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Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a

growth factor that induces the differentiation and proliferation of myeloid progenitors in

the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory

diseases by stimulating the activation andmigration of myeloid cells to inflammation sites,

promoting survival of target cells and stimulating the renewal of effector granulocytes

and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF

production/signaling may lead to harmful inflammatory conditions. In this context,

GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular

immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA).

Conversely, a protective role has also been described in other autoimmune diseases

where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto’s

thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus

(SLE). In this review, we aimed for a comprehensive analysis of literature data on the

multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies

that target GM-CSF production.

Keywords: GM-CSF, inflammation, tolerance, modulation, autoimmune diseases

INTRODUCTION

Granulocyte-macrophage colony-stimulating factor (GM-CSF, or CSF2) was first described in the
conditioned media of mouse lung tissue following LPS injection, which triggered the proliferation
of bone marrow-derived macrophages and granulocytes (1). GM-CSF is produced by multiple cell
types such as activated T cells, B cells, macrophages, monocytes, mast cells, vascular endothelial
cells, and fibroblasts (2). GM-CSF receptor is composed of one α chain and one β chain with low
and high-affinity binding to GM-CSF, respectively, and the β chain is shared with IL-3 and IL-
5 receptor (3). In addition, the GM-CSF receptor (CSF2R) is found in myeloid cells and some
non-hematopoietic cells, but it is not expressed by lymphoid cells such as T cells (4).

There are four main signaling pathways triggered by CSF2R (5). After binding of GM-CSF to
its receptor, Janus-kinase-2 (JAK-2) is recruited to the cytoplasmic domain of the β chain, and
activation of JAK-2 occurs, which subsequently induces STAT-5 phosphorylation. This signaling
pathway induces migration of STAT-5 dimers to the nucleus and promotes the transcription
of various genes such as pim-1 and CIS to induce cell differentiation (6). GM-CSF promotes
cell survival via phosphatidylinositol-3-kinase (PI3K) and JAK/STAT-Bcl-2 signaling pathways
(7). Moreover, cell differentiation and inflammation are mediated by activation of ERK1/2 and
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NF-kB. Accordingly, studies have shown that GM-CSF augments
the LPS-induced inflammatory response by priming of TNF-
alpha synthesis and also induces multipotent mesenteric
mesothelial cell differentiation into macrophages through the
ERK1/2 signaling pathway (8, 9).

In addition to the important role of GM-CSF as a
colony-stimulating factor and its clinical application following
chemo/radiotherapy to restore myeloid populations in leukemic
patients, several studies suggest that GM-CSF plays a role in
innate and adaptive immunity. Accumulating evidence indicates
the role of this molecule in inflammatory immune response and
autoimmunity (10, 11). In addition to its role in hematopoietic
differentiation, GM-CSF has an effect on antigen presentation,
phagocytosis, chemotaxis, and cell-adhesion as well (12, 13).
Targeting GM-CSF may represent a novel approach to control
undesired immune responses in autoimmune diseases and
chronic inflammation (14). Interestingly, recent studies have
designated GM-CSF as a player in the regulation of immune
responses (15).

In this review, we discuss the role of GM-CSF in autoimmune
diseases pathogenesis.

GM-CSF IN AUTOIMMUNE DISEASES

GM-CSF has been implicated in the inflammatory context
observed in many autoimmune diseases, such as multiple
sclerosis (MS) and rheumatoid arthritis (RA) (16, 17). It should
be noted that GM-CSF and IL-3 are the main mediators of
innate immune responses and the critical role of both GM-CSF
and IL-3 is indicated in the augmentation and progression of
some disorders including allergic asthma, aortic dissection, and
atherosclerosis while the role of IL-3 in MS and RA pathogenesis
is open to question (18).

RA pathogenesis involves the penetration of inflammatory
cells into the synovial fluid, with Th1 and Th17 cells being
the dominant T cell subtypes in the synovia of RA patients
(19). Although IL-17 has been linked to RA pathogenesis,
recent data show that GM-CSF is an important cytokine in
disease development (20–22). There is some evidence that Th17
cells, innate lymphoid cells (ILCs), and stromal cells mediate
inflammatory immune response in the synovia of RA patients
via GM-CSF and IL-17 production. Fibroblast-like synoviocytes
(FLS), which are dominant cells at the pannus-cartilage junction,
produce different inflammatory mediators in RA patients, and
some reports have indicated that GM-CSF production can be
triggered by human chondrocytes and synovial fibroblasts (FLS)
in response to IL-1 and TNFa (23, 24). In addition, Hirota et al.
have shown that CD25+ IL-33Ra+ GATA-3+ ILC2s are the most
common ILCs in the inflamed joints which actively secrete GM-
CSF (25). Also, loss of GM-CSF production capability in FLS and
other stromal cells has prevented RA progression (20).

Markis et al. have reported a higher frequency of B and
T cells expressing GM-CSF in the peripheral blood of RA
patients, suggesting that GM-CSF+ B cells probably contribute
to autoantibody production and RA pathogenesis (26). Also, the
presence of GM-CSF-producing Th cell populations is higher

in synovial fluid than in peripheral blood mononuclear cells
(PBMCs) in patients with juvenile idiopathic arthritis (JIA) (19).

