, and plectin are also frequently recognized as target
antigens in PNP (31, 32). In addition, BP180 (33), p200 protein
(34), desmosomal cadherins such as desmogleins (Dsgs: Dsg1
and Dsg3) (35) and desmocollins (Dscs: Dsc1, Dsc2, and Dsc3)
(11), as well as the protease inhibitor alpha-2-macroglobulin-like
antigen-1 (A2ML1) (36) are targeted in PNP (Figure 2).

DIAGNOSIS

Histology
As PNP has two major clinical phenotypes, i.e., blisters
and lichenoid eruptions, pathologic findings are present as
acantholytic blisters and interface dermatitis, depending on
the clinical features (21). In blisters, suprabasal acantholytic
separations with sparse inflammatory infiltrate are observed
(Figure 3A), whereas lichenoid interface changes with a dense
mononuclear immune cell infiltration in dermo–epidermal
junction are observed in erythematous maculopapular lesions
(Figure 3B). In addition, blisters and interface dermatitis
sometimes coappear in the same lesion.

Immunofluorescence
Immunofluorescence is a useful technique in the diagnosis
of PNP. In direct immunofluorescence of the mucocutaneous
lesions, IgG autoantibodies and/or complement deposition is
observed in the epidermal intercellular spaces and/or along the
basement membrane zone (4). Circulating autoantibodies can
be found by indirect immunofluorescence (IIF) assays using
human skin (Figure 3C), monkey or guinea pig esophagus,
or other substrates, including rat bladder, myocardium, and
lung. In particular, the bladder is rich in plakins such as
envoplakin, periplakin, and Dpk but lacks Dsgs. Therefore,
despite its relatively low sensitivity (86%), IIF using rat bladder
is a highly specific (98%) method to differentiate PNP from
other pemphigus that does not harbor anti-plakin autoantibodies
(Figure 3D) (4, 37).

Use of Antigen to Detect Autoantibodies
Immunoblotting is considered the gold standard for diagnosis
of PNP (4), and immunoprecipitation and IIF using rat bladder
are useful for diagnostic accuracy of PNP (4, 38). Immunoblot
analysis using epidermal extracts has been used to detect 210
kDa envoplakin and 190 kDa periplakin, which are highly
sensitive and specific for PNP (4). Immunoprecipitation can
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FIGURE 1 | Clinical manifestations of paraneoplastic pemphigus (PNP). (A) Extensive erosions with ulcers and crusts are shown on the vermilion borders of the lips.

(B) Blisters and erythematous patches with crusts are observed. (C) Erythematous to violaceous papules and plaques with silvery scales are present on the dorsum

of hands.

detect antibodies against multiple epidermal antigens, including
plakin family proteins and the 170 kDa A2ML1 protein (36, 39).

Enzyme-linked immunosorbent assays (ELISAs) for
envoplakin and periplakin have been developed for PNP
diagnosis (38, 40–42). A series of studies using epitope mapping
showed that ELISAs using the recombinant N-terminal domain
and the linker subdomain of envoplakin and the linker
subdomain of periplakin exhibit 75% sensitivity and 92–99%
specificity (38, 40–42). ELISA is a useful technique for detecting
circulating autoantibodies in PNP, especially those against
Dsgs and Dscs. Approximately 80% of patients with PNP have
circulating anti-Dsg3 IgG, and other autoantibodies against
desmosomal cadherins (e.g., Dsg1, Dsc1, Dsc2, and Dsc3)
have been detected in some patients with PNP (19–42%) (11).
Moreover, autoantibodies against BP180 are detected in ∼40%
of PNP sera (33).