Recently, monocyte-derived inflammatory DCs (infDCs),
which are CD1c+ and share a similar transcription factor with
monocyte-derived DCs (moDCs) generated in the presence of
GM-CSF and IL-4, have been identified in RA synovial fluid.
Reynolds et al. have indicated that CD4+ T cells are the primary
source of GM-CSF in synovial and that GM-CSF production by
these cells is related to Th1 cell activation and IL-15. They have
also shown that CD14+ monocyte differentiation into CD1c+

infDCs is dependent on GM-CSF production by CD4+ T cells.
Interestingly, the decrease in circulating MoDCs in RA patients
and a higher number of these populations in rheumatoid synovial
fluid and synovial tissue can be explained by the fact that these
cells migrate from circulation to the synovial compartment (27).
These cells are capable of producing some pro-inflammatory
cytokines such as TNFa, IL-6, IL-12, and they express various
activation factors that stimulate T and B cells. The stimulation
of MoDCs which are induced in the presence of GM-CSF/IL-4
by TLR-2 (LTA) and TLR-4 (LPS and EDA) ligands has led to
higher production of TNFa and IL-6 in RA patients compared to
healthy subjects. This may indicate that the increase of different
TLR ligands in the joints and serum can provoke TLRs signaling
and facilitate the breakdown of tolerance in RA (28).

In addition, another study showed that the culture of ex vivo
differentiated human MoDCs (CD14+CD33+) in the presence
of GM-CSF is capable of class II-mediated prominent immune
epitopes of two auto-antigens [type II collagen (CII) and cartilage
gp39 (HCgp39)] observed in the inflamed synovial joints of
patients with RA (29). Furthermore, in the presence of GM-CSF,
MoDCs in the synovial fluid of RA patients have a more pro-
inflammatory phenotype and are resistant to anti-inflammatory
properties of IL-10 (30). In collagen-induced arthritis (CIA), a
mouse model of arthritis, mice with defective GM-CSF cannot
develop arthritis, and using antibodies against GM-CSF results
in inhibition of disease progression and a decrease in pro-
inflammatory cytokines in the joints (31). Similarly, in another
mouse model of arthritis (in SKG mice), GM-CSF treatment
increased the production of IL-1β or IL-6 by macrophages and
promoted the differentiation and augmentation of CD4+ T cells
that produce IL-17 and GM-CSF. Also, administration of anti-
GM-CSF was more efficient compared to anti-IL-17 in treatment
and decreased disease severity (32).

In SKG, an influx of Th17 cells, neutrophils, and GM-CSF-
producing CD4+ T cells into the lungs has been observed
(32). Additionally, Katano et al. have shown the effects of
GM-CSF on neutrophils by MALDI-TOF/TOF MS analysis
and protein database searches in RA. They cultured isolated
neutrophils from healthy subjects in the presence of GM-
CSF for 18 h and then extracted different parts of the cells
such as cytosol, membrane/organelle, nuclei, cytoskeleton, and
proteins. The digested peptides were analyzed by a MALDI-
TOF mass spectrometer. They found that GM-CSF upregulates
neutrophil gelatinase-associated lipocalin in neutrophils followed
by transitional endoplasmic reticulum ATPase induction. They
also found significantly elevated levels of neutrophil gelatinase-
associated lipocalin in the synovial fluid of RA patients.
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They concluded that GM-CSF, through increased neutrophil
gelatinase-associated lipocalin, contributes to RA pathogenesis
by activation of immunologic responses and/or synoviocytes,
which leads to a decrease in chondrocyte proliferation (33).

King et al. analyzed antigen-presenting cells (MHCII+ cells)
in the epidermis and dermis of WT and GM-CSF−/− mice.
They showed that GM-CSF is necessary for the accumulation
of langerin+CD103+ CD11blo cells, which are found in the
dermis and play an essential role in T cell priming (34).
Additionally, elevated GM-CSF in skin lesions of psoriatic
patients indicates that this cytokine promotes the function of
neutrophils (35). Also, Scholz et al. have found that neutralization
of GM-CSF in mice by anti-GM-CSF antibody reduced
inflammation in imiquimod-induced psoriasiform dermatitis
(IMQPD). However, they suggest that in the absence of GM-
CSF an alternative pathway plays a role in the pathogenesis of
IMQPD (36).

Overall, GM-CSF plays an important role in inflammatory
responses in autoimmune disease via induction of various cells
and mediators. Ongoing and complete clinical trials targeting
GM-CSF and its receptor are summarized in Table 1.

THE INFLAMMATORY ROLE OF GM-CSF
IN MS

MS is a disabling immune-mediated disease of the CNS
accompanied by demyelinated plaques that result in symptoms
such as vision problems, disability, depression, muscle weakness,
and neurogenic bladder (37).

THE IMPACT OF GM-CSF ON
BLOOD-BRAIN BARRIER (BBB)
PERMEABILITY

Studies have demonstrated that, along with inflammatory
response in the CNS, CD11b+CD62L+Ly6Chi monocytes
that have formed into colonies move into the bloodstream
immediately before EAE relapses in a GM-CSF dependent
pathway, and trafficking of circulating Ly6Chi monocytes
through the blood-brain barrier induces proinflammatory
mediators and differentiation of central nervous system dendritic
cells and macrophages. GM-CSF also stimulates the release of
Ly6Chi precursors from bone marrow (38). High expression
of both GM-CSFR subunits alpha (α) and beta (β) has been
observed on microglia/macrophages and astrocytes in MS
lesions (39).

In the EAE model, GM-CSF induces the proliferation and
activation of microglia, which are necessary for initiation of the
disease (2). Microglia secretes many mediators such as ROS,
TNF-α, Interleukin-1β, Glutamate and nitrogen species (40, 41).
TNF-α influences BBB permeability, which leads to further
destruction via higher expression of markers such as ICAM-1,
and V-CAM-1 (42). GM-CSF can also boost the differentiation
of M1-like macrophages and causes the production of higher
levels of inflammatory cytokines such as IL-1, IL-6, and TNF α,
all of which cooperate in the destruction of the myelin sheath

(43). The inflammasome processing of IL1β can be mediated by
GM-CSF in myeloid cells such as monocytes and macrophages,
promoting the expansion of Th17 cells and more damage to
the BBB (44). Additionally, Pare et al. have recently shown
an inflammatory loop between IL-1β and GM-CSF, suggesting
that IL-1β plays a role in the migration of GM-CSF–activated
CCR2hiLy6Chi monocytes to the CNS (17, 45). To investigate the
effect of GM-CSF on BBB permeability, and to prepare a GM-
CSF microenvironment, human brain microvascular endothelial
cells (HBMECs) were cultured on transwell inserts as a BBB
model and to mimic Alzheimer’s disease (AD). Claudins and
zonula occludens-1 (ZO-1), a transmembrane and cytoplasmic
proteins, respectively, play an important role in maintaining
tight junctions. Shang et al. have indicated that GM-CSF down-
regulates the expression of ZO-1 and claudin-5 in HBMECs,
which induces the disruption of tight junctions in BBB (46).
Additionally, in another study, intracerebroventricular injection
of GM-CSF to wild-type mice was accompanied by a decrease in
ZO-1expression in comparison to the PBS group (47) (Figure 1).

Some evidence suggests that in EAE and MS, GM-
CSF induces the expression of CCR2 on monocytes which
bind to CCL2, resulting in the migration of inflammatory
cells across the BBB and into the CNS (48). In agreement
with this observation, another report showed, in Csf2CD4

mice, which express GM-CSF specifically in CD4+ T helper
cells, a high frequency in the periphery of neutrophils and
monocytes, especially CD11c+MHC+CD11b+CCR2+ myeloid
cells called inflammatory monocyte-derived cells (MdCs), has
been observed. GM-CSF-induced expansion of this myeloid cell
population is accompanied by migration of MdCs into the CNS.
Zhao et al. have suggested that, in the presence of inflammatory
MdCs, endothelial cells (ECs) in the BBB are activated, enabling
immune cells such as GM-CSF-overexpressing CD4+ T cells
to enter the CNS (49). In addition, another study has shown
that transmigration of myeloid cells across ECs of the CNS is
associated with the IL-1β/IL-1R1 axis. Central nervous system
ECs under the influence of IL-1β secrete GM-CSF, which induces
the differentiation of monocytes into antigen-presenting cells
(APCs) (17).

GM-CSF AND INNATE IMMUNE CELLS
IN MS

In an inflammatory situation, two groups of innate immune cells,
dendritic cells (DCs) and macrophages, have an essential role
as a link between the innate and adaptive immune responses.
DCs act as antigen-presenting cells and play a significant
role in presenting processed antigens to T cells. They also
express co-stimulatory molecules that are essential for the
interaction between DCs and T cells following T cell activation.
Accumulating evidence shows that GM-CSF up-regulates MHC-
II expression and the secretion of some pro-inflammatory
cytokines such as TNF α, IL-6, and IL-23 (50).

DCs are recruited to MS lesions, where they mature and have
an effect on the inflammatory response to myelin antigens (51).
Some studies have suggested that MS patients have an increased
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TABLE 1 | Clinical therapeutic trials of targeting GM-CSF in autoimmune disorders.

Target Name of

drug

Type of

disease

Format of drug Phase status ClinicalTrials.gov

Identifier

Results

GM-CSF Namilumab RA Monoclonal

antibody

Phase I

(Completed)

NCT01317797 Patients randomized to namilumab showed

more significant improvement in Disease

Activity Score 28 [erythrocyte sedimentation

rate and C-reactive protein (CRP)], swelling

joint counts, and tender joint counts compared

with placebo.

Phase I

(Completed)

NCT02528786 The results have not published yet.

GM-CSF Namilumab RA Monoclonal

antibody

Phase II

(Completed)

NCT02379091 This phase II study demonstrates the benefit of

inhibiting macrophage activity targeting the

GM-CSF for RA. The study met its primary

endpoint with a clear dose-response effect. An

acceptable tolerability profile was

demonstrated over the 12-week study.

Phase II

(Terminated)

NCT02393378

GM-CSF Namilumab Plaque

Psoriasis

Monoclonal

antibody

Phase II

(Completed)

NCT02129777 No significant difference was recorded in this

end point between placebo and any

namilumab group.

GM-CSF MOR103 RA Monoclonal

antibody

Phase I-II

(Completed)

NCT01023256 MOR103 was well- tolerated and showed

preliminary evidence of efficacy in patients with

active RA. The data support further

investigation of this monoclonal antibody to

GM-CSF in RA patients and potentially in those

with other immune-mediated inflammatory

diseases.

GM-CSF MOR103 MS Monoclonal

antibody

Phase Ib

(Completed)

NCT01517282 MOR103 was generally well tolerated in

patients with RRMS or SPMS. No evidence of

immunogenicity was found.

GM-CSF KB003 Asthma Humanized

monoclonal

antibody

Phase II

(Completed)

NCT01603277 There was no significant difference in anti-drug

antibody response between placebo and

treated groups. Higher doses and/or further

asthma phenotyping may be required in future

studies with KB003.

GM-CSF MORAb-

022

RA Monoclonal

antibody

Phase I

(Completed)

NCT01357759 MORAb-022 was generally well-tolerated in HS

as well as inactive RA Pts. Preliminary evidence

of activity was observed, but further evaluation

is needed due to the small sample size in this

study.

GM-CSF

R

Mavrilumab RA Monoclonal

antibody

Phase II

(Completed)

NCT01706926 Mavrilimumab significantly decreased RA

disease activity, with clinically meaningful

responses observed 1 week after treatment

initiation.

myeloid DC population, which expresses HLA-DR, CD40, CD86,
and CD80. In addition, the expression of inhibitory molecules
such as PDL-1 on these cells is decreased, and they produce an
elevated level of pro-inflammatory cytokines that drive Th1-Th17
immune responses, resulting in disease exacerbation (52, 53).
Other studies have indicated that GM-CSF plays the main role in
driving inflammatory monocytes to the CNS and its signaling in
monocyte-derived DCs appears to be crucial for EAE induction
(50, 54). Additionally, this cytokine promotes the differentiation
of immature myeloid cells to DC in the CNS (38).