MANAGEMENT AND PROGNOSIS

The treatment of PNP is challenging; however, PNP cases
associated with benign tumors, such as localized Castleman
disease and benign thymoma, generally improve or achieve
complete remission within 1–2 years after complete tumor
resection (43). However, in PNP with malignant neoplasms,
reducing the tumor burden does not lead to control of the
disease, and a consensus regarding the best therapeutic
regimen for treatment has yet to be established. The most
widely used treatment for PNP is systemic corticosteroids,
but many patients with PNP do not show a good response
with corticosteroids alone (44). Systemic corticosteroids
are also used with other immunosuppressive agents,
including cyclosporine, cyclophosphamide, azathioprine,
and mycophenolate mofetil (45). However, the clinical
efficacy of combination therapy varies depending on
the underlying neoplasm. Cutaneous lesions usually
improve after treatment with these immunosuppressive
drugs, whereas mucositis is often refractory to these
treatments (45).

Intravenous immunoglobulin and plasmapheresis are
commonly used for the treatment of autoimmune bullous
diseases. Both treatments have shown promising effects in
the treatment of PNP (46, 47). B cell-targeting agents have
also been used in PNP. Rituximab, a monoclonal anti-CD20

antibody, depletes mature CD20+ B cells, and ibrutinib, a
Bruton’s tyrosine kinase inhibitor, inhibits B cell signaling.
Rituximab and ibrutinib produce different outcomes among
PNP patients, but generally, the responses are good (48–
50). In contrast to humoral immunity, cellular immunity
cannot be controlled by these treatment options, which may
explain why complete remission is not achieved in all PNP
patients with these treatments. Therefore, therapeutic strategies
for controlling both humoral and cellular autoimmunity
should be considered in order to achieve complete remission
in PNP. Alemtuzumab is a monoclonal antibody against
CD52, which is expressed on most T and B lymphocytes.
Alemtuzumab was shown to be effective in PNP patients
refractory to various treatments, including corticosteroids,
but it has only been administrated in a few cases of PNP with
hematologic malignancies (51, 52). Tocilizumab, a monoclonal
antibody against IL-6R, was found to rapidly improved
mucositis, but not bronchiolitis obliterans, in two cases of
PNP (53).

Prognosis of PNP is poor, and mortality is high, with a
5-year overall survival rate of only 38%, although prognosis
largely depends on the nature of the underlying malignancy
(2, 44). The course of PNP is not correlated with that of
the associated malignancy (2). Mortality usually results
from severe infection due to the immunosuppressive
therapy, associated malignancy, and bronchiolitis obliterans
(2, 11, 21, 44). Bronchiolitis obliterans may cause
respiratory failure, leading to a fatal outcome. Indeed,
one study showed that bronchiolitis obliterans and toxic
epidermal necrolysis-like clinical feature are independent
risk factors for death in PNP (54). Similar to mucositis,
bronchiolitis obliterans is resistant to therapy, and lung
transplantation is the last therapeutic option for respiratory
failure (55).

IMMUNOPATHOLOGY OF PNP

Humoral Immunity
As desmosomal cadherins are the only desmosomal components
exposed on the cell surface, it was first suspected that
autoantibodies against desmosomal cadherins cause the
suprabasal acantholytic blisters in PNP (Figure 4). This was
clearly supported by a study using neonatal mice injected with
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FIGURE 2 | Schematic representation of a membrane-associated adhesive junction in the epidermis and autoantigens in PNP. Keratinocytes in the epidermis are

connected via desmosomes. Desmosomal cadherins, desmoglein (Dsg) and desmocollin (Dsc), are transmembrane proteins that form hetero- or homodimers in the

intercellular area. At the cytoplasmic side of the desmosome, plakophilin (Pkp) and plakoglobin (Pg) bind to intracellular domains of desmosomal cadherins.

Desmoplakin (Dpk) interacts with Pkp, Pg, and keratin filaments. Envoplakin, periplakin, and epiplakin serve to link keratin filaments and the plasma membrane.

Desmosomal components known to act as autoantigens in PNP are envoplakin, periplakin, epiplakin, Dpk, Dsg, and Dsc. Hemidesmosomes anchor the epidermis to

the dermis. Plectin and BP230, which connect keratin filaments, bind to α6β4 integrin and BP180, which are transmembrane proteins in hemidesmosomes. α6β4

integrin binds to laminin 332, which interacts with type VII collagen in the dermis. Autoantibodies against BP230, BP180, and plectin can be observed in PNP.