GM-CSF deficient mice (Csf2-deficient) are resistant to EAE;
however, treatment with the anti-CD25 mAb PC61 induces
severe and chronic EAE in these mice equivalent to that of

C57BL/6 mice. Furthermore, after the induction of EAE with
PC61 as a passive model of EAE, adoptive transfer of myelin-
specific Csf2-deficient T cells into Csf2-deficient mice did not
improve the disease course or its severity. The defective T cell
response in Csf2-deficient mice is therefore likely related to
an inadequate CD4+ T cell response, which is not capable of
overcoming Treg cell regulatory barriers (55). King et al. have
found that GM-CSF-deficient mice exhibit impairment in a
particular group of migratory dermal langerin+CD103+ DCs.
These DCs stimulate the expansion of naïve myelin-specific T
cells, resulting in the production of IFN-γ and IL-17. Deficiency
of this subset of DCs could thus inhibit the responses of these
two cytokines, contributing to EAE resistance (34). In line
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FIGURE 1 | The role of GM-CSF in MS pathogenesis. In a GM-CSF dependent pathway, CD11b+CD62L+Ly6Chi monocytes are released and move toward the

blood-brain barrier, which induces pro-inflammatory mediators and differentiation of central nervous system dendritic cells and macrophages. GM-CSF induces the

expression of CCR2 on monocytes which bind to CCL-2, resulting in the migration of inflammatory cells across the BBB and into the CNS. Moreover, the proliferation

and activation of microglia cells induced by GM-CSF are necessary for initiation of the disease. These cells secrete many mediators such as ROS, TNF-α, and

Interleukin-1β. TNF-α influences BBB permeability, which leads to further destruction. Also, GM-CSF can boost the differentiation of M1-like macrophages and causes

the production of higher levels of inflammatory cytokines such as IL-1, IL-6, and TNF α, all of which cooperate in the destruction of the myelin sheath.

GM-CSF-induced expansion of CD11c+MHC+CD11b+CCR2+ myeloid cells (MdCs) population is accompanied by migration of MdCs into the CNS. GM-CSF

secreted by Th17 cells is the main cytokine contributing to encephalitogenicity. IL-23 secreted by Th17 cells is necessary for the production of GM-CSF, and this

cytokine causes an increase in pro-inflammatory myeloid cells. In addition, exTh17 cells produce GM-CSF, IFN-γ, and IL 17 simultaneously and play an important role

in neuroinflammation. CD8+ T cells can also produce GM-CSF, and IL-17-producing CD8+ T cells (Tc17 cells) are a known source of GM-CSF. ThG cells, a

subpopulation of CD4+ T cells, produce only GM-CSF and play an important role in neuroinflammation. Additionally, GM-CSF–expressing B cells play a significant role

in inducing a pro-inflammatory phenotype of myeloid cells and in initiating an inflammatory response by producing GM-CSF. MS, Multiple Sclerosis Disease; BBB,

Blood Brain Barrier; ROS, Reactive oxygen species.

with this theory, these cells may play an important role in the
pathogenesis of autoimmune disorders via the development of
CD4+ T cell differentiation.

In addition to DCs, macrophage subsets (M1 and M2) also
play various roles in the immune system. M1 macrophages are
associated with inflammatory response, while M2 macrophages
are involved in anti-inflammatory responses and tissue
repair mechanisms (12, 56). Culture of monocytes in the
presence of GM-CSF and M-CSF induces M1 (CD11b+F4/80+

CD11c+ CD206−) and M2 (CD11b+F4/80+ CD11c− CD206+)
macrophages, respectively, and a high M1/M2 ratio enhances
the development of EAE and induces relapses but, reversing this
ratio, reduces disease severity. Adoptive transfer of CD206+

M2 macrophages into EAE mice suppressed disease (56, 57).
Furthermore, histological analysis of lumbar spinal cord of
mice in which EAE had been induced with GM-CSF−/− T cells

showed decreased CD11b+ microglia/macrophages in lesions
in comparison with WT T cells. This finding suggests that the
proliferation and function of residential microglia cells can be
developed by GM-CSF producing T cells (2).

THE IMPACT OF GM-CSF ON T CELLS AS
AN ADAPTIVE ARM OF THE IMMUNE
SYSTEM IN MS

It was initially thought that, among different subsets of CD4+

T cells, Th1 cells that can produce IFN-γ are responsible for
autoimmune responses in MS. This opinion changed after it
was found that IL-23 deficient mice are unable to develop EAE
(58). It was later clarified that IL-23 induces the development
of IL-17-producing CD4+ T cells. Furthermore, it has been
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found that that IL-23-driven production of IL-17 T cells is critical
for pathogenicity in the CNS (59). Accordingly, myelin-specific
CD4+ T cells that had been activated by APC/Ag developed EAE
when transferred to naïve mice, while the transfer of myelin-
specific CD4+ T activated with anti-CD3/28 did not induce EAE.
A more detailed assessment showed that IL-23R signaling in
APCs is critical for the generation of encephalitogenic T cells
(58). A subset of Th cells was subsequently identified that could
express IL-17A and IL-17F but not IFN-γ or IL-4 (60). After
the discovery of Th17 cells, a study showed that these immune
cells play a significant role in the induction of autoimmune
disorders like MS. However, their key secreted cytokines, IL-17A
and 17F, and even IL-21 and IL-22, are not essential for EAE
induction (61). It was later shown that GM-CSF secreted by Th17
cells is the main cytokine contributing to encephalitogenicity
(62). Interestingly, IL-23 is necessary for the production of GM-
CSF, and this cytokine causes an increase in pro-inflammatory
myeloid cells in the CNS, resulting in demyelination in EAE
(62). Also, in EAE mice, GM-CSF is an essential factor for the
secretion of IL-23 by DCs in a CCR4-dependent pathway (63).
These observations suggest that there is a positive feedback loop
where GM-CSF induces IL-23 production and vice versa. GM-
CSF production in this situation is related to both NF-kB and
RORγ t transcription factors (64). However, other reports have
suggested that STAT4 and Blimp-1 act as transcription factors for
GM-CSF production (65, 66).