IgGs from PNP sera (35). In this study, mice given IgGs depleted
with anti-Dsg IgGs were protected from blisters, whereas
anti-Dsg3 IgGs caused acantholytic blisters (35, 56). However,
some patients with PNP having suprabasal acantholytic
mucosal and skin blisters do not have circulating anti-Dsg
autoantibodies (21, 57). This phenomenon is also observed in
pemphigus, one of the autoimmune bullous mucocutaneous
diseases characterized by anti-Dsg autoantibodies. In some
cases showing the pemphigus phenotype, blisters can develop
because of autoantibodies against Dsc3 but not against

Dsgs (58). These findings confirm that the mechanism of
acantholysis in PNP varies among patients. A recent study
showed that antibodies to A2ML1, which act as a protease
inhibitor, decrease the adhesion of cultured normal human
keratinocytes by activating plasmin. This suggests that anti-
A2ML1 autoantibodies from PNP sera may contribute to
the induction of acantholysis (36). Furthermore, it remains
to be determined whether anti-plakin family antibodies play
a role in the induction of acantholytic blisters in PNP (59).
Thus, further studies are needed to clarify the exact role of
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FIGURE 3 | Histopathological and immunofluorescent findings of PNP. (A,B)

Suprabasal acantholysis (A) and interface dermatitis with scattered

dyskeratotic cells (B) are observed in PNP skin lesions (scale bar, 100µm).

(C,D) Using indirect immunofluorescence studies, IgG deposition on the

intercellular spaces of keratinocytes and the dermo–epidermal junction (C) and

on the surface of rat bladder epithelial cells (D) is found (scale bar, 100µm).

autoantibodies in the development of acantholytic blisters
in PNP.

Bronchiolitis obliterans was first examined in studies using
bronchus biopsy specimens from PNP patients (18, 60). In the
bronchial epithelium, ciliated basal cells adhered to the lamina
propria, whereas ciliated columnar cells are separated (18, 60).
In line with the histological findings, linear deposition of IgG
was observed in the intercellular spaces of respiratory epithelial
cells as well as the basement membrane zone (18). These findings
provided evidence that humoral immunity can contribute to
the development of bronchiolitis obliterans in PNP (Figure 4).
However, it is still uncertain which types of autoantibodies are
pathogenic in bronchiolitis obliterans. Importantly, desmosomal
cadherins are differentially expressed between the skin and
bronchus. In particular, Dsg1 and Dsg3, expressed in the skin
and mucosal epidermis, are not expressed in normal respiratory
epithelium (18). However, Dsg3 can be ectopically expressed
in the lung in the case of squamous metaplasia in response to
inflammation (61). Thus, anti-Dsg3 antibody might contribute
to the pathogenesis of bronchiolitis obliterans. In a recent study,
mice treated with anti-epiplakin antibodies showed loss of cell–
cell adhesion in the respiratory epithelium (32), suggesting
that anti-epiplakin antibody may play a pathogenic role in
bronchiolitis obliterans, although epiplakin is located within the
subcellular area of epithelial cells (62).

Human IgG is divided into four subclasses: IgG1, IgG2, IgG3,
and IgG4. Among the IgG subclasses, anti-Dsg IgG1 is dominant
in the sera of patients with PNP (63, 64), whereas anti-Dsg IgG4
is pathogenic in patients with pemphigus vulgaris and pemphigus
foliaceus (65) (Figure 5). In human immunity, IgG1 is the main
isotype in Th1 immunity, whereas IgG4 is mainly secreted during
Th2 response. Therefore, the above results suggest that the Th1

response might be dominant in PNP. In addition, anti-Dsg3
antibody from PNP sera reacts with all five extracellular (EC)
subdomains of human Dsg3, whereas anti-Dsg3 antibody from
pemphigus vulgaris sera mainly binds to EC1 and EC2 domains
(63). Pathogenic epitopes of Dsg3 are also different between
PNP and pemphigus vulgaris. Pathogenic monoclonal antibodies
from PNP bind to EC2 and EC3 domains (56), in contrast to
those of pemphigus vulgaris binding to EC1 domain (66). The
differences in Dsg epitopes and subclass distribution reflect the
difference in the mechanisms mediating autoimmunity between
PNP and pemphigus.