Recent studies have shown that most of the Th17 cells
that infiltrate the CNS of EAE mice convert into Th1 cells,
now called exTh17 cells, which are more pathogenic and
promote inflammation in the CNS (67). Interestingly, Th17
cells are not as pathogenic as exTh17 cells (68). Pathogenicity
of exTh17 cells correlates to their ability to produce GM-
CSF, IFN-γ, and IL 17 simultaneously. Moreover, exTh17
cells express Th1-related transcription factor T-bet and Th17-
related RORγt and express the chemokine receptors CXCR3
and CCR6; exTh17 cells are also called Th1/Th17 cells (69,
70). The importance of T-bet and RORγt co-expression is
based on the fact that they have both been implicated in the
production of GM-CSF by mouse and human CD4+ T cells
(62, 64, 71) (Figure 1).

MS has also been shown to have an important T cell-
dependent background as T cells are enriched in lesions and
circulating T cells in the blood of MS patients and show
an activated phenotype (72). As regards GM-CSF production,
Hartman et al. found that MS patients have an elevated frequency
of GM-CSF-producing CD4+ T cells in the blood (73). Our
group showed that GM-CSF+ CD4+ T cells are also frequent
in the lesions of untreated MS patients and that their numbers
decrease after IFN-β treatment (74). Moreover, CD8+ T cells
can produce GM-CSF, and IL-17-producing CD8+ T cells (Tc17
cells) are a known source of GM-CSF, TNF-α, IFN-γ, IL-21,
and IL-22 (75–77). Our group has also shown that GM-CSF+

CD8+ T cells are present in MS lesions (74). Although the role
of CD4+ T cells in CNS inflammation is well established, data
in the literature on the part played by CD8+ T in demyelination
and CNS inflammation are conflicting and need further
elucidation (78, 79).

GM-CSF ONLY PRODUCING CD4+ T
CELLS IN MS

Recent reports have identified a subpopulation of CD4+ T cells
that do not produce IFN-γ, IL-17, IL-4, IL-9, and IL-13 but
produce GM-CSF in the peripheral blood of healthy individuals
(71). These cells are being called ThG cells and their role in
neuroinflammation is a matter of current investigation. ThG cells
are increased in the peripheral blood of MS patients (71, 74, 80).
These cells represent only 2% of all CD4+ T helper cells in
healthy subjects and their existence in rodents has also been
demonstrated (80, 81). ThG cells express low levels of T-bet,
GATA3, and RORγt, which suggests that their transcriptional
pathway is different from other Th cell subsets.

Human andmouse ThG cells are induced in vitro by activating
naïve CD4+ T cells with agonistic anti-CD3/CD28 antibodies
in the presence of IL-2 and IL-7 (58). MS patients with a
polymorphism in the IL-2 receptor alpha gene have an increased
frequency of ThG cells (73). Polymorphisms in the IL-7Rα

chain are associated with an increased risk of developing MS
(82). Given that IL-2 and IL-7 signal through a common γ

chain receptor, the intracellular signaling is mediated by STAT5
and suppressed by STAT3. EAE induction in STAT5−/− mice
indicates that the IL-7-STAT5 axis is needed for the development
of GM-CSF/IL-3- producing T cells as STAT5−/− mice have
fewer ThG cells and develop less severe EAE (80). Taken together,
these observations highlight the underappreciated role of GM-
CSF in the context of CNS autoimmunity.

GM-CSF PRODUCING B CELLS IN MS

In addition to their role in antibody production, B cells produce
large amounts of cytokines that modulate the microenvironment
and inflammation (83). This “helper” function of B cells has
attracted attention in the past few years, especially in MS (84,
85). In this context, it has been shown that memory B cells
from MS patients produce high levels of GM-CSF, TNF-α,
and IL-6 (86). In these GM-CSF–expressing memory B cells,
the expression of transcription factors such as STAT5 and
STAT6 is related to GM-CSF production and they suppress
the formation of IL-10-producing B cells (86). Also, in vitro
studies indicate that GM-CSF–expressing B cells play a significant
role in inducing a pro-inflammatory phenotype of myeloid
cells and in initiating an inflammatory response by producing
GM-CSF (86). Interestingly, FDA-approved dimethyl fumarate
(DMF) ameliorates MS and has been shown to deplete GM-
CSF-producing B cells in MS patients (87, 88). As mentioned
previously, GM-CSF-producing B cells promote an inflammatory
phenotype of myeloid cells, and B cell depletion therapy has
been accompanied by a decrease in proinflammatorymyeloid cell
responses. Also, anti-CD20 antibody treatment which depletes B
cells has been shown to decrease Th1 and Th17 cells (86). These
data indicate that the helper function of B cells plays a role in MS
pathogenesis. Considering the importance of GM-CSF role in the
pathogenesis of MS disease, it has recently been recognized as a
therapeutic target in various studies (89).
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THE ROLE OF GM-CSF IN
IMMUNE TOLERANCE

Unlike IL-10 and TGF-β, GM-CSF has not been described as a
tolerogenic or immunosuppressive cytokine. A previous study
showed that regulatory T cells (Tregs) express a functional GM-
CSF receptor alpha chain (CD116) and expand in response to
stimulation with this cytokine independently of IL-2. Interaction
of GM-CSF with CD116 on Tregs may improve immune
tolerance (90). Also, GM-CSF regulates effector differentiation of
invariant natural killer T (iNKT) cells, which express CD116 (91)
(Figure 2). However, Ahn et al. have recently shown opposing
effects for NKT cells through production of IL-4 and GM-CSF.
They report that by producing GM-CSF, NKT cells contribute to
the induction of inflammatory response via activation of NLRP3-
dependent inflammasome (92). In any case, more detailed studies
are needed for an in-depth understanding of how NKT cells
regulate immune responses.