Cellular Immunity
The presence of lichenoid dermatitis in PNP indicates that
cell-mediated immune mechanisms play a critical role in its
development (67, 68) (Figure 4). CD8+ T cell infiltration and
apoptotic keratinocytes are frequently observed in the epidermis
of PNP (6, 69), suggesting that autoreactive CD8+ T cells
targeting epidermal components contribute to the formation of
lichenoid dermatitis. CD56+ cells are also detected in lichenoid
dermatitis (6), but further studies are needed to characterize
these cells since CD56 is expressed on CD8+ T cells as well
as natural killer cells. With regard to CD4+ T cell-mediated
immunity, adoptive transfer of Dsg3-specific CD4+ T cells
into RAG2−/− mice was found to cause interface dermatitis
as a result of cell-mediated immunity, and interferon-γ from
CD4+ T cells was shown as a crucial inducer of this interface
dermatitis (70). Lichenoid dermatitis may be the only sign
of PNP or may develop before blisters appear (68, 71, 72).
Thus, this suggests that lichenoid inflammation induced by cell-
mediated immunity might lead to exposure of self-antigens,
such as plakins, to the immune system, thereby inducing
autoantibody production.

In addition to mucocutaneous lesions, marked infiltration of
CD8+ T cells is observed in PNP-associated bronchiolitis
obliterans and in the lungs of DSG3−/− mice injected
with IgGs from PNP sera (6, 73). These findings implicate
CD8+ T cell-mediated immunity in the pathogenesis of
bronchiolitis obliterans (Figure 4). Moreover, adoptive
transfer of Dsg3-specific CD4+ T cells in RAG2−/− mice
induced pulmonary inflammation and ectopic Dsg3 expression
(61) (Figure 4). Therefore, both humoral and cell-mediated
immunity may be involved in the development of bronchiolitis
obliterans in PNP, although further studies will be required to
understand the exact pathophysiological mechanisms underlying
bronchiolitis obliterans.

POTENTIAL PATHOMECHANISMS OF
PARANEOPLASTIC AUTOIMMUNITY

Breakdown of Central Tolerance
T cells develop in the thymus and undergo positive and
negative selection during development before entering the
periphery. During positive selection in the thymic cortex,
T cells that cannot interact with self-peptide-bound major
histocompatibility complex (MHC) molecules are removed.
Autoreactive T cells bearing TCR with high affinity to
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FIGURE 4 | Pathophysiology of PNP. Possible models of autoreactive T cell generation caused by neoplasms are shown. (1) Neoplasms originating from the thymus

may interfere with the negative selection process during central tolerance, resulting in survival of autoreactive T cells. (2) Tumor cells originating from B cells can act as

antigen-presenting cells. Tumor cells may present self-antigens and provide co-activating signals to autoreactive naïve T cells. Thus, autoreactive T cells can escape

anergy. (3) Tumor cells secrete cytokines, such as IL-6, which can drive the conversion of regulatory T cells (Tregs) into effector T cells. A lack of Tregs may promote

the activation of autoreactive T cells. (4) Neoantigens derived from neoplasms may act as antigens to autoreactive T cells. Activated autoreactive T cells induce both

humoral and cell-mediated immunity. In humoral immunity, autoreactive B cells interact with autoreactive T cells through cognate antigens and differentiate into plasma

cells, which produce IgG1 autoantibodies. Humoral autoimmunity contributes to bronchiolitis obliterans and acantholysis presenting as blisters. In cell-mediated

immunity, autoreactive CD4+ and CD8+ T cells produce interferon-γ (IFN-γ) and autoreactive CD8+ T cells secrete cytotoxic molecules, such as granzyme and

perforin. These immune reactions induce bronchiolitis obliterans and lichenoid dermatitis. (A histologic image of bronchiolitis obliterans were adopted from

Nousari et al. (18). The permission was obtained from the authors for reproduction).

FIGURE 5 | IgG isotypes of autoantibodies in PNP. Indirect immunofluorescence of serum from a patient with PNP was performed using fluorescence-labeled

anti-IgG1, IgG2, IgG3, and IgG4 antibodies. The IgG1 isotype autoantibodies were predominantly detected (scale bar, 100µm).

self-peptide-bound MHC molecules are removed during
negative selection in the thymic medulla. In this process,
tissue-specific antigens are expressed in the medullary
thymic epithelial cells through the action of factors such
as autoimmune regulator (Aire) (74). If the negative
selection process cannot be precisely controlled owing to
the presence of a tumor in the thymus, autoreactive T cells
may escape central tolerance and promote autoimmunity in the
peripheral area.

Thymoma is a neoplasm commonly associated with PNP.
PNP patients with benign thymoma are usually cured after
complete tumor resection (21, 75). Thymoma is well-known to
induce an autoimmune response (76). Indeed, other autoimmune
diseases, including myasthenia gravis, can occur in patients with
thymoma (76), and PNP associated with thymoma is often
accompanied by myasthenia gravis (21, 77). Thymoma has no
or reduced medullary portions and is defective in the expression
of Aire (78, 79). T cells from AIRE−/− mice induced the
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production of anti-Dsg3 IgG antibodies when interacting with
DSG3−/− B cells (80), and Aire-dependent medullary thymic
epithelial cells expressed Dsgs (81). However, autoimmune
polyendocrinopathy-candidiasis-ectodermal dystrophy, a human
hereditary disease with Aire deficiency, neither presents anti-Dsg
and anti-BPAG1 antibodies nor the clinical features of PNP
(82–84). Recently, in a patient with thymoma expressing Aire,
the condition manifested as pemphigus foliaceus with anti-Dsg1
autoantibody (85). These results suggest that Aire may not be the
only factor regulating central tolerance in PNP (Figure 4). Given
that thymic factors other than Aire (e.g., Fezf2) also contribute
to the negative selection (86), the mechanism of breakdown of
central tolerance in PNP must be further clarified.

Breakdown of Peripheral Tolerance
Even if thymic selection yields high-purity T cells recognizing
foreign antigens, some self-reactive T cells escape to the
periphery. However, peripheral tolerance prevents the
activation of self-reactive T cells in peripheral tissues via
several mechanisms, including T cell anergy and deletion and
suppression by regulatory T cells (Tregs). T cell anergy, a
long-lived hyporesponsive state of T cells, occurs when T cells
engage MHC molecules on antigen presenting cells (APCs) in
the absence of costimulatory signals (87). T cell deletion entails
T cell apoptosis due to repeated stimulation of T cells without
costimulation (88).

CD28, one of the classic costimulatory molecules in T cells,
interacts with its ligands (CD80 [B7-1] and CD86 [B7-2])
expressed on professional APCs. In contrast to solid tumors,
lymphomas derived from B cells express CD80 or/and CD86 (89–
92), which induce T cell proliferation and prevent T cell anergy
(90). CLL B cells lack CD80 and CD86 but upregulate CD80
and CD86 after stimulation, thereby presenting antigens and
activating T cells (93, 94). Moreover, lymph node-derived CLL
cells show higher CD80 and CD86 expression than circulating
CLL cells (95). These results suggest that tumor cells derived
from B cells have functional costimulatory molecules. Thus, self-
reactive T cells might be activated after escape from peripheral
tolerance by mechanisms such as anergy and deletion (Figure 4).