Additionally, high doses of GM-CSF recruit myeloid-
restricted CD11b+Gr1+ precursors (MSCs) which may favor the
retention of Tregs (90). Studies have shown that GM-CSF induces
differentiation of bone marrow cells into bone marrow-derived
dendritic cells (G-BMDCs) that co-express OX40L and Jagged-1
(Jag-1), which expand natural Tregs (Figure 2). The interaction
of these surface molecules expressed in G-BMDCs with their
cognate receptors (OX40, Notch3) on Treg cells triggers Treg
proliferation that does not require antigen presentation or
activation. In addition to the ability of G-BMDCs to expand
natural Tregs, G-BMDCs secrete high levels of TGF-β, which
along with TCR stimulation could convert effector T cells (Teff)
into induced regulatory T cells (iTregs) (93, 94).

GM-CSF also plays an essential role in the differentiation
of dendritic cells (DCs), rendering them tolerogenic and
inducing T-cell-mediated tolerance (13). DCs originate from
hematopoietic bone marrow progenitor cells, which play a
significant role in the orchestration of immune responses. Several
lines of evidence have indicated that GM-CSF broadly induces
DC differentiation, which affects T cells response as an effector
or regulatory cells (94, 95). Mature DCs with improved antigen-
presenting capacity can induce efficient effector T cell responses
while immature DCs induce anergic T cells, regulatory T cells
(Tregs) and immunomodulatory cytokine-secreting T cells. The
dual nature of DC immunoregulatory function mainly depends
on the micromilieu during the maturation and activation of
DCs. For instance, in the absence of inflammatory signals,
DCs remain immature and maintain T cell tolerance in the
periphery. DCs with a tolerogenic phenotype, characterized
by decreased expression of co-stimulatory signal (CD80/CD86
molecules), provide a pro-tolerant environment (high IL-10,
low IL-12) (96). GM-CSF expands myeloid CD11c+CD8a−

and CD11c+CD11b+ DCs, two DCs subsets involved in the
induction of tolerance. A study has shown that treatment with
rGM-CSF for 7 days increased the percentage of myeloid DCs,
making them the predominant DC population in rGM-CSF–
treated C57BL/6 mice. rGM-CSF expanded only myeloid DCs,
identified by their co-expression of CD11c and CD11b and
their lack of expression of CD8a. These DCs showed modest

increases in MHC expression and endocytotic activity compared
to myeloid DCs from control mice (94, 95).

Furthermore, GM-CSF promotes the CD8a− DCs population
and maintains them in a semi-mature tolerogenic status.
Antigen presentation by these tolerogenic CD8a− DCs can
lead to tolerance through the induction of Tregs from effector
T cells (97). In another study, administration of GM-CSF
before induction of experimental autoimmune myasthenia gravis
(EAMG) in C57BL/6J mice suppressed disease development.
The protective effect of GM-CSF was associated with a selective
expansion of CD11c+CD8a− DCs. They also observed a
reduction in anti-AChR Ab levels, T cell propagation and Th1
cytokine responses, and an increase in the IL-10 response. This
effect was likely due to a shift in the cytokine milieu to a Th2
profile and the generation of Tregs (98). CD103+ dendritic cells
have a critical role in the induction of Tregs in the gastrointestinal
tract and the development of these cells from bone marrow
stimulated by Flt3L and GM-CSF. It thus appears that GM-CSF
also plays a vital role in the maintenance of intestinal immune
tolerance (99). Accordingly, due to a predominance of either
effector T cell response in autoimmune diseases, it might be
feasible to use GM-CSF to modulate DC subsets in order to
prevent these diseases.

THE TOLERANCE-REGULATING ROLE OF
GM-CSF IN AUTOIMMUNE DISEASES

Tregs are critical for the establishment and maintenance of
tolerance in the periphery and play an indispensable role in the
prevention of autoimmunity (100). Studies have shown that GM-
CSF treatment can induce DCs with a semi-mature phenotype,
and Tregs, which subsequently suppress ongoing autoimmunity
in animal models (97). GM-CSF, a promoter of tolerogenic
DCs, has also been reported to have a suppressive effect on
autoimmune diabetes and autoimmune thyroiditis (97, 101).
A correlation of lupus-like disease with a deficiency in GM-
CSF has also been noted (102). GM-CSF is thought to exert its
potential therapeutic effects through selective activation of DCs
in non-obese diabetic (NOD) mice (97, 103).

Type 1 Diabetes (T1D)
T1D is an organ-specific autoimmune disease resulting from a
breakdown of self-tolerance that leads to the destruction of T
cell-mediated pancreatic beta cells. Abnormal maturation and
defects in the number and function of DCs have been linked
to the development of diabetes (104). There is accumulating
evidence that self-tolerance can be restored and promoted by
tolerogenic DCs or semi-mature DCs induced by GM-CSF.
Gaudreau et al. have found that treatment of NOD mice
with GM-CSF can protect them from diabetes and increase
the number of splenic CD11c+CD11b+CD8a− DCs. That
protection was possibly associated with the accumulation of
tolerogenic immature splenic DCs and Tregs. Also, GM-CSF
promotes the development of semi-mature DCs that recruit Th2
and Tr1 cells and inhibit diabetes in NOD mice as well as
autoimmune thyroiditis (103). Treg cells from GM-CSF-treated
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FIGURE 2 | Dual aspects of GM-CSF immunomodulatory effects. GM-CSF-induced bone marrow-derived dendritic cells, which co-express OX40L and Jagged-1

(Jag-1), expand regulatory T cells (Tregs). Also, GM-CSF is associated with a selective expansion of CD11c+CD8a−, CD103+, CX3CR1−, and CD11c+,CD11b+

DCs. The interaction of GM-CSF with CD116 on Tregs and iNKT cells improves immune tolerance. Monocyte-derived dendritic cells (MoDCs) are generated in the

presence of GM-CSF and IL-4. These cells are capable of producing pro-inflammatory cytokines such as TNFa, IL-6, and IL-12. GM-CSF induces the M1

macrophages phenotype that produces inflammatory cytokines. In addition, GM-CSF is an essential factor for the secretion of IL-23 by DCs in a CCR4- dependent

pathway. Th1/Th17 cells are induced by IL-23, IL-1β in mice and IL-1 β, IL-12 in humans. Furthermore, CD8+ T cells also express GM-CSF and a subset of these

cells, called Tc17, produce IL-17 cells, TNF-α, IFN-γ, IL-21, IL-22, and GM-CSF. Treg, Regulatory T cell; iNKT, Invariant natural killer T cells; Th1/Th17, T helper 1/17

cells; TNFa, Tumor necrosis factor alpha.

mice suppressed T1D, a suppression that was dependent on IL-
10 and TGF-β1 production. In addition, the transfer of GM-
CSF-exposed DCs to naive mice induced Treg expansion and
delayed onset of T1D. GM-CSF affects DCs primarily, causing
expansion of Tregs, which are responsible for maintaining
tolerance of diabetogenic T cells, and delaying the onset of
T1D in NOD mice (104). Alnek et al. have found high levels
of GM-CSF and other growth factors at the onset of type 1
diabetes. They have suggested that an increase in GM-CSF
and IL-10 in the blood of T1D patients is likely related to
their protective mechanisms (101). In another study, Surendar
et al. reported an increased level of GM-CSF in patients with
diagnosed type 2 diabetes, and they concluded that an activated
state ofmyeloid DCs and plasmacytoidDCs is related to GM-CSF
level (105).

Thyroiditis (EAT)
Experimental autoimmune thyroiditis (EAT) is a chronic
inflammatory autoimmune disease of the thyroid that serves
as a mouse model for Hashimoto’s thyroiditis (HT). The
condition is accompanied by infiltration of lymphocytes into
the thyroid, which leads to follicular destruction. Infiltration of
thyroglobulin (mTg)-specific Th cells to the thyroid are usually
followed by cytokine production such as IFN-γ, which induces
the expression of MHC class II on thyrocytes and eventually
leads to more development. Activation of T cells and cytokine

production ultimately results in apoptosis of thyrocytes and
thyroid destruction (106). GM-CSF has the potential capacity not
only to prevent but also to suppress EAT, and GM-CSF-induced
EAT suppression in mice was accompanied by an increase in the
frequency of Treg cells, which destroyed the mTg-specific T cell
responses. Also, the transfer of Tregs from mTg-primed donors
treated with GM-CSF into untreated recipients elicited a decrease
in T cell responses against mTg (107). It has likewise been shown
that mTg-immunized mice treated with GM-CSF demonstrated
suppressed effector T cell response to mTg and failed to develop
thyroiditis. mTg presentation by GM-CSF-exposed CD8a− DCs
to T cells from mTg-primed mice induced an increase in the
frequency of Tregs (108). Ganesh et al. showed that transfer of
CD8a− DCs from GM-CSF-treated mice into wild-type mice
prevented EAT in recipient animals following immunization with
mTg (97).

Furthermore, Gangi et al. have shown that GM-CSF can
induce DCs with a semi-mature phenotype that is known to
have a critical role in the development and maintenance of
Treg cells. They also found that IL-10 produced by Treg cells is
crucial for disease suppression in GM-CSF-treated mice (107).
Another study also found that adoptive transfer of G-BMDCs
induces Treg expansion, increases IL-4 and IL-10 production,
and suppresses EAT in recipient mice. This study showed a
pivotal role for OX40L and Jag1 signaling of G-BMDC in Treg
expansion (109).
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Myasthenia Gravis (MG)
Myasthenia gravis (MG) is another autoimmune disease caused
by autoreactive T cells and auto-antibodies against acetylcholine
receptors (AChR). AChRs lose their function due to the binding
of autoantibodies, which leads to a defect in neuromuscular
transmission (110). Production of anti-AChR Abs is modulated
by, and dependent upon, AChR-specific CD4+ T cells (111).
Also, DCs are crucial in MG pathogenesis by presenting self-
Ags and promoting the priming of AChR-specific T cells (112).
Experimental Autoimmune Myasthenia Gravis (EAMG) is an
investigational disease model for MG that provides an excellent
model system for elucidating the pathogenic mechanisms,
immunological nature, and novel treatment approach relevant
to MG in humans (113). One study showed that immature DCs
generated at a low dose of GM-CSF and pulsed in vitro with
AChR could induce tolerance to EAMG (114).