Tregs have a critical role in regulating T cell activation
in peripheral tolerance. Cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4), a structural homolog of CD28, is
expressed on Tregs and has a substantially higher affinity
for CD80 and CD86 than does CD28. CTLA-4 competitively
inhibits CD28-CD80/CD86 signaling and downregulates
CD80 and CD86 expression, so that Tregs induce self-reactive
T cell anergy and inactivation (96). Ipilimumab, a CTLA-
4-blocking antibody, aggravates pre-existing autoimmune
diseases (97). Tregs are heterogenous and can be unstable,
depending on the environment (98). A thymically derived
Treg cell population generally maintains its suppressive
activity, whereas a peripherally derived Treg cell population
can change its functional properties under inflammatory
conditions (99). Although the role of Tregs in PNP has
not been studied, recent studies in FOXP3−/− scurfy mice
revealed that the absence of Tregs leads to autoimmune
bullous skin diseases mediated by anti-BP230 antibodies

(100, 101). Similar to the findings of the mouse study, bullous
pemphigoid, characterized by anti-BP180 and anti-BP230
autoantibodies, reportedly developed in a pediatric patient
with immune dysregulation, polyendocrinopathy, enteropathy,
and X-linked (IPEX) syndrome caused by FOXP3 mutation
(102). Thus, a Treg imbalance might lead to the induction of
paraneoplastic autoimmunity.

The pro-inflammatory cytokine interleukin (IL)-6 is the
major extrinsic factor inhibiting Treg differentiation (103,
104). IL6−/− mice or mice treated with IL-6R blocking
antibody exhibit increased frequencies of Tregs and are
resistant to various autoimmune diseases (105, 106). Besides
Treg differentiation, IL-6 inhibits FoxP3 expression and the
suppressive function of Tregs (107). Further, IL-6 promotes
the differentiation and function of T follicular helper cells,
which interact with B cells and help B cell proliferation,
differentiation, and isotype switching (108). A majority of
PNP cases showed markedly elevated serum IL-6 levels (109,
110), and recent studies showed that IL-6 is a major driver
of disease progression in idiopathic multicentric Castleman
disease, which has a substantially higher incidence in PNP than
that in other neoplasms (111). Taken together, these results
imply that IL-6 might be a crucial inducer of paraneoplastic
autoimmunity, although additional studies are required to
substantiate the relationship between IL-6 and autoimmunity in
PNP (Figure 4).

Molecular Mimicry
PNP might also be caused by an antitumor immune response.
Tumor-specific neoantigens result from the mutation of
tumors. T cells in response to neoantigens can cross-react
with self-antigens derived from normal epithelial proteins
and thereby induce autoimmunity due to molecular mimicry.
Neoantigens mimicking self-antigens derived from desmosomal
and hemidesmosomal proteins have not been investigated
in neoplasms to date, although studies have shown that
several proteins including Dsg3, BP180, BP230, and α6β4
integrin are overexpressed in epithelial-origin carcinoma
(112–115). Once an autoimmune response against a self-
antigen starts, tissue damage may propagate the activation
of adaptive immune cells specific for other self-antigens,
which is called epitope spreading (116). The concept
of epitope spreading may explain why autoantibodies
targeting multiple self-antigens are detected in individuals
with PNP.

FUTURE DIRECTIONS

Because it is such a rare disease, PNP has been poorly
understood to date. Although our understanding of PNP
is gradually increasing, the pathogenesis and etiology of
this disease remain unknown. Moreover, there is a lack
of effective treatment options for PNP. Additional human
and animal studies will be necessary to investigate the role
of anti-plakin autoantibodies in disease manifestation and
the mechanism of bronchiolitis obliterans. The causes of
PNP might be heterogeneous, depending on the associated
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malignancies; therefore, various basic approaches are needed
to comprehend the breakdown of immune tolerance in PNP.
Presently, there is no consensus of diagnostic criteria for
this disease. Thus, large-scale clinical studies are needed
to optimize the diagnostic algorithm and to develop
additional effective treatment strategies to suppress the
autoimmune response.
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