Sheng et al. have reported the protective effect of GM-CSF
through the expansion of CD11c+CD8a− DCs, which resulted
in clinical improvement. In their study, there was a decrease in
levels of circulating anti-AChRAb as well as of T cell proliferation
and Th1responses while there was an increase in IL-10. This effect
of GM-CSF is related to Th2 polarization, mobilization of DCs
with a tolerogenic phenotype and Treg cell induction (98). Also,
Meriggioli et al. have indicated that administration of GM-CSF
suppressed the development of EAMG and down-regulated anti-
AChR T cell and antibody responses. These effects were linked
to the activation of tolerogenic DCs, mobilization of Tregs, and
enhanced production of suppressive cytokines, such as IL-10.

Furthermore, GM-CSF-treated mice had an increase in
CD11c+CD8a− cells compared to the untreated group (115).
Rowin et al. showed that GM-CSF treatment of a patient with
a prolonged myasthenic crisis, whose disease was refractory
to standard therapy, led to clinical improvement. The clinical
efficacy of GM-CSF was associated with an expansion of the
circulating numbers of Tregs, an enhanced intensity in Foxp3
expression levels in Tregs, and an early enhancement in Treg
suppressive ability for AChR-α induced T cell proliferation
(116). The function of DCs may therefore play a crucial role
in the initiation and maintenance of healthy immune response
in MG. Although Cao et al. have determined the phenotype of
autoreactive T cells in MG by T cell library assay as the cells with
high levels of IL-17, IFN-γ, and GM-CSF and a low level of IL-
10, they did not discuss GM-CSF immunomodulatory effects in
previous studies (117).

On the other hand, Aricha et al. have expanded Foxp3+ Treg
cells ex vivo by isolating bone marrow (BM) cells. They cultured
bone marrow (BM) cells in the presence of GM-CSF and induced
CD11c+ MHCII+ CD45RA+ CD8− DCs (BMDCs). A co-culture
of BMDCs with splenic CD4+ T cells expanded to 90% Tregs
and administration of expanded Tregs to EAMG rats suppressed
disease (118).

Systemic Lupus Erythematosus (SLE)
Another autoimmune disorder, juvenile systemic lupus
erythematosus (JSLE), is characterized by multisystem
involvement (119). Dysregulated neutrophil apoptosis may
promote the development of autoimmune response. In addition,

an imbalance in both pro-apoptotic and anti-apoptotic factors
in both neutrophils and sera from patients with JSLE has
been reported (120), and neutropenia as a consequence of
accelerated apoptosis of neutrophils and their precursors can
be found in patients with SLE (121). Accordingly, apoptotic
bodies released by neutrophil apoptosis could be a source of
auto-antigens in JSLE (122) and active disease is associated
with the increased neutrophil apoptosis (120). Interestingly,
neutrophil apoptosis has been ameliorated, and their function
improved in the presence of GM-CSF (123). GM-CSF deficient
mice have been shown to develop an SLE-like disorder associated
with impaired phagocytosis of apoptotic cells (124). GM-CSF
can delay neutrophil apoptosis through an increase in cellular
levels of myeloid cell leukemia 1 (Mcl-1), an anti-apoptotic
protein of the Bcl-2 family, and prevent caspase activation
(caspase-3, caspase-7, and caspase-8) (123, 125). Hence, the
therapeutic administration of GM-CSF should be considered as
an alternative treatment in patients with JSLE to reduce the rate
of neutrophil apoptosis.

Inflammatory Bowel Disease (IBD)
Inflammatory bowel disease (IBD), including Crohn’s disease
(CD) and ulcerative colitis (UC), is characterized by chronic
inflammatory disorders throughout the gastrointestinal tract
(126). Impaired innate immunity (granulocytes, macrophages,
and DCs) plays a critical pathogenic role in IBD (127).
GM-CSF is necessary for the development of lamina propria
CD103+CX3CR1− DCs that efficiently induce intestinal Tregs
(128, 129). Xu et al. have indicated that administration of GM-
CSF can result in clinical improvement in patients with CD.
Moreover, GM-CSF-deficient mice were more susceptible to
dextran sodium sulfate (DSS) induced colitis, possibly due to
impaired macrophage function (130).

Similarly, Egea et al. have shown that mice deficient in
GM-CSF developed more severe colitis in response to enteric
exposure to DSS and that colitis was inhibited mainly by
GM-CSF administration (131). In another study, Denson et al.
have found that low or normal GM-CSF signaling in neutrophils
is associated with a more significant number of complications
in pediatric CD (132). Also, an increase in anti-GM-CSF
auto-antibodies has diminished GM-CSF bioactivity, which led
to an exacerbation of CD and accelerated surgical recurrence
(133). Detection of GM-CSF Ab could therefore be a potential
tool for monitoring disease activity and optimizing therapy.
Likewise, Bernasconi et al. found a reduction in colitis severity
after GM-CSF administration in DSS-treated mice and reported
that GM-CSF improved accelerated ulcer healing in the colon.
These effects were associated with increased CD11b+ monocytic
subsets (134). Recombinant human GM-CSF (rhGM-CSF) has
been used in clinical trials and is reported to have resulted
in improvement and remission in patients with CD (131).
Furthermore, Dieckgraefe and Korzenik have reported patients
with moderate-to-severe CD who were treated with rhGM-CSF
had a high rate of remission and a significant decrease in mean
Crohn’s disease activity index score during treatment (135).
Overall, GM-CSF might be considered as an alternative
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to traditional immunosuppression for the treatment of
Crohn’s disease.

CONCLUSION

GM-CSF may have therapeutic value by modulating leukocyte
and cytokine production. GM-CSF exerts its immunomodulatory
function via the presence of other cytokines and immune
cell subsets that are involved in the immune responses in
different autoimmune diseases. The roles of GM-CSF in
the pathogenesis of some autoimmune diseases, call our
attention to the use of this cytokine or its targeting in
the treatment of this type of disorder. Understanding the
inflammatory and regulatory roles of GM-CSF in autoimmune
disorders will therefore be useful for its application in
clinical studies.
